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ulation responses of cortical neurons encode considerable details
about sensory stimuli, and the encoded information is likely to change
with stimulus context and behavioral conditions. The details of en-
coding are difficult to discern across large sets of single neuron data
because of the complexity of naturally occurring stimulus features and
cortical receptive fields. To overcome this problem, we used the
method of stimulus reconstruction to study how complex sounds are
encoded in primary auditory cortex (AI). This method uses a linear
spectro-temporal model to map neural population responses to an
estimate of the stimulus spectrogram, thereby enabling a direct com-
parison between the original stimulus and its reconstruction. By
assessing the fidelity of such reconstructions from responses to mod-
ulated noise stimuli, we estimated the range over which AI neurons
can faithfully encode spectro-temporal features. For stimuli contain-
ing statistical regularities (typical of those found in complex natural
sounds), we found that knowledge of these regularities substantially
improves reconstruction accuracy over reconstructions that do not
take advantage of this prior knowledge. Finally, contrasting stimulus
reconstructions under different behavioral states showed a novel view
of the rapid changes in spectro-temporal response properties induced
by attentional and motivational state.

I N T R O D U C T I O N

Population responses of cortical sensory neurons encode con-
siderable details about stimuli. This detail, however, can be dif-
ficult to discern because of the complexity and diversity of cortical
receptive fields. Furthermore, as stimulus context and the de-
mands of behavior change, the best way to for the cortex to
encode information about auditory stimuli is also likely to change.

The typical approach used for understanding how stimuli are
encoded across a neural population is to examine the distribu-
tion of some tuning property measured for a large set of
neurons (De Valois et al. 1982; Ferragamo et al. 1998). One
can infer that ranges of stimuli spanned by a large number of
neurons reflect features that are encoded with greater fidelity
than ranges spanned by fewer neurons. A similar approach is to
study ensemble tuning across a large number of spectrotem-
poral receptive fields (STRFs) or other tuning curves (Woolley
et al. 2005). In this method, stimulus features correlated with
stronger average responses, identified by larger average STRF
parameters, are assumed to have a better encoding than stimuli
correlated with weaker average responses (Woolley et al.
2005). A more complete understanding of population codes
can be developed by visualizing peristimulus time histogram

(PSTH) responses to several different stimuli after sorting the
neurons according to their selectivity. In the auditory system,
this approach is most commonly associated with the “neuro-
gram,” in which PSTHs are sorted by best frequency (Sachs
and Young 1979; Shamma 1985; Woolley et al. 2005). More
generally, it is possible to organize the population response
along ordered axes of any parameter derived from the response
sensitivities of each neuron, such as bandwidth (Mesgarani
et al. 2008) or modulation rate sensitivity (Schreiner and
Langner 1988).

Although useful for evaluating data from multiple neurons,
these common methods of organizing PSTH responses have
several limitations. Most importantly, they require a preselec-
tion of a tuned feature (best frequency, bandwidth, etc.), which
can be problematic when not all the relevant parameters of the
neural space are understood. This becomes particularly chal-
lenging when dealing with complex stimuli (e.g., natural
speech) that vary along numerous dimensions and for neurons
that are characterized by several, possibly dependent, response
properties. In this case, it is not clear that all stimuli containing
a particular feature are represented with equal accuracy and
separably from all other concurrent features. Also, despite their
ubiquitous application and straightforward formulation, the
interpretation of population tuning curves for understanding
sensory processing and information transmission remains an
issue of debate (Butts and Goldman 2006). The relative size of
average tuning curves can be attributed to different gain, more
representation of a specific range of stimulus features (corre-
lations in the neural tunings) or lack of encoding of those feature.
Therefore different values on average tuning curve do not neces-
sarily indicate whether those values are encoded at different signal
to noise ratios or not coded at all. This problem is further com-
plicated by the possibility that devoting more neurons to repre-
senting a particular feature value does not always improve the
resolution of that representation (Han et al. 2007).

A different approach to tackle the question of population
coding is to reconstruct the stimulus from the response of the
neural population. The method of reverse reconstruction
(Bialek et al. 1991; Gielen et al. 1988; Hesselmans and Johan-
nesma 1989) finds the best approximation of the input stimu-
lus, which can be compared with the original to discover which
features are preserved or absent in the population response.
The reconstruction method was developed for studies of the fly
visual system (Bialek et al. 1991; de Ruyter van Steveninck
et al. 1997; Haag and Borst 1998), but it has since been used
successfully to study the coding of visual stimuli in the retina
(Warland et al. 1997), LGN (lateral geniculate nucleus) (Stan-
ley et al. 1999), human visual cortex (Miyawaki et al. 2008),
and macaque cortical area MT (middle temporal) (Buracas
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et al. 1998). Outside of the visual system, it has been used to
characterize the efficiency of coding of natural stimuli in the
frog auditory nerve (Rieke et al. 1995).

The reconstruction method eliminates some of the issues
raised for the single-dimension analyses of population tuning.
Because reconstruction projects neural responses back to the
stimulus domain, it does not require preselection of tuning
dimensions. Instead, each stimulus feature is reconstructed in
its full context, and it is possible to evaluate the accuracy of the
population code without assuming that each stimulus feature is
encoded separably. Thus the interpretation of the encoded
features is more intuitive and straightforward when projected
to the stimulus domain. In addition, potential bias from corre-
lation in the neural responses is no longer an issue, because the
bias is removed by the reconstruction filters.

