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Abstract Both generalized arousal and engagement in a specific task influence sensory neural

processing. To isolate effects of these state variables in the auditory system, we recorded single-

unit activity from primary auditory cortex (A1) and inferior colliculus (IC) of ferrets during a tone

detection task, while monitoring arousal via changes in pupil size. We used a generalized linear

model to assess the influence of task engagement and pupil size on sound-evoked activity. In both

areas, these two variables affected independent neural populations. Pupil size effects were more

prominent in IC, while pupil and task engagement effects were equally likely in A1. Task

engagement was correlated with larger pupil; thus, some apparent effects of task engagement

should in fact be attributed to fluctuations in pupil size. These results indicate a hierarchy of

auditory processing, where generalized arousal enhances activity in midbrain, and effects specific

to task engagement become more prominent in cortex.

Introduction
Hearing is a dynamic process that requires integration of the sensory evidence provided by physical

attributes of sound with information about the behavioral context in which auditory perception

occurs (Bizley and Cohen, 2013; Fritz et al., 2007). As sound information passes through the brain,

coordinated activity in auditory areas extracts information necessary to guide behavior. Compared

to passive listening, engaging in a task that requires auditory discrimination leads to changes in neu-

ral excitability, as well as in spectral and spatial selectivity (Downer et al., 2015; Fritz et al., 2005;

Fritz et al., 2003; Knudsen and Gentner, 2013; Kuchibhotla et al., 2017; Lee and Middlebrooks,

2011; Otazu et al., 2009; Ryan and Miller, 1977; Yin et al., 2014). These changes are often attrib-

uted to the specific task demands, enhancing the representation of important sound features by

selectively increasing or decreasing the activity across neural populations (Bagur et al., 2018;

David et al., 2012; Kuchibhotla et al., 2017). In some studies, changes have been reported to per-

sist for several minutes after the active behavior, while in others, activity and tuning changes were

observed to rapidly return to baseline (Fritz et al., 2003; Slee and David, 2015).

The substantial variability of effects across studies suggests that task engagement activates a con-

stellation of non-auditory signals that comprise a complex internal state. Task-related changes in the

activity of auditory neurons have been attributed to temporal expectation (Jaramillo and Zador,

2011), reward associations (Beaton and Miller, 1975; David et al., 2012), self-generated sound

(Eliades and Wang, 2008), and non-sound related variables, such as motor planning (Bizley et al.,

2013; Huang et al., 2019), motor activity (Schneider et al., 2014; Zhou et al., 2014), degree of

engagement (Carcea et al., 2017; Knyazeva et al., 2020), and behavioral choice (Tsunada et al.,
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2016). Even in the absence of explicit behavior, fluctuations in neural activity are observed through-

out the forebrain, including primary sensory regions (Ringach, 2009; Stringer et al., 2019). This

activity is related to cognitive states such as arousal and may also modulate sensitivity to sensory

inputs (Fu et al., 2014; Wimmer et al., 2015). Therefore, attempting to interpret changes in neuro-

nal activity solely in light of a single binary variable, such as being engaged in a task or not, will lead

to an incomplete and even incorrect understanding of how sensory information is processed.

A straightforward way to monitor some task-independent changes in behavioral state is by mea-

suring pupil size (Kahneman and Beatty, 1966; McGinley et al., 2015; Zekveld et al., 2018). In

humans, luminance independence changes in pupil size have been shown to correlate with mental

effort (Beatty, 1982; Winn et al., 2015), changes in states of arousal (Kahneman and Beatty,

1966), aspects of decision-making (Gilzenrat et al., 2010), and task performance (Schriver et al.,

2018). In animals, fluctuations in pupil size closely track locomotion and neural activity throughout

the mouse forebrain (McGinley et al., 2015; Stringer et al., 2019). Pupil size also tracks the degree

of neural synchronization observed in local field potentials, which is commonly used to measure

arousal (Schwartz et al., 2020; Vinck et al., 2015). Thus, while this single variable is unlikely to

completely characterize such a complex phenomenon as arousal, pupil provides a window into a

global brain state that is activated during demanding behaviors.

The degree to which pupil size co-varies with task engagement, and whether these variables

account for independent changes in neural activity, remains to be determined. To study the interac-

tion of task engagement and pupil size on auditory neural coding, we recorded extracellular spiking

activity and pupil size of ferrets during an auditory task and during passive presentation of task stim-

uli. Single- and multiunit activity was recorded from the primary auditory cortex (A1) and midbrain

inferior colliculus (IC). We used a generalized linear model to quantify the unique contributions of

task engagement and pupil size to neural activity. Using this approach, we found that independent

subpopulations of neurons were modulated uniquely by task or by pupil size, suggesting that these

effects are mediated by distinct inputs. Our analysis also revealed that in many neurons, pupil size

could account for variability in firing rate that might otherwise be attributed to task engagement.

Thus, some previously reported effects of task engagement may in fact be explained by changes in

pupil-indexed arousal. In addition, the relative effects of task engagement and pupil size varied

between cortex and midbrain. Pupil-related changes occurred in both areas, but task engagement

effects were more prominent in A1. This work highlights the value of accounting for multiple state

variables in studies of sensory coding (Musall et al., 2019; Stringer et al., 2019), both in identifying

the source of task-related effects and in locating where in the sensory processing hierarchy they

emerge.

Results

Changes in pupil size track task engagement
To study interactions between pupil-indexed arousal and task engagement, we trained four adult

ferrets on a go/no-go auditory detection task (David et al., 2012; Yin et al., 2010). Animals

reported the presence of a target tone following a random number of broadband noise reference

stimuli (Figure 1A,B). They were required to withhold licking a water spout during the reference

sounds and were given liquid reward for licking during the target window (0.1–1.5 s after target

onset). Targets were pure tones, either presented alone (tone versus noise discrimination, ferret L)

or embedded in reference stimuli (tone-in-noise detection, ferrets R, B, and T). After training, all ani-

mals performed consistently above chance (Figure 1C).

To track and record changes in pupil size, an infrared video camera was used to image the eye

contralateral to the speaker emitting auditory stimuli (Figure 1A). Constant luminance was main-

tained throughout the experiment so that fluctuations in pupil size reflected only changes in internal

state (McGinley et al., 2015; Schwartz et al., 2020). Pupil was recorded continuously as animals

passively listened to the task stimuli and actively performed the task. The distribution of pupil size

differed between passive and active conditions (Figure 1—figure supplement 1A). Mean pupil size

(measured by the major axis diameter) was consistently larger during the active condition (n = 35

sites total, ferret L: n = 13, B: n = 5, R: n = 16, T: n = 1, p = 0.0133, hierarchical bootstrap,

Figure 1D). Within active blocks, pupil size also varied with task performance. Average pupil size
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was similar for false alarm (FA) and hit trials, but it was smaller during miss trials, more closely resem-

bling passive trials (Figure 1—figure supplement 1B). In addition, the short-term dynamics of pupil

depended strongly on task condition. During behavior, trial onset evoked a rapid increase in pupil

size, which was consistently larger than any evoked change during the passive condition

(p = 4.00 x 10�6, hierarchical bootstrap, Figure 1E,F; Figure 1—figure supplement 1C). Thus, pupil

size tracked slow changes in task-engagement (active versus passive blocks) as well as more rapid

changes in trial-by-trial performance during the active condition.

Distinct task engagement and pupil size effects in A1 and IC neurons
We recorded extracellular spiking activity from A1 (n = 129 units total, ferret B: six sites/88 units, R:

one site/13 units, T: one site/28 units) and IC (n = 66 units total, ferret B: four sites/7 units, L: 13

sites/46 units, R: 10 sites/13 units) of ferrets, while they switched between active engagement and

passive listening. In the IC, we recorded from central (ICC, n = 18 units) and non-central regions

(NCIC, n = 48 units), distinguished by their functional topography (Slee and David, 2015). Results

from the IC are presented jointly between the two sub-regions, unless otherwise specified.

To study how behavior state modulated auditory neural activity over time, we recorded activity in

the same units over multiple passive and active blocks and recorded pupil size throughout each

experiment as a measure of the animal’s state of arousal. For analysis, the peristimulus time histo-

gram (PSTH) response to the reference stimuli was averaged across passive and correct (hit) active

trials, and data from target periods were excluded. On hit trials, animals did not lick during the refer-

ence stimuli; thus this approach reduced the possibility that lick-related motor signals confounded

our results (Brosch et al., 2005; Schneider et al., 2014; Stringer et al., 2019).

Figure 1. Pupil size correlates with task engagement. (A) Schematic of behavioral setup, including free-field speaker for sound presentation, piezo

spout to register licks and deliver reward, and infrared video camera for pupillometry. (B) Spectrogram of example trial (top) and task structure

(bottom). False alarms (FAs) before the target window were punished with a timeout and hits resulted in a liquid reward. (C) Swarm plot showing

behavioral performance (hit rate or FA rate) for each animal. Each point corresponds to a behavioral block. Red lines indicate mean and standard error

of the mean (SEM) of the sensitivity (d’) for each animal. All animals performed above chance on average (d’ > 1). (D) Mean time course of pupil size

aligned to trial onset for active and passive blocks during neurophysiological recordings, averaged across all animals and recording days, normalized to

maximum size per day. Shading indicates SEM. Gray dashed lines indicate sound onset. (E) Average time course of change in pupil size, normalized to

0.35 s pre-trial period for active and passive behavioral blocks. Shading indicates SEM. Gray dashed lines indicate sound onset. (F) Scatter plot

compares pre-trial pupil size and mean change per trial (3 s post-onset window). Each dot represents a behavioral block. Passive and active blocks

within the same session are connected by a line.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Pupil size correlates with task engagement and performance.

Saderi et al. eLife 2021;10:e60153. DOI: https://doi.org/10.7554/eLife.60153 3 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.60153


For many units, activity appeared to be modulated by changes in task engagement, as would be

expected from previous behavioral studies (Fritz et al., 2003; Kuchibhotla et al., 2017; Niwa et al.,

2012; Otazu et al., 2009). During active behavior, responses to the noise stimuli either increased or

decreased, and then returned to their baseline passive state during subsequent passive periods

(Figure 2A,B). For other units, however, no consistent change in activity was observed between

active and passive conditions. In these cases, firing rate could change between behavioral blocks,

but the effect was not consistent across engagement conditions (Figure 2D,E). Thus, despite our

controls for sound acoustics and motor activity, the firing rates of some units varied over time in a

way that did not appear to be related to task engagement.

We wondered if changes in activity that could not be attributed to task engagement could

instead be explained by fluctuations in pupil-indexed arousal (Lin et al., 2019; McGinley et al.,

2015; Schwartz et al., 2020). A simple way to investigate if pupil size predicts changes in neural fir-

ing rate is to divide all trials (pooled across active and passive) into two groups, based on the mean

pupil size, and compute a separate PSTH for each group (Figure 2C,F). In the example A1 units,

activity was often enhanced when pupil was larger than median (large versus small pupil PSTH,

Figure 2C,F), indicating that pupil size was positively correlated with firing rate.

Because changes in pupil size were correlated with transitions between active and passive blocks

(Figure 1E), we could not dissociate the effects of task engagement and pupil size using just the raw

PSTH. Therefore, to test our hypothesis that pupil size accounted for changes in neural activity fol-

lowing task engagement, we fit a generalized linear model (Equation 1) in which the response to

Figure 2. Simultaneously recorded units showing task versus pupil-related changes. (A) Firing rate (gray) of one unit in primary auditory cortex (A1) and

time-aligned pupil size (green) during reference stimuli over one entire experiment (total recording time ~1 hr, inter-trial and target periods removed).

Purple shading highlights active blocks. Dashed lines delineate boundaries between half of each behavioral block. (B) Peri-stimulus time histogram

(PSTH) responses to reference noise averaged separately across the first and second half of each behavior block (black). Dashed gray lines are

responses predicted by the null model, i.e., the PSTH averaged across all blocks. Model prediction accuracy is indicated by fraction variance explained

(r2). (C) Top: PSTH response for the example unit averaged across passive and active blocks (left, dark and light purple, solid lines) and averaged across

large and small pupil size trials (right, dark and light green, solid lines). Predictions of the task-only model are overlaid (same color pattern, dashed

lines). Middle: Active/passive and large/small PSTH responses plotted with predictions by the pupil-only model, which only accounts for pupil-related

changes. Bottom: Active/passive and large/small PSTH responses plotted with predictions by the full model, accounting for both task and pupil-related

changes. (D) Firing rate and pupillometry for a second A1 unit, recorded simultaneously to the first example. (E and F) PSTH responses for the second

unit, plotted as in B and C.
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each presentation of the reference stimuli was modulated by task engagement and pupil size. Each

of these variables could additively modulate the baseline (mean) firing rate or multiplicatively modu-

late response gain. Task engagement was modeled as a discrete regressor (active or passive) and

pupil size as a continuous regressor. This approach allowed us to dissociate effects of pupil size and

task engagement on firing rate.