An important issue in reconstructing natural and other com-
plex stimuli is the context of statistical regularities in the
stimulus. In this study, we compared two methods for recon-
struction: one that incorporates prior knowledge of stimulus
context (“optimal prior reconstruction”) and one that does not,
but reconstructs the stimulus using only information about
neuronal receptive field properties (“flat prior reconstruction”).
The two methods provide complementary insight into the
information encoded in the neural population. Optimal prior
reconstruction shows the entire set of stimulus features that can
be inferred from the population responses. Even if a stimulus
feature is not explicitly encoded, it may still be inferred if a
correlated feature is encoded. This is an efficient encoding
strategy for highly structured stimuli because it does not
allocate resources to the encoding of correlated input features
(Barlow 1972). In contrast, flat prior reconstruction assumes no
knowledge of stimulus context. This method thus reflects the
stimulus features that are explicitly encoded in the neural
population and shows the actual coding scheme of the neurons.
Optimal and flat prior reconstructions provide upper and lower
bounds on the extent to which the prior knowledge of stimuli
statistics can improve the inference of stimulus information.
Currently, there are little data indicating how well animals are
able to take advantage of these correlations, but whatever prior
is used must lie between these two bounds.

We report here on how we applied the method of recon-
struction to study the representation of complex ripple noise
(Klein et al. 2000) and natural speech stimuli (Garofolo 1993)
in primary auditory cortex (AI) of the awake ferret. We
assessed the dynamics and spectral selectivity of a large set of
AI neurons as they responded to the noise stimuli. Because the
noise stimuli contained no correlations, optimal prior recon-
struction and flat prior reconstruction produce the same result.
To explore how prior knowledge of stimulus statistics can
affect reconstruction accuracy, we compared the optimal and
flat prior methods using natural speech data. Finally, we
examined how stimulus reconstruction is affected by rapid
plasticity of spectro-temporal response properties during be-
havior, and how changes in reconstructed stimuli might show
the features attended to by the animal during behavior (Fritz
et al. 2003).

M E T H O D S

The protocol for all surgical and experimental procedures was
approved by the IACUC at the University of Maryland and is
consistent with National Institutes of Health Guidelines.

Surgery

Four adult, female ferrets were used in the neurophysiological
recordings reported here. To secure stability of the recordings, a
stainless steel head post was surgically implanted on the skull. During
implant surgery, we induced with a mixture of ketamine (35 mg/kg)
and xylazine (5 mg/kg) and maintained with 1–3% isoflurane to effect.
All anesthetics were purchased from Henry Schein Medical. Using
sterile procedures, the skull was exposed, and a headpost was
mounted using titanium screws and bone cement, leaving clear access
to primary auditory cortex in both hemispheres. Antibiotics and
analgesics were administered as needed.

Neurophysiological recording

Experiments were conducted with awake head-restrained ferrets.
The animals were habituated to this setup over a period of several
weeks and remained relaxed and relatively motionless throughout
recording sessions that lasted 2–4 h. Recordings were conducted in a
double-walled acoustic chamber. Small craniotomies (�1–2 mm
diam) were made over primary auditory cortex before recording
sessions. Electrophysiological signals were recorded using tungsten
microelectrodes (4–8 M�, FHC) and were amplified and stored using
an integrated data acquisition system (Alpha Omega). Spike sorting of
the raw neural traces was done off-line using a custom PCA clustering
algorithm. Our requirements for single unit isolation of stable wave-
forms included that the waveform and spike rate remained stable
throughout the experiment. The number of neurons used for each
analysis varied. The analysis of spectro-temporally modulated noise
used 256 neurons; the speech reconstruction analysis used 250 neu-
rons; and the analysis of behavior-induced plasticity used 4–22
neurons.

Auditory stimuli and analysis

Experiments and simulations described in this report include spec-
tro-temporally modulated noise and speech. The spectro-temporally
modulated noise consisted of 30 temporally orthogonal ripple com-
binations (TORCs) (Klein et al. 2000). Each TORC was a broadband
noise with a dynamic spectral profile that was the superposition of the
envelopes of six ripples (depicted in Fig. 2A). A single ripple has a
sinusoidal spectral profile, with peaks equally spaced at 0 (flat) to 1.4
peaks per octave; the envelope drifted temporally up or down the
logarithmic frequency axis at a constant velocity of �48 Hz. Each
ripple was constructed by applying a sinusodially modulated envelope
to a broadband noise signal. The envelope was modulated along the
frequency dimension (spectral density in cycles per octave) with
phase that drifted at a constant rate over time. In a single TORC, all
ripples were of equal level and the same spectral density, spanning a
range of rates from �48 to 48 Hz. Therefore the two-dimensional
Fourier transform of each TORC envelope, referred to as the modu-
lation spectrum (MS), was confined to line along the scale axis. We
constructed two variants for each TORC with opposite envelope
polarities to minimize bias from the spike threshold in neural re-
sponses on measurements of spectro-temporal tuning.

Speech stimuli were phonetically transcribed continuous speech
from the Texas Instruments/Massachusetts Institute of Technology
(TIMIT) database (Garofolo et al. 1993). Thirty different sentences
(3-s, 16-KHz sampling) spoken by different speakers (15 men and 15
women) were used to sample a variety of speakers and contexts. Each
sentence was presented five times during recordings. To compute the
average spectrogram representation of a given phoneme, the TIMIT
phonetic transcriptions were used to align the auditory spectrograms
of all the instances of that phoneme and averaged across different
exemplars as described in detail in Mesgarani et al. (2008). Speech
spectrograms were binned at 10 ms in time and in 30 logarithmically
spaced spectral bins between 125 and 8,000 Hz.
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Reconstructing sound spectrograms using optimal
stimulus priors

Optimal prior reconstruction is a linear mapping between the
response of a population of neurons and the original stimulus (Bialek
et al. 1991; Stanley et al. 1999). For a population of N neurons, we
represent the response of neuron n at time t � 1 . . . T as R(t, n).
Because neurons in auditory cortex are not phase-locked to the
modulations in the original sound pressure waveform, we represent
the stimulus as its spectrogram, S(t, f) (time, t � 1 . . . T, and
frequency, f � 1 . . . f), which can be used to map linear stimulus-
response relationships (Yang 1992). The inverse function, g(t, f, n), is
a function that maps R(t, n) to S(t, f) as follows

Ŝ�t, f � � �
n
�

�
g��, f, n�R�t � �, n� (1)

Equation 1 implies that the reconstruction of each frequency channel
of the spectrogram, Sf(t) from the neural population is independent of
the other channels [estimated using a separate set of gf(t, n)]). If we
consider the reconstruction of one such channel, it can be written as

Ŝf �t� � �
n
�

f
gf ��, n�R�t � �, n�

The function gf is estimated by minimizing the mean-squared error
between actual and reconstructed stimulus for that frequency channel

min ef � �
t

�Sf �t� � Ŝf �t��
2

Solving this analytically results in normalized reverse correlation
(Bialek et al. 1991; Stanley et al. 1999)

gf � CRR
�1CRSf

(2)

where CRR and CRSf
are the auto-correlation of neural responses and

cross-correlation of stimulus and neural responses at different lags,
respectively

CRR � RRT

CRSf
� RSf

T

and R and Sf are defined as

R � �
r1�0� r1�1� · · · r1��max� · · · r1�T�

···
···

···
0 0 · · · r1�0� · · · r1�T � �max�···

···
···

rn�0� rn�1� · · · rn��max� · · · rn�T�
···

···
···

···
0 0 rn��max� rn�T � �max�

�
and

Sf � �S�0, f� · · · S�T, f��

The matrix R is only padded with zeros on the left to insure causality.
Because of the stochastic nature of the neural responses, the autocor-
relation of the neural responses, CRR is full rank and easily invertible.
In this study, the maximum time lag used was �max � 100 ms. The
entire reconstruction function is then described as the collection of
functions for each spectral channel

G � 	g1, g2 · · · gF


Reconstructing sound spectrograms with flat stimulus priors

Studies of spectro-temporal tuning in auditory systems often char-
acterize neuronal tuning with the spectro-temporal receptive field
(STRF). This model maps the sound spectrogram to the neural

response. The method of flat prior reconstruction uses knowledge of
the STRF to reconstruct the stimulus spectrogram but without any
knowledge of stimulus correlations. We estimated the STRF for each
neuron by normalized reverse correlation of the neuron’s response to
the auditory spectrogram of the stimulus (Theunissen et al. 2001).
Although methods such as normalized reverse correlation can produce
unbiased STRF estimates in theory, practical implementation require
some form of regularization to prevent overfitting to noise along the
low-variance dimensions (David and Gallant 2005; Theunissen et al.
2001). This in effect imposes a smoothness constraint on the STRF.
The regression parameters were adjusted using cross-validation to
maximize the correlation between actual and predicted responses
(David and Gallant 2005). Having estimated the STRFs of the neu-
rons, we now describe the flat prior reconstruction.

The STRF, h(�, f, n), is a mapping from the sound spectrogram
S(t, f) to the neural population response R(t, n)

R̂�t, n� � �
f
�

�
h��, f, n�S�t � �, f� (3)

Equation 3 has a similar structure to the optimal prior reconstruction
(Eq. 1). The response of each neuron in the population is predicted
independently by a separate function (neuron’s receptive field), hn(t, f)
that maps the spectrogram to the neural response, rn(t)

r̂n�t� � �
f
�

t
hn��, f �S�t � �, f � (4)

The function hn(t, f) is estimated by minimizing the mean-squared
error between the neural and predicted response

min en � �
t

�rn�t� � r̂n�t��
2

hn � CSS
�1CSrn

(5)

where CSS and CSrn
are the auto-correlation of the stimulus and

cross-correlation of the stimulus and neural response defined as

CSS � SST

CSrn
� Srn

T

and S and rn are defined as follows

S � �
S�0, 0� S�1, 0� · · · S��max, 0� · · · S�T, 0�

···
···

···
S�0, F� S�1, F� · · · S��max, F� · · · S�T, F�

···
···

···
0 0 · · · S�0, 0� · · · S�T � �max, 0�
···

···
···

0 0 · · · S�0, F� · · · S�T � �max, F�

�
rn � � R�0, n� · · · R�T, n� �

Equation 4 is a system of linear equations that can be solved to find
the spectrogram (S) knowing the forward mappings (h) and the neural
population responses (R). Equation 4 can be written in the following
matrix form

r̂1 � h1
TS

··· 3 R̂ � HTS
r̂n � hn

TS
(6)

where S is defined above and H is the collection of the STRFs. We can
find the reconstruction filter using the pseudo-inverse of the matrix H