Model performance was measured by the fraction variance explained (squared correlation coeffi-

cient, r2) between the predicted and actual single-trial spike rates, using nested cross-validation. To

test for significant contributions of each regressor, we introduced these variables stepwise

(Fritz et al., 2010; Musall et al., 2019). The full model included both task engagement and pupil

size variables. We compared performance of the full model to the performance of a state-indepen-

dent model, for which both task and pupil variables were shuffled in time (null model), and of two

partial models, which accounted for effects of a single state variable while shuffling the values of the

other variable in time (task- or pupil partial models).

The regression analysis revealed substantial variability in effects of task engagement and pupil

size on auditory responses. For one example A1 unit, the modulation of firing rate between active

and passive blocks was almost completely accounted for by the task variable, with little contribution

of pupil size (Figure 2A–C). When we incorporated the task variable, predictions significantly

improved with respect to the state-independent null model (null model, r2 = 0.12; task partial model,

r2 = 0.30; jackknifed t-test, p < 0.05; Figure 2C, top). Pupil size was also able to account for some

changes in firing rate (pupil partial model, r2 = 0.21; Figure 2C, middle), but the full model incorpo-

rating both task engagement and pupil size showed no additional improvement over the task partial

model (r2 = 0.30, p > 0.05; Figure 2C, bottom). Thus, all behavior-dependent changes for this unit

were accounted for by task engagement. The apparent pupil-related effects were in fact explained

by correlations between pupil size and task engagement.

Conversely, for other units, changes in firing rate were uniquely accounted for by pupil size. For a

second example A1 unit (Figure 2D–F), the task partial model (r2 = 0.39) indicated a small improve-

ment over the null model (r2 = 0.40, p > 0.05, jackknifed t-test). However, the pupil partial model

showed a significant improvement over the null model, and it was able to account for changes in the

PSTH between passive and active conditions (r2 = 0.51, p < 0.05, Figure 2F, middle). The full model

showed no additional improvement over the pupil partial model (r2 = 0.53, p > 0.05; Figure 2F, bot-

tom). Thus, we found evidence for A1 units whose activity could be modulated either by task

engagement or by pupil size.

Next, we investigated the prevalence of task- and pupil-related modulation across the population

of A1 and IC units. To quantify the relative contribution of each variable to model performance, we

compared the variance in single-trial spike rate explained by each of the four models (r2). Across the

entire data set, 66/129 (51%) A1 units and 37/66 (56%) IC units showed a significant increase in r2

for the full model over the null model, indicating an effect of either task engagement or pupil size

(p < 0.05, jackknife t-test; Figure 3A). By computing the difference between the cross-validated r2

for the full model and for the two partial models separately, we determined the variance that could

be uniquely explained by either pupil size or task engagement in each unit. This produced four cate-

gories of state-modulated neurons (Figure 3A): units for which both task and pupil uniquely contrib-

uted to the modulation (black); units for which only one variable, task (purple, example unit in

Figure 2A) or pupil (green, example unit in Figure 2D), contributed uniquely; and units for which

changes in activity could not be uniquely attributed to either task or pupil (dark gray).

A comparison of variance explained across the entire data set shows consistent improvement by

the full model over the null model in both A1 (mean r2 null: 0.282, full: 0.340, p < 10�5, hierarchical

bootstrap test, Saravanan et al., 2020) and IC (mean r2 null: 0.290, full: 0.399, p < 10�5, Figure 3B).

Although the proportion of units with any significant state-related modulation was comparable

between A1 and IC, only about a quarter of those A1 units showed unique pupil-dependent modula-

tion (15/66), compared to about a half for IC (20/37). The average variance uniquely explained by

each state variable also differed between areas. In A1, the variance explained by task (mean r2 task-

unique: 0.017) was significantly greater than variance explained by pupil (mean r2 pupil-unique:

0.007, p = 0.0335, hierarchical bootstrap, Figure 3C). In IC, the variance explained was not signifi-

cantly different between task and pupil (mean r2 task-unique: 0.016, mean r2 pupil-unique: 0.019, p

= 0.769). These effects were not significantly different between single- and multiunit data in either

area (Figure 3—figure supplement 1). Together, these results suggest that in A1, both the
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magnitude and prevalence of modulation by task engagement are more pronounced than by pupil

size. In IC, modulation is equal between the two state variables.

The analysis above treated task engagement as a discrete, binary variable, switching between

active and passive states. However, behavioral performance, measured by d’, varied substantially

between animals and behavior blocks (Figure 1C). We reasoned that performance represents a

Figure 3. Task and pupil-related modulation of firing rates in primary auditory cortex (A1) and inferior

colliculus (IC). (A) Doughnut plots indicate number of units significantly modulated by task engagement, pupil size,

or both in A1 (left) and IC (right, p < 0.05, jackknifed t-test). Total number of recorded units reported in the center.

Purple and green: significant unique modulation by task or pupil, respectively. Black: unique modulation by both

task and pupil. Dark gray: ambiguous task or pupil modulation. Light gray: no significant change in accuracy

between full and null models. (B) Scatter plot of variance explained (r2) in single-trial activity by full model versus

null model. Each symbol represents a unit in AC (left) or IC (right). Colors as in A. (C) Unique variance explained by

pupil size (horizontal axis) plotted against unique variance explained by task engagement (vertical axis) for each

unit. Stars correspond to examples in Figure 2A (purple) and D (green).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Unique effects of task and pupil on neural activity did not differ across single units (SU) and

multiunits (MU).
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more graded measure of task engagement and thus may explain variability in task-related changes

across experiments. Indeed, we found a significant correlation between d’ and the unique variance

explained by task in A1 (r2 task-unique; r = 0.303, p = 0. 007, hierarchical bootstrap; Figure 4A,

left). The same relationship was not observed in IC (r = 0.069, p = 0.318; Figure 4A, right), nor was

there a relationship between d’ and unique variance explained by pupil in either area (r2 pupil-

unique; A1: r = 0.113, p = 0.158; IC: r = �0.017, p = 0.552, Figure 4B). Thus, in A1, effects of task

engagement cannot be described by a binary variable, even after dissociating effects of pupil.