F � �HHT��1H

and subsequently estimate the stimulus, Ŝ from the neural population
response

Ŝ � FR
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Relationship between optimal prior and flat
prior reconstruction

The two methods for reconstructing the input spectrograms from
the neural responses are shown schematically in Fig. 1. In optimal
prior reconstruction, we directly estimated the optimal linear mapping
from neural responses to the stimulus spectrogram. This method
optimally minimizes the mean-squared error (MSE) of the estimated
spectrogram. In flat prior reconstruction, we used the neuron’s STRFs
to construct a mapping from neural responses to stimulus spectro-
gram. This method inverts a set of STRFs that are estimated by
minimizing the MSE of the predicted neural responses. The optimal
prior method and the STRF estimation are the complementary forward
and backward predictions in the linear regression framework, and the
goodness of the fit is the same for both directions (in terms of the
explained fraction of variance, R2) (Draper and Smith 1998). Despite
the structural similarities, there are significant conceptual differences
between the two methods. One main difference between the two is
inclusion and exclusion of known statistical structure of the input in
the reconstruction. Because stimulus correlations are removed during
STRF estimation (Css

�1 in Eq. 5), flat prior reconstruction has no
access to stimulus statistics. The optimal prior method, in contrast,
uses whatever stimulus correlations are available to improve recon-
struction accuracy, even if the information is not explicitly encoded in
neural responses.

Figure 1B shows this point intuitively. In this example, data are
located in three-dimensional (3D) space (xyz), but the STRF response
projects them onto the xy plane. Clearly, one dimension of the input
(z) is lost in this transformation, and we cannot accurately reconstruct
the points in 3D by having only their projections (neural response) and
knowledge of the STRFs (flat prior method, F). However, because
there is correlation between z and the other two dimensions (in this
example, all the points belong to a plane z � x � y), having access to
this prior knowledge in addition to the STRFs and neural respon-
ses enables the correct reconstruction of the points in 3D (optimal
prior, G).

Quantifying reconstruction accuracy

To make unbiased measurements of the accuracy of reconstruction,
a subset of validation data was reserved from the data used for
estimating the reconstruction filter, (G for optimal prior reconstruction
or F for flat prior reconstruction). The estimated filter was used to
reconstruct the stimulus in the validation set, and reconstruction
accuracy was measured in two ways: 1) correlation coefficient (Pear-
son’s r) between the reconstructed and original stimulus spectrogram
and 2) mean squared error.

In addition to measuring global reconstruction error for TORCs, we
also measured error separately for different parts of the modulation
spectrum (i.e., separately for different rates and spectral scales). To do
this, we subtracted the reconstructed TORC spectrogram from the
original spectrogram and computed the modulation spectrum of the
difference. The normalized error for specific rates and scales was
defined as the mean squared magnitude of the error modulation
spectrum, averaged only over the desired range of rates or scales.

Because stimuli were reconstructed from a finite number of neurons
and a finite amount of fit data, we also measured the effect of limited
sampling on reconstruction performance. For a set of N neurons and
T seconds of fit data, the reconstruction error can be attributed to two
sources: failure of the neural response to encode stimulus features and
error from limited sampling of the neural population and fit data. If we
assume that the sources of error are additive, as N and T grow larger,
the error from limited sampling should fall off inversely with N and T.
To determine reconstruction error in the absence of noise, we mea-
sured error, e, for a range of values of N and T and fit the function
(David and Gallant 2005)

e � A �
B

N
�

C

T
(7)

The limit of reconstruction error for arbitrarily large N and T was
taken to be A. To make unbiased measurements of parameter values
for Eq. 7, we used a procedure in which independent subsets of the
entire available data set were used to measure reconstruction error for
different values of N and T.
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FIG. 1. Optimal prior vs. flat prior reconstruction. A: optimal prior reconstruction (G) is the optimal linear mapping from a population of neuronal responses
back to the sound spectrogram (right). Using optimal prior reconstruction, one can reconstruct the spectrogram of a sound, not only features that are explicitly
coded by neurons but also features that are correlated with them. Flat prior reconstruction (F) is the best linear mapping of responses to stimulus spectrogram
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In the limit of infinite sampling, any remaining reconstruction error
reflects stimuli that are either not encoded by the neural population or
stimuli that are encoded nonlinearly in such a way that the linear
reconstruction filter cannot capture them. Because of the diversity of
nonlinear responses across neurons, this latter category is likely to be
small; thus in practice, reconstruction error can be interpreted as
reflecting stimuli that simply are not encoded.

Effect of behaviorally driven plasticity on reconstructions

During behavior, the functional relationship between stimulus and
neural response can change to facilitate behavior (Fritz et al. 2003),
e.g., through top-down attentional influences that change the gain or
shape of the receptive field. To understand how these changes affect
reconstruction, consider the receptive field formulation

R � HTS

where S is the stimulus, H is the matrix of neural receptive fields, and
R is the population response. Because the model is linear, if there is
a change in the receptive field, �H, it results in a change, �R, in the
neural response

�R � �HTS

Rather than modeling the change in the receptive field, we assume that
the system has not changed and instead find the effective stimulus
change that produces the observed change in the neural response

�R � HT�S

The effective stimulus change (�Ŝ) can be found using reconstruction

�Ŝ � G�R

where G is the optional reconstruction filter measured before the
change. In effect, this approach enables us to project response changes
(�R) to the stimulus domain where they may be more intuitive to
interpret. This analysis can also be conceptualized as describing how
a downstream decoder would interpret activity from a plastic popu-
lation of neurons if it uses a fixed decoding scheme. Although this
approach is limited to identifying changes in linear response proper-
ties, it may provide a means to characterize plasticity that cannot
easily be observed in the tuning of individual neurons.