Instead, effects of task engagement are comprised of at least one process that varies continuously

between more and less accurate behavior.

We also observed that both d’ and task engagement effects in A1 differed between animals (Fig-

ure 4—figure supplement 1). We wondered if the differences in neural modulation could be fully

Figure 4. Task- and pupil-related modulation of firing rate as a function of behavioral performance in primary

auditory cortex (A1) and inferior colliculus (IC). (A) Scatter plot of unique variance explained by task plotted against

behavioral sensitivity (d’) in A1 (left) and IC (right). Each point represents a unit/target pair. When a unit was

recorded across blocks with different target conditions, d’ and variance explained were measured separately in

each block. Different colors refer to different animal subjects. Points with the same d’ align on the horizontal axis

because they belong to experiments in which multiple units were recorded at the same time using an array (0.015

standard deviation jitter added to d’ to facilitate visualization). Regression analysis shows a significant correlation

between unique variance explained by task and performance in A1 (n = 132 unit/target pairs, r = 0.303, *p = 0.007,

hierarchical bootstrap) but not in IC (n = 85 unit/target pairs, r = 0.069, p = 0.318). (B) Scatter plot of unique

variance explained by pupil plotted against performance for each unit in A1 (left) and IC (right) as in A. Regression

analysis shows no significant correlation between unique variance explained by pupil and performance in either A1

(r = 0.113, p = 0.158) or IC (r = �0.17, p = 0.552).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Variability of neural behavior state effects and task performance across animals.
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explained by behavioral performance or if they reflected additional between-animal differences. To

answer this question, we performed a multiple regression with both d’ and animal identity as inde-

pendent variables. This analysis revealed that in A1 d’ could fully explain the differences in modula-

tion for task engagement (d’: F = 16.0, p = 0.000093; animal: F = 0.66, p = 0.52). Neither d’ or

animal significantly predicted task engagement effects in IC (d’: F = 1.11, p = 0.29; animal: F = 0.22,

p = 0.80). A similar analysis of pupil-related effects revealed that r2 pupil-unique did not depend on

d’, although it did depend on the amount of pupil variability within an experiment (Figure 4—figure

supplement 1). Thus, differences in task engagement effects between animals could be explained

by differences in the accuracy with which they performed the task.

Pupil size accounts for apparent task engagement effects in both A1
and IC
So far, we have shown that neurons in A1 and IC show state-dependent modulation of activity that

can be explained variably by task engagement and/or pupil size. The observation that pupil size is

correlated with task engagement (Figure 1) suggests previous characterizations of task-related plas-

ticity that did not measure pupil might have attributed changes in neural activity to task engagement

when they could, in fact, be better explained by pupil size (Downer et al., 2015; Fritz et al., 2003;

Knudsen and Gentner, 2013; Kuchibhotla et al., 2017; Lee and Middlebrooks, 2011;

Otazu et al., 2009; Ryan and Miller, 1977; Yin et al., 2014). Therefore, we asked to what extent

pupil-related modulation could explain changes in activity between active and passive blocks that

would otherwise be attributed to task engagement alone.

To quantify the magnitude and sign of the modulation by task engagement, we used a modula-

tion index (MIAP), which measured the fraction change in mean predicted firing rate between active

and passive conditions (Equation 5, Otazu et al., 2009; Schwartz and David, 2018). In previous

work, MI was measured directly from differences in the raw firing rate. However, pupil size was cor-

related with task engagement, and both could contribute to changes in firing rate. To tease apart

their respective contributions, we used logic similar to the calculation of unique variance explained

(above, Figure 3C). To measure task-related modulation while ignoring possible effects of pupil size,

MI was computed from predictions of the task only model (MIAP task-only). To account for effects of

both task engagement and pupil size, MI was computed from predictions by the full model (MIAP
full). Modulation that could be explained by pupil size was computed using the pupil-only model

(MIAP pupil-only). Then the unique task-related change, MIAP task-unique, was computed as the dif-

ference between MIAP full and MIAP pupil-only (Equation 6). We used a converse approach to quan-

tify modulation uniquely attributable to pupil between large and small pupil states (MILS, see below).

The model predictions for the example A1 units above (Figure 2) illustrate the method for disso-

ciating contributions of pupil and task engagement to MIAP. The first example shows a strong task

engagement effect that cannot be explained by pupil size (MIAP task-unique = 0.25, Figure 2C), and

the second shows weak task-only modulation that can be completely explained by pupil (MIAPtask-

unique = �0.07, Figure 2F).

A comparison of MIAP task-only and MIAP task-unique across the entire data set showed that a

task-only model often overestimated the magnitude of changes due to task engagement

(Figure 5A). To measure this effect, we normalized the sign of MI for each unit so that the means of

MIAP task-only and MIAP task-unique were always positive. This normalization accounted for the

bidirectionality of modulation while avoiding bias that would result from normalizing sign for just a

single condition. After sign normalization, accounting for pupil size led to a decrease in MIAP magni-

tude across units in A1 and IC (A1: p < 10�5; IC: p = 0.0140, hierarchical bootstrap). Effectively,

accounting for pupil size led to a 33% reduction in the magnitude of MIAP in both areas (A1: mean

magnitude MIAP task-only = 0.141; MIAP task-unique = 0.095; IC: MIAP task-only = 0.069; MIAP task-

unique = 0.046). The effect of removing pupil-related activity on the magnitude of active versus pas-

sive modulation was also not different between central and non-central regions of IC (ICC versus

NCIC, p = 0.467, hierarchical bootstrap, Figure 5—figure supplement 1). Taken together these

results show that pupil-indexed arousal accounted for a significant portion of the change in activity

between passive and active blocks in A1 and both regions of IC.
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Task engagement and pupil-indexed arousal modulate independent
neural populations
In some units, the effects of task engagement and pupil size on firing rate were difficult to dissociate

by simply looking at raw activity (e.g., Figure 2D). However, the regression analysis could disambig-

uate their unique contributions and showed that often only one state variable, task or pupil, modu-

lated the activity of individual units. Based on this observation, we wondered if effects of task

engagement and pupil size operated via functionally distinct or common pathways. While identifying

specific anatomical circuits was outside the scope of this work, we reasoned that if the two modula-

tions were mediated by the same inputs to A1 and IC, a unit modulated by task engagement would

also tend to be modulated by pupil size. To test this prediction, we measured the correlation

between modulation that could be uniquely attributed either to task engagement or pupil. To

Figure 5. Changes in pupil size account for apparent task engagement effects. (A) Active versus passive

modulation index, MIAP task-only, computed from responses predicted by the task only model, in which pupil size

is shuffled, plotted against MIAP task-unique, in which pupil-dependent modulation is regressed out, for primary

auditory cortex (A1; left, n = 132 unit/target pairs) and inferior colliculus (IC; right; circles for NCIC, n = 24 unit/

target pairs, triangles for ICC units, n = 61). Colors indicate significant unique variance explained by one or two

state variables, as in Figure 3 (p < 0.05, jackknife t-test). (B) Overlaid histograms of MIAP task-only and MIAP task-

unique, sorted according to their magnitude for each unit in A1 and IC. Accounting for pupil size reduced the

absolute magnitude of MIAP by about 33% in both areas (A1: p < 10�5; IC: p = 0.0140, hierarchical bootstrap). The

prevalence of gray shading on the right side of the horizontal axis indicates that units with large, positive MIAP
were most affected by this adjustment, and MIAP shifted to more negative values on average (A1 median

MIAP task-only = 0.069, MIAP task-unique = 0.027, p = 0.0005; IC: median MIAP task-only = �0.010, MIAP task-

unique = �0.037, p = 0.049, hierarchical bootstrap).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Task-related changes in central versus external inferior colliculus.
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measure modulation by pupil, we computed changes in spike rate associated with pupil size by mea-

suring MILS (Equation 5), analogous to MIAP, but dividing trials according to whether pupil size was

larger or smaller than the median for the experiment, respectively. For calculation of task-unique

effects, MILS pupil-unique was the difference between MILS full and MILS task-only (Equation 7).

Thus, we could compare the change in firing rate uniquely attributable to a change in task engage-

ment to a change in pupil size for each unit (Figure 6).

We found a negative correlation between these quantities in A1 (r = �0.281, p = 0.040, hierarchi-

cal bootstrap, Figure 6, left) and no correlation in IC (r = 0.104, p = 0.191, Figure 6, right). The

absence of a positive correlation between task- and pupil-related effects suggests that independent

populations of neurons in A1 and IC are modulated by these variables. To test directly for depen-

dence between task engagement and pupil size, we performed a permutation analysis, estimating

the number of units that would show both task- and pupil-unique effects if the likelihood of these

effects was independent (p < 0.05, jackknife t-test, counts from Figure 3). The frequency of joint

occurrences was no greater than expected for independent distributions in both areas (A1: p = 0.41,

IC: p = 0.59, permutation test). This independence is consistent with the hypothesis that separate

neural mechanisms mediate effects of task engagement and pupil-indexed arousal.

Based on previous studies that used a similar positive reinforcement structure, we expected the

average sign of task-related modulation to be positive in A1 (David et al., 2012) and negative in IC

(Slee and David, 2015). In A1, MIAP task-only, computed without accounting for effects of pupil,

was in fact positive on average (median 0.069, p = 0.0240, hierarchical bootstrap). However, MIAP
task-unique, which accounted for pupil size, was not significantly different from zero (40/69 positive,

median MIAP task-unique = 0.027; p = 0.232). In IC, average MIAP task-only was not different from

zero (MIAP task-only median: �0.010, p = 0.310), but MIAP task-unique showed a trend toward being

negative (17/49 positive, median: �0.037; p = 0.062). In contrast to the variable task-related effects,

the average effect of increased pupil size was positive in A1 (55/69 positive, median MILS pupil-

unique = 0.0139, p = 0.032, hierarchical bootstrap). In IC, there was also a trend toward increased

firing rate with larger pupil (31/49 positive, median MILS pupil-unique = 0.022; p = 0.090). Thus, in

Figure 6. Unique task and pupil modulate independent neural populations. Scatter plot compares firing rate

modulation attributed to task engagement (MIAP task-unique) against modulation attributed to pupil (MILS pupil-

unique) for each unit in primary auditory cortex (A1; left) and inferior colliculus (IC; right). The two quantities

showed a weak negative correlation in A1 (r = �0.281, p = 0.040, hierarchical bootstrap) and were uncorrelated in

IC (r = �0.104, p = 0.191). Colors indicate significant model performance as in Figure 3, and stars indicate

examples from Figure 2.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Frequency tuning versus task-related modulation of neural activity.

Figure supplement 2. Task difficulty versus task-related modulation of neural activity.
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both areas, accounting for higher firing rate during larger pupil led to decreased in MI associated

with task engagement (Figure 5).

Some previous work has also reported that the effect of task engagement can depend on the

relationship between task-relevant sound features and the receptive field of individual neurons

(David et al., 2012; Slee and David, 2015). During a tone detection task, response gain in IC is

selectively suppressed for neurons with best frequency (BF) near the target tone frequency

(Slee and David, 2015). In A1, frequency tuning is suppressed at the target frequency, despite there

being no systematic difference in overall response gain between units with BF near or far from the

target (David et al., 2012). After accounting for pupil size, we observed similar trends in the data

but no significant effects, likely due to the small sample size in the on-BF and off-BF groups (Fig-

ure 6—figure supplement 1). Task engagement effects could also depend on the difficulty or other

structural elements of the task (Carcea et al., 2017; Knyazeva et al., 2020). We considered whether

state-dependent effects varied with task difficulty but found no differences between pure tone, high

SNR tone-in-noise (easy), and low SNR tone-in-noise (hard) conditions (Figure 6—figure supplement

2).

Relationship between state modulation and auditory responsiveness
While all units were recorded from areas functionally and anatomically characterized as auditory,

neurons within a single auditory field can vary substantially in their tendency to respond to sound

(Atiani et al., 2014; Gruters and Groh, 2012). We noticed that some units, particularly in IC, did

not show strong auditory responses but were modulated during behavior. We asked whether the

magnitude of the state-dependent modulation in each recorded unit was related to how reliably it

responded to repeated presentations of the same auditory stimulus. Auditory responsiveness was

quantified by the variance explained by the null model, since it described how accurately the PSTH

response to the reference stimuli, averaged across the entire recording, predicted responses on sin-

gle trials. Larger or smaller values of null model r2 were associated with units whose auditory

responses were more or less reliable across the experiment, respectively. We compared this mea-

sure of auditory responsiveness to the change in r2 between the full and null models, which indicates

additional variance explained by the state variables. In IC, but not in A1, units that responded less

reliably to sound also showed greater dependence on state (A1: r = �0.134, p = 0.130; IC:

r = �0.323, p = 0.0129, hierarchical bootstrap; Figure 7).