We performed this analysis using both simulated and actual
neural data for a task that requires discriminating a pure tone target
from a sequence of TORC reference sounds. In the simulation, we
used a bank of STRFs narrowly tuned to different frequencies
(passive STRFs). We simulated behavior-driven plasticity by en-
hancing the tuning of the STRFs to the target frequency for the
neurons with best frequency close to the target tone (active STRFs)
(Fritz et al. 2003). We found the difference between spectrograms
of TORCs reconstructed from the simulated responses of passive
and active STRFs. Changes between conditions in each frequency
channel were calculated by the mean square of this difference,
averaged over time.

For the actual neural data, we divided the neural population (62
neurons) into six groups according to their target tone frequencies.
We reconstructed TORC spectrograms from passive and active
responses in each group and computed the mean squared difference
as above. To average across groups, the difference for each group
was aligned to have its target frequency at zero and averaged
together. The SE was calculated using the jackknife technique with
20 sets each containing 95% of the data (Efron and Tibshirani
1993).

R E S U L T S

Reconstruction of spectro-temporally modulated
noise spectrograms

To study the fidelity of auditory encoding by neurons in AI,
we reconstructed spectrograms of TORCs from the responses
of 256 AI neurons (see METHODS and Klein et al. 2000). The set
of 30 TORCs was specially designed to probe the tuning of AI
neurons to spectral and temporal modulations in the sound
envelope, as shown in Fig. 2A. The fidelity of their reconstruc-
tion shows the extent to which information about different
spectro-temporal modulations is encoded in cortical responses.
Such modulations are the key carriers of information in com-
plex signals such as speech, animal vocalizations, and other
natural sounds (Greenberg 1996; Singh and Theunissen 2003).
Hence it is important to determine whether AI responses
encode them and whether the range encoded matches observed
perceptual capabilities. The analysis reported here used opti-
mal prior reconstruction (Eq. 1). Because TORCs contain no
linear correlations (although they may contain higher order
dependencies, Christianson et al. 2008), the difference between
optimal prior reconstruction and flat prior reconstruction is
trivial.

For the entire set of TORCs, the correlation between the
reconstructed and original spectrograms is 0.62  0.009.
Figure 2B shows the accuracy of reconstruction for different
spectral and temporal modulation channels. Reconstruction
error in the combined modulation spectrum of the TORCs had
a low pass structure that could be visualized more clearly when
collapsed along its temporal and spectral dimensions (Fig. 2B,
right and top panels). Accuracy in the temporal and spectral
modulation spectrum was greatest for low modulation frequen-
cies (Fig. 2, C and D). The regions of smallest error represent
spectro-temporal features that are encoded with the greatest
fidelity in AI. These regions are consistent with patterns of
perceptual modulation sensitivity measured in ferrets (Fritz
et al. 2002). They also correspond to the region of the modu-
lation spectrum that contains the most energy in natural sounds
(Singh and Theunissen 2003).

Effect of sample size on reconstruction accuracy

Neurons in AI vary substantially in their spectro-temporal
tuning properties. A single neuron will respond only to a
narrow range of the spectro-temporal patterns in TORCs (Egg-
ermont and Ponton 2002). It was therefore expected that many
neurons would be required to achieve a full coverage of the
stimulus and that increasing the number of neurons used for
reconstruction would improve its accuracy. In addition, recon-
struction error was also caused by the finite duration of stim-
ulus-response samples available for estimation. To measure the
effects of sampling limitations, we varied the number of
neurons used for reconstruction and the duration of fit data and
measured the corresponding normalized reconstruction error
(see METHODS). In the limit of infinite sampling, the extrapo-
lated error indicates how much information about the stimulus
is encoded in the neural population response (David and
Gallant 2005).

Figure 2C shows the reconstruction error for different tem-
poral and spectral modulation ranges as the number of neurons
(N) and stimulus duration (T) increases. As expected for
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additive noise, reconstruction error is inversely proportional to
N and T. The normalized error averaged across random subsets
for different rates and scales for each N is plotted in Fig. 2D.
These curves were estimated from Eq. 7, assuming the duration
of estimation data (T) was infinite. We used the measurements
for variable N to extrapolate to the error that would be expected
for arbitrarily large N. The limit of the reconstruction error
differs across modulation channels. For slow temporal modu-
lations (4–12 Hz), the error converges to substantially lower
values than for the fast rates (40–48 Hz). A similar, although
smaller, difference can be seen between low (0–0.8 c/o) versus
high (1.2–1.4 c/o) scales. A likely reason for the higher bounds
at high rates and scales is the loss of encoded information as
cortical neurons fail to phase-lock to these faster and denser
modulations.

Comparison of optimal prior versus flat prior
speech reconstruction

TORCs are designed to have minimal spectro-temporal cor-
relations (Klein et al. 2000), and therefore reconstructing
TORC spectrograms cannot take advantage of prior knowledge
of stimulus statistics to improve reconstruction accuracy. How-
ever, for natural stimuli such as speech, which do contain
strong correlations, this information provides context that can
be used to infer features in the stimulus that are not explicitly

coded in the neural responses. The extra information available
in stimulus correlations suggests two alternative strategies for
reconstruction (detailed in METHODS): optimal prior reconstruc-
tion, which assumes knowledge of stimulus correlations, and
flat prior reconstruction, which does not.