These same relationships were observed when auditory responsiveness was defined as the signal-

to-noise ratio (SNR) of the spectro-temporal receptive field (STRF) measured during passive listening

(Figure 7—figure supplement 1B; Klein et al., 2000). The results also held true for a larger pool of

neurons, which included data collected without pupillometry and analyzed with the task-only model

(Figure 7—figure supplement 1C). High prediction accuracy by the null model limits the variance

that can be explained by behavioral state (note relatively weak state effect in highest quintile in Fig-

ure 7). To explore how this bound might impact the analysis of auditory responsiveness, we per-

formed a similar analysis but measured the correlation between null model performance and the

fraction of remaining variance explained by pupil size and task engagement. In this case, the null

model performance was positively correlated with the remaining variance explained in A1 (r = 0.301,

p = 0.0360, hierarchical bootstrap) and not correlated in IC (r = 0.124, p = 0.178, Figure 7—figure

supplement 1A). In this case the overall slope of the relationships changed, but the effects were still

relatively larger for IC units with low auditory responsiveness. Thus, across multiple measures of sen-

sory responsiveness, we observed that effects of behavior state in IC were more common in units

with weak sensory responses, while in A1, state-dependent modulation was independent of sensory

responsiveness.

Changes in pupil size explain some persistent post-behavior state
effects
Previous studies in both A1 (Fritz et al., 2003) and IC (Slee and David, 2015) have reported exam-

ples of task-related modulation persisting in passive blocks following active engagement (referred to

as post-passive blocks). These effects have been interpreted as persistent task-related plasticity, but

they are highly variable and difficult to attribute to any specific aspect of the behavior. We observed

these effects in our data as well. In addition to units in A1 (e.g., Figure 2D), some units in IC showed
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persistent changes in activity during passive blocks following behavior. These changes sometimes

lasted through the entire post-passive block (Figure 8A) and other times gradually reverted to pre-

passive levels (Figure 8B). The time course of these changes often tracked fluctuations in pupil size.

To measure the presence of persistent task-related modulation—and the extent to which pupil

size accounts for it—we compared the activity between passive blocks before (P1) and after (P2) a

behavior block. We performed a regression analysis similar to that used for measuring task engage-

ment effects, but treating passive block identity (P1 or P2) as a state variable in addition to pupil

size. MI was computed for predictions by a model based only on block identity, ignoring pupil

(MIP1P2 block-only), and for the unique contribution of passive block after accounting for pupil

effects (MIP1P2 block-unique, Figure 8A). We assessed the magnitude of MI using the same sign nor-

malization as for the task-unique MI analysis above (Figure 5). In both A1 and IC, the magnitude of

firing rate modulation between passive blocks was significantly reduced after accounting for effects

of pupil (A1: p < 10�5, IC: p < 10�5, hierarchical bootstrap). Accounting for pupil size led to a 20%

and a 48% reduction in P1 versus P2 modulation in A1 and IC, respectively (A1: mean signed-normal-

ized MIP1P2 block-only = 0.140, MIP1P2 block-unique = 0.100; IC: mean signed-normalized

MIP1P2 block-only = 0.100, MIP1P2 block-unique = 0.052). This change was not significantly different

between animals in A1 (F = 0.669, p = 0.516, one-way ANOVA) or in IC (F = 0.446, p = 0.643). While

there was decrease in post-behavior effects on average, there were distinct groups of units in both

A1 and IC that showed changes between P1 and P2, even after accounting for pupil size (compare

units falling on the unity line versus x-axis in Figure 8C). Thus, while some post-behavior effects pre-

viously reported as persistent plasticity induced by behavior can in fact be explained by fluctuations

in pupil size, a small number of units showed persistent post-behavior changes, even after account-

ing for pupil.

Discussion
This study determined how pupil-indexed arousal contributes to task-related spiking activity in A1

and IC. Several previous studies have shown that transitioning from passive listening to active behav-

ior leads to sizable changes in neural activity in A1 (Fritz et al., 2003; Niwa et al., 2012;

Figure 7. Task- and pupil-related modulation in primary auditory cortex (A1) and inferior colliculus (IC). Mean

variance in firing rate explained by behavioral state variables, broken down by portions attributed to task (purple),

attributed to pupil (green), and not uniquely attributable to either state variable (gray) for A1 (left) and IC (right).

Data are grouped in quintiles by r2 for the null model performance, a measure of auditory responsiveness.

Variance explained by state was not correlated with null model performance in A1 (r = �0.134, p = 0.130,

hierarchical bootstrap), but these values were negatively correlated in IC (r = �0.323, p = 0.0129). Colors as in

Figure 3.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Auditory responsiveness predicts state-dependent modulation in inferior colliculus (IC).
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Otazu et al., 2009) and IC (Ryan and Miller, 1977; Slee and David, 2015). The specific changes

depend on properties of the task stimuli (Fritz et al., 2003; Jaramillo and Zador, 2011; Lee and

Middlebrooks, 2011) and on structural elements of the task, such as reward contingencies

(David et al., 2012), task difficulty (Atiani et al., 2009), the degree of engagement (Carcea et al.,

2017; Knyazeva et al., 2020), and the focus of selective attention (Hocherman et al., 1976;

Lakatos et al., 2013; Schwartz and David, 2018). In the current study, we were able to use pupil

size to explain changes in neural activity across both passive and active conditions. Changes in neu-

ral activity explained by pupil size are likely to account for some differences previously reported

between task conditions, where different levels of arousal are required (e.g., Carcea et al., 2017;

Knyazeva et al., 2020; Rodgers and DeWeese, 2014). The effects of task engagement reported

here are specific to the tone detection task and are likely to differ if task structure is changed. In con-

trast, pupil size explains changes in activity throughout active and passive states, and its effects are

likely to be similar in different task conditions (Schwartz et al., 2020). By isolating aspects of behav-

ioral state that can be explicitly attributed to changes in pupil, this study moves toward a coherent

theory of how a constellation of variables interact to influence sensory coding during behavior.