We first examined how prior knowledge of stimulus statis-
tics can improve reconstructed continuous speech spectro-
grams from simulated responses of a sparse sample of neurons.
We simulated the responses of eight neurons that were nar-
rowly tuned and widely spaced across the frequency axis. We
reconstructed the spectrogram of one speech sample using the
two methods, as shown in Fig. 3, B and C. Optimal prior
reconstruction (Fig. 3B) produced a spectrogram closely re-
sembling the original, with a correlation of 0.82. Flat prior
reconstruction (Fig. 3C) resulted in a sparse reconstruction
with no data in the channels of the spectrogram that were not
explicitly encoded by the neurons. In this case, the correlation
of the reconstructed and original spectrograms fell to 0.70. The
two methods in this example provide us with complementary
results: the optimal prior reconstruction demonstrates that, for
a highly structured stimulus such as speech, substantial details
of the stimulus can be inferred from partially encoded features.
The flat prior reconstruction, on the other hand, shows the
actual encoding scheme of the system by showing only the
features of the stimulus that are explicitly encoded in the neural
population response.
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To contrast optimal and flat prior reconstruction using ex-
perimental data, we reconstructed the spectrograms of speech
from the responses of 250 AI neurons. The population response
to the same speech stimuli was used to estimate optimal and
flat prior reconstructions. Figure 3 shows an example of one
speech sentence (Fig. 3A) and its reconstructions using the
optimal prior (Fig. 3E) and flat prior (Fig. 3F) methods. The
optimal prior reconstruction was superior to that of the flat
prior method, as judged by its higher correlation with the
original stimulus spectrogram (0.78 vs. 0.42). When we com-
pared performance of the two methods for all 30 sentences
(Fig. 3D), we observed the same consistent result. In every
case, the optimal prior reconstruction always had a higher
correlation (mean, 0.75) with the original spectrogram than the
flat prior reconstruction (mean, 0.45). The consistently superior
performance of the optimal prior reconstruction shows the
benefit of prior knowledge on the decoding of stimulus infor-
mation from neural responses. Together, they define upper and
lower bounds on what aspects of the stimulus an animal might
perceive, at one extreme, using no prior information and, at the
other, using optimal prior information.

To compare the perceptibility of these reconstructions, we
inverted the spectrograms to generate the best approximation
of corresponding acoustic signals using a convex projection
method (Chi et al. 2005). Audio examples of reconstructions
using optimal prior reconstruction were noticeably more clear
than those reconstructed with a flat prior (AudioSamples).

Reconstructed phonemes from neural population responses

To what extent do responses of auditory cortical neurons in
the ferret encode phonemes with enough fidelity to account for
their perception in humans? This question implicitly tests the
hypothesis that auditory processing mechanisms up to the level
of the primary auditory cortex, common across humans and

other mammals like ferrets, are sufficient to account for the
robust perception of speech (Greenberg et al. 2004; Mesgarani
et al. 2008; Steinschneider et al. 2005). Previous analyses of AI
responses in mammals have been consistent with this point of
view (Engineer et al. 2008; Mesgarani et al. 2008). Here we
used the reconstruction method to shed more light on this issue
and compare, in particular, reconstruction accuracy and the
pattern of errors observed in the perception of various pho-
nemes by humans.

We first analyzed the encoding of the average spectro-
temporal features of each phoneme in the population response.
Figure 4, A–D (top rows), shows the average phoneme spec-
trograms of four groups of phonemes (plosives, fricatives,
nasals, and vowels) extracted from the continuous speech
samples using the phonetic transcriptions detailed in Mesgarani
et al. (2008). The corresponding panels in the bottom rows of
Fig. 4, A–D, depict the average spectrograms of the same
phonemes but from reconstructions using optimal prior recon-
struction. The strong similarity between the two sets of spec-
trograms (average correlation coefficient of 0.88  0.07)
indicates that average responses of AI neurons have the dy-
namics and spectral selectivity to linearly encode most details
of the average spectro-temporal features of phonemes.

Comparing only the average phoneme spectrograms im-
proves accuracy performance by averaging out differences
between phoneme exemplars. To make a more critical assess-
ment of the results, we examined the accuracy of reconstruc-
tions for each phoneme exemplar separately. Figure 4E plots
the average reconstruction error across all instances of each
phoneme. Some phonemes, such as the high-frequency frica-
tives (/s/, /�/, /z/, /f/) (Ladefoged 2005), show excellent recon-
struction accuracy even at the level of individual exemplars
(average normalized error, 0.5). Most plosives (/p/, /b/, /t/, /d/,
/k/, /g/) are encoded with an intermediate level of accuracy
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(average normalized error, 0.65). In general, the close-front
vowels (e.g., /i/) with low first and high second formant
frequencies (Ladefoged 2005) show a worse reconstruction
accuracy that the open-back ones (e.g., /ɔ/). This may be
because of the more complex spectral shape of the former
group, which has multiple peaks compared with the single
spectral peak of the latter.