Aspects of behavioral state, such as arousal, locomotion, and whisking rate, have been shown to

change gradually over the course of an experiment, tracking changes in cortical spiking and perfor-

mance on operant tasks (McGinley et al., 2015; Niell and Stryker, 2010; Poulet and Petersen,

2008). A major obstacle to understanding the relationship between behavioral state and neural

activity is that state variables often covary (Musall et al., 2019; Stringer et al., 2019). To dissociate

Figure 8. Pupil size explains some persistent task-related modulation. (A) Top: activity of ICC unit and concurrent pupil size recorded over passive and

active blocks, plotted as in Figure 2. Bottom: peri-stimulus time histogram (PSTH) response to reference noise averaged over each half block (black)

with null model prediction overlaid (dashed gray). The response was enhanced slightly during the post-passive (P2) block relative to pre-passive (P1).

Without accounting for effects of pupil size, this suggests a sustained firing rate increase after behavior, MIP1P2 block-only = 0.25. After accounting for

changes in pupil, the task-related effect is reduced, MIP1P2 block-unique = 0.02. (B) Data from example NCIC unit, plotted as in A. The PSTH shows a

weak, suppressive response to the reference stimuli, but a large increase in mean firing rate that persists into the first half of the post-passive block

(MIP1P2 block-only = 0.37). Again, the persistent change in firing rate can be accounted for by the very large pupil during the first half of P2

(MIP1P2 block-unique = �0.04). (C) Scatter plot compares MIP1P2 block-only and MIP1P2 block-unique for primary auditory cortex (A1; left) and inferior

colliculus (IC; right). Colors as in Figure 3. Accounting for pupil reduces MI attributed to persistent effects after behavior in both areas (A1: p < 10�5,

IC: p < 10�5, hierarchical bootstrap).
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effects of pupil size and task engagement here, we used a stepwise approach in which pupil size and

task engagement provided separate regressors (Fritz et al., 2010; Musall et al., 2019). In about

half of A1 and IC units, some combination of task engagement and/or pupil size explained changes

in spiking activity between blocks of active engagement and passive listening. These behavioral state

variables were correlated; that is, pupil size tended to increase during task engagement. However,

these changes affected independent neural populations, suggesting that effects of pupil-indexed

arousal and other aspects of task engagement operate via distinct feedback circuits.

Defining meaningful state variables
The correlation between pupil size and task engagement demonstrates the importance of account-

ing for interactions between state variables when measuring their effects on neural activity. This

observation also leads to a more fundamental question: what constitutes a meaningful measure of

behavioral state? Concepts like task engagement and arousal make intuitive sense, but they become

slippery when one attempts to pin them to distinct physiological processes. The current results illus-

trate that a commonly used binary task engagement variable is better described by a combination

of pupil size and accuracy of behavioral performance. Other characterizations of task engagement

have argued similarly that the degree of engagement can vary, even when relevant acoustic stimuli

are held fixed (Atiani et al., 2009; Carcea et al., 2017; Knyazeva et al., 2020; McGinley et al.,

2015; Zhou et al., 2014). Larger data sets that track continuous fluctuations in performance are

likely to be able to measure fluctuations of engagement effects within behavior blocks. It remains

unclear how smoothly internal state can vary. Theories of network attractors suggest that there may

in fact be discrete changes in brain state associated with different behavioral contexts (La Camera

et al., 2019). Thus, while task engagement is clearly not binary, it could still comprise multiple meta-

stable states.

As a behavioral state variable, arousal also has multiple definitions, including the transition from

wakefulness to sleep, the response to emotionally salient stimuli, and a generalized activation of the

autonomic nervous system (Satpute et al., 2019). This relatively nonspecific behavioral concept con-

trasts with pupil size, which has a clear link to neurophysiology (McGinley et al., 2015;

Reimer et al., 2016; Zekveld et al., 2018). The detailed circuits that link pupil size to cognitive state

are not fully understood, but a connection to behavioral state has been demonstrated repeatedly.

Thus, while pupil size may not map trivially onto the concept of arousal, it has a clear link to brain

mechanisms.

A clearer understanding of the relationship between behavioral state and sensory processing may

be achieved with models that incorporate additional well-defined variables like pupil size, which can

be linked to well-defined neurophysiological processes. For example, motor- and reward-related

activity are associated with specific neural circuits (Bakin and Weinberger, 1990; Knyazeva et al.,

2020; Schneider et al., 2014). The current study excluded epochs that contained licking activity to

avoid motor confounds, but motor signals can be included as additional model inputs that reflect

aspects of signal detection and decision making (Runyan et al., 2017). These variables may not be

directly related to an experimentally imposed task structure, but they capture processes involved in

the behavior and can be quantified more concretely than abstract variables based on experimentally

imposed task conditions.

Reinterpreting previous studies of auditory behavior
Our findings indicate that changes in firing rate previously attributed to task engagement might

instead reflect fluctuations in pupil-indexed arousal, particularly in IC, where pupil-related changes

predominate. Changes in pupil size can also explain some modulation that persists after behavior

ceases (Fritz et al., 2003; Slee and David, 2015). However, pupil size does not account for all the

modulation between active and passive blocks; instead, it appears that both pupil-indexed arousal

and task engagement act on independent neural populations to shape sound processing.

Previous studies that measured the effects of task engagement on auditory neuronal activity

described different effects on overall excitability between A1 and IC. In A1 the effects of task

engagement were shown to be enhancing (David et al., 2012), while in IC these changes were pre-

dominantly suppressive (Slee and David, 2015). Separate studies have shown that pupil size is posi-

tively correlated with excitability in both A1 and IC (Joshi et al., 2016; Schwartz et al., 2020). Here
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we also found that increased pupil size enhanced excitability in both areas. However, after account-

ing for pupil-related changes, task-engagement effects were no longer enhancing in A1, and they

were more suppressive in IC. Pupil-related changes did not depend on tuning for the target tone.

These nonspecific effects of pupil size contrasted with the effects of task engagement, which can be

selective for task-relevant features (Fritz et al., 2003; Kuchibhotla et al., 2017; Slee and David,

2015).