The sometimes low and variable accuracy of the reconstruc-
tions for individual phoneme exemplars stands in striking
contrast to the highly accurate encoding of the average features
(Fig. 4, A–D). Averaging of spectrograms across all instances
of a phoneme preserved only features that were common across
all syllabic contexts and hence not affected by co-articulatory
factors. These common features were generic enough to be
captured well by the linear spectro-temporal response models
in AI. In contrast, the unique features of individual phoneme
samples were sometimes not well described by the reconstruc-
tion.

Stimulus reconstruction and neural plasticity

Receptive field properties in AI can rapidly change during
task performance in accordance with specific task demands and
salient sensory cues (Fritz et al. 2003). Such rapid plasticity
may reflect changes in coding strategy to enhance representa-
tions of stimuli relevant to the task. Previously, these changes
have been characterized with single neurons and extrapolated
to predict consequences for the population code (Fritz et al.
2007; McAdams and Maunsell 1999). In go/no-go tasks re-
quiring simple discrimination (e.g., tone vs. noise), changes in
spectro-temporal tuning enhance overall cortical responsive-
ness to a foreground (or target) sound while suppressing
responsiveness to the background (or reference) sound, pre-
sumably increasing the likelihood of detecting the attended
target (Fritz et al. 2003, 2005).

However, as the complexity of auditory discrimination in-
creases (e.g., when discriminating among phonemes, tonal

sequences, or musical timbres), receptive field changes are
likely to become more complex and hence more challenging to
relate to the acoustical properties of the stimuli. Another
limitation of the traditional approach of examining the plastic-
ity of neurons in isolation is that it does not benefit from
multielectrode recordings. Changes across an entire population
may be easier to detect than in single neurons. Both of these
limitations can be addressed by a reformulation of the analysis
of plasticity using stimulus reconstruction.

We evaluated this approach first using simulated receptive
field changes, based on observations from behavioral physiol-
ogy experiments that used a tone detection task (Fig. 5) (Fritz
et al. 2003). The reconstructions considered here were those of
TORC stimuli before behavior, when neurons are in a baseline
state, and during behavior, when neurons have undergone a
change in tuning. As stated earlier, here we used optimal prior
reconstruction; however, because this analysis involved uncor-
related noise stimuli, there was no practical difference from flat
prior reconstruction. The simulated neurons constituted a bank
of tonotopically distributed filters, represented by the three
STRFs in the left column of Fig. 5A, centered at the different
frequencies. During behavior, the target tone was played at 3
KHz, which caused the nearby STRFs (at 3 and 4 KHz) to
expand toward the target or become more sensitive to it (Fig.
5A, right column). This plasticity induces 3-KHz responses to
become more correlated with its neighboring channels. Figure
5B shows the reconstructed TORC stimuli before (top panel)
and during the task (middle panel). The changes are best seen
in the difference (�S) between two reconstructions (Fig. 5B,
bottom). The mean-squared difference (averaged over time)
between active and passive reconstructions is shown in the top
panel of Fig. 5C. The peak difference occurs at the target
frequency.

We applied the reconstruction analysis to physiological data
recorded from AI, which showed STRF plasticity similar to the
simulations above (Fritz et al. 2003). We divided the neural

D
ɔ

ɔ

ʌ

ʌɑ

ɑ

æ

æ

ɛ

ɛ

ɪ

ɪ

i

i

i

iə

ə

o

o

B CA
O

rig
in

al
R

ec
on

st
ru

ct
ed

O
rig

in
al

R
ec

on
st

ru
ct

ed

0.4

0.6

0.7

0.8

0.9

1
Closed Vowels

No
rm

al
iz

ed
 M

SE

E

0 170 0 170 0 170 0 170 0 170 0 170 0 170 0 170 0 170 0 170 0 170
0.25

8

0.25

8

Fr
eq

ue
nc

y 
(K

H
z)

Fr
eq

ue
nc

y 
(K

H
z)

Time (ms)

t kp b d g

t kp b d g

0 170 0 170 0 170 0 170 0 170 0 170
0.25

8

0.25

8

Fr
eq

ue
nc

y 
(K

H
z)

Fr
eq

ue
nc

y 
(K

H
z)

Time (ms)

s zvf

s zvf

ʃ

ʃ

0 170 0 170 0 170 0 170 0 170
0.25

8

0.25

8

Time (ms)

nm ŋ

nm ŋ

0 170 0 170 0 170

0.25

8

0.25

8

Time (ms)

e

e Open Vowels

0.5

Plosives
Fricatives

Nasals

Vowels
nv gp b dm tk

f z

s

ɔɑ

u

ʃ

æ
ʌ ɛ

e

i
ɪoəi

ŋ

Plosives Fricatives Nasals

Vowels

FIG. 4. Average phoneme spectrograms from original and reconstructed phonemes. A–D: top: the average phoneme spectrograms of 4 groups of phonemes
(plosives, fricatives, nasals, and vowels). Bottom: corresponding panels depict the average phoneme spectrograms reconstructed using the optimal prior method.
The original and reconstructed spectrograms are quite similar and have an average correlation coefficient of 0.88. E: the correspondence between reconstructions
and actual spectrograms for each phoneme exemplar, averaged across all instances of the phoneme.

3336 N. MESGARANI, S. V. DAVID, J. B. FRITZ, AND S. A. SHAMMA

J Neurophysiol • VOL 102 • DECEMBER 2009 • www.jn.org

on D
ecem

ber 4, 2014
D

ow
nloaded from

 



population into six groups, according to the frequency of the
target tone, and measured the average mean-squared difference
between spectrograms reconstructed from responses before and
during behavior (Fig. 5C, bottom). To average across groups,
data from each of the six groups was centered at the target
frequency and weighted according to the number of neurons in
the group. As predicted by the simulation, the difference
between reconstructions contains a peak at the target frequency
(red bar), indicating that a significant shift occurred in the
population response to stimuli at the target frequency.