In the current study, significant state-dependent A1 units were equally likely to be modulated by

task engagement, by pupil size, or by both. In IC, however, we found that a larger portion of state-

dependent changes could be explained by pupil size. Furthermore, in IC but not in A1, units with

less reliable auditory responsiveness were those with a stronger state-modulation component. This

result is perhaps not surprising given that the majority of IC units in our sample were recorded from

non-central regions of the IC (NCIC). These are dorsal and lateral regions of IC that receive feedback

from cortex (Winer, 2006), input from neuromodulatory nuclei such as the pedunculopontine and

latero-dorsal tegmental nuclei (Motts and Schofield, 2009), as well as multisensory information

from somatosensory, visual, and oculomotor centers (Gruters and Groh, 2012). These results sug-

gest that the auditory midbrain is not a passive sound processor. Instead, the network of midbrain

nuclei in the IC plays an active role enhancing behaviorally relevant signals. Experiments that sample

more units across the different subregions would be needed to confirm the interplay of behavioral

and sensory signals across IC.

Multiple regression has been used previously to dissociate effects of pupil size and movement on

neural activity (Musall et al., 2019; Stringer et al., 2019). This study used this approach to dissoci-

ate the effects of state-related variables and differentiate where effects emerge. Several other varia-

bles have been shown to impact auditory responses during behavior, including selective attention,

temporal expectation, reward value, and motor responses (David et al., 2012; Huang et al., 2019;

Jaramillo and Zador, 2011; Lakatos et al., 2013; Metzger et al., 2006). The same method can be

adopted to explore the contribution of other state variables measured in normal conditions as well

as in perturbation experiments to identify the circuits through which such variables operate.

The role of neuromodulation in effects of task engagement and pupil-
indexed arousal in A1 and IC
The correlation between task engagement and pupil size may help explain a number of results

related to neuromodulation in the auditory system. It is well established that neuromodulators can

induce short-term changes in activity and sensory tuning in cortex (Bakin and Weinberger, 1996;

Goard and Dan, 2009) and midbrain (Gittelman et al., 2013; Habbicht and Vater, 1996;

Hurley and Pollak, 2005). Cholinergic fibers projecting to A1 from the nucleus basalis play a key

role in rapid switching between passive listening and active engagement by modulating the activity

of different populations of cortical inhibitory interneurons (Kuchibhotla et al., 2017). In addition,

the activity of cholinergic and noradrenergic terminals in A1 was found to be elevated during pupil

dilation and reduced during pupil constriction (Reimer et al., 2016). Thus, these neuromodulatory

systems have been implicated in effects of both task engagement and pupil-indexed arousal. The

correlation between these state variables could be explained by shared cholinergic and noradrener-

gic signaling.

Materials and methods
All procedures were approved by the Oregon Health and Science University Institutional Animal

Care and Use Committee (protocol IP1561) and conform to National Institutes of Health standards.

Surgical procedure
Animal care and procedures were similar to those described previously for neurophysiological

recordings from awake behaving ferrets (Slee and David, 2015). Four young adult male ferrets were

obtained from an animal supplier (Marshall Farms, North Rose, NY). After a 2-week quarantine, a

sterile surgery was performed under isoflurane anesthesia to mount two head-posts for head fixation

and to permit access to auditory brain regions for recordings. A UV light-cured composite (Cha-

risma, Heraeus Kulzer International) was used to mount two custom-made stainless-steel head-posts

spaced approximately 1 cm apart along the sagittal crest of the skull. The stability of the implant
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was achieved using 8–10 stainless steel bone screws mounted in the skull (Depuy Synthes, Raynham,

MA), which were covered along with the headpost in additional Charisma and acrylic denture mate-

rial (Co-oral-ite Dental, Diamond Springs. CA). Two 1.2 � 1.2 cm wells over A1 in the implant were

covered with only a thin layer of Charisma to allow access to auditory regions.

Following surgery, animals were treated with prophylactic antibiotics (Baytril 10 mg/kg) and anal-

gesics (Buprenorphin 0.02 mg/kg) under the supervision of University veterinary staff. For the first

2 weeks the wound was cleaned with antiseptics (Betadine 1:4 in saline and Chlorhexidine 0.2%) and

bandaged daily with application of topic antibiotic ointment (Bacitracin). After the wound margin

was healed, cleaning and bandaging occurred every 2–3 days throughout the life of the animals.

This method revealed to be very effective in minimizing infections of the wound margin. After recov-

ery (~2 weeks), animals were habituated to a head-fixed posture inside the sound-booth chamber

for about 2 weeks prior to the beginning of the training.

Behavioral paradigm and training
The animals were trained by instrumental conditioning to perform a positively reinforced, tone ver-

sus noise discrimination task (ferret L) (Slee and David, 2015) or tone-in-noise detection task (ferrets

R, B, and T). During training, animals were provided access to water ad libitum on weekends, but

were placed on water restriction during the weekdays (Monday through Friday), allowing them to

maintain >90% of their baseline body weight long term. On weekdays, they were given the opportu-

nity to receive liquid reward during behavioral training. Each behavioral trial consisted of a sequence

of two to five broadband noise reference sounds (TORCs; 30 samples, five octaves, 0.75 s duration,

0.7 s inter-stimulus interval) (Klein et al., 2000), followed by a target tone, either alone (tone versus

noise task) or overlapping with another TORC (tone-in-noise task). Animals reported the occurrence

of the target by licking a water spout (Figure 1A). Licks were detected by a piezoelectric sensor

glued to the spout. Licks occurring within the target window, 0.1–1.5 s after target onset, were

rewarded with one to three drops of a 2:1 solution of water and a high-protein, high-calorie dietary

supplement (Ensure). FAs, licks occurring before the target window, and misses, a failure to lick dur-

ing the target window, resulted in a 5–8 s timeout. Regardless of trial outcome, the next trial began

only after animals did not lick for a random period (2.5 ± 0.5 s), reducing the prevalence of acciden-

tal, short-latency FAs. The number of TORCs per trial was distributed randomly with a flat hazard

function to prevent behavioral timing strategies (Heffner and Heffner, 1995). Behavioral perfor-

mance was measured using d’, the z-scored difference between hit rate (HR) and FA rate

(Green and Swets, 1966).

A behavioral block consisted of 60–100 trials with the same target tone frequency (100–20,000

Hz) and same distribution of target SNR. Animals completed one to three behavioral blocks per day,

between which target frequency and/or SNR could change. During training, target frequency was

chosen at random to span the audiogram of a ferret (Kelly et al., 1986). During electrophysiological

recordings, target tone frequency was selected to match the BF of the recording site.

During the training on the tone-in-noise variant of the task, the TORC sample masking the target

varied randomly in each trial to prevent animals from using TORCs’ spectro-temporal features to

identify targets. At the beginning of training, the tone