D I S C U S S I O N

Characteristics of the AI population code

Beyond their overall fidelity, stimulus reconstructions indi-
cate the limits, tuning, and specific features encoded in the
cortical population response. We found that the accuracy of
encoding by the population of AI neurons is better for low
scales and rates, and the accuracy falls off for higher rates and
scales, especially rates greater than �30 Hz. However, some
information about modulations is encoded, even �50 Hz and
1.4 c/o. The most accurately reconstructed spectro-temporal
features lie in the region of the modulation spectrum that
contains the most power in natural sounds (Singh and Theunis-
sen 2003), suggesting that the population code in auditory
cortex matches the regions of maximum information in stimuli
that are encountered in the world.

The method of reconstruction allows for the assessment of
the upper bound on coding accuracy for any stimulus while
controlling for potential confounds that can occur in other
metrics, such as ensemble tuning curves (Woolley et al. 2005).
As the number of neurons used for reconstruction increases,
any persistent error in reconstruction reflects the aspects of the
stimuli that are not encoded in the neural responses. By

judicious choice of stimuli, one can interrogate the ability of
neurons to encode any number of stimulus parameters. The
example we presented of the encoding of TORC spectral and
temporal modulations is but one that is appropriate for AI cells,
which are modulated over a range of rates and spectral densi-
ties (Kowalski et al. 1996). The same approach may also be
beneficial in precortical areas that follow stimulus modulations
at higher rates.

This same general approach can be applied to areas outside
of the auditory system. Rather than reconstructing the stimulus
spectrogram, one can parameterize the stimulus in terms of
other features that are correlated with neuronal responses. Such
an approach is similar to methods for decoding movements
from the population response in the motor system (Georgopou-
los et al. 1986). In the visual system, reconstruction methods
could be used to measure coding of features such as orienta-
tion, spatial frequency, and phase (Mazer et al. 2002). In more
central areas, this approach could be used to measure coding of
abstract and learned stimulus features (Wallis and Miller
2003).

Encoding of complex natural features

An appealing aspect of reconstruction methods is the map-
ping of potentially complex acoustic features from the neural
response back to the stimulus space, where they can be dis-
played intuitively. Speech is a prime example of a stimulus
where much has been learned over the decades about its
acoustic features almost exclusively in the spectrogram (time-
frequency) representation (Greenberg et al. 2004). It is, of
course, possible to explore the encoding of known features
such as plosive bursts and voice-onset-times (Eggermont and
Ponton 2002; Steinschneider et al. 2005), but this procedure
requires manually identifying features and provides less gen-
eral insight than the reconstructed spectrograms—where these
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features were defined in the first place. By studying the repre-
sentation of speech directly in the spectrogram domain, it is
possible to simultaneously study the encoding of many spectral
and temporal features.

Optimal prior reconstruction (Bialek et al. 1991) was contrasted
with flat prior reconstruction to measure how knowledge of
stimulus context can benefit reconstruction. In natural stimuli,
including speech, animal vocalizations, and music, significant
correlations exist across a wide range of time and frequencies. An
effective and efficient encoding scheme reduces this redundant
information to conserve resources (Barlow 1972). We found that
reconstructions that make use of these priors generate substan-
tially more accurate reconstructions for the same number of
responses than is possible with the flat prior method. In practice,
the prior actually used during perception remains largely unex-
plored. Thus the flat prior reconstruction represents a lower bound
on the accuracy with which stimuli are encoded. Characterizing
the prior actually used by animals will require further study,
perhaps using a behavioral approach that measures the ability to
detect stimuli based on correlated features.

Interpreting adaptive STRFs

A potentially exciting deployment of stimulus reconstruc-
tion is in detecting and interpreting behaviorally driven
changes in response properties. We found that, during a tone
detection task, changes in tuning at the frequency of the target
tone can be shown by the trace they induce in the difference
between original and reconstructed spectrograms. One can
extrapolate from this simple example to more intricate situa-
tions where top-down influences such as attention, expectation,
or memory might modify receptive field shapes. For instance,
changes induced in detecting an amplitude-modulated target
tone or a specific phoneme might span many frequencies and
time lags. These changes could be expressed differently in each
STRF, depending on its BF (best frequency) and other baseline
spectro-temporal properties, but they may have a systematic
effect on the reconstructed stimulus. This approach may be
particularly valuable for behaviors requiring the discrimination
of temporal features, where no systematic changes have yet
been identified in STRFs or tuning curves, despite the impor-
tance of temporal processing for many auditory behaviors
(Shannon et al. 1995). Because this method only identifies
stimulus domains where plasticity occurs, it does not com-
pletely characterize the effects of plasticity. However, it offers
a new way to visualize and understand the effects of behavior
on neural representations.

Simultaneous recordings from large assemblies of primary
cortical neurons may provide additional insight into changes in
stimulus representation. Features of population responses such
as correlated firing may have substantial impact on how stimuli
are encoded and how this coding changes during behavior
(Salinas and Sejnowski 2001). This possibility suggests a
means to interpret large simultaneous neural recordings during
behavior in the future.
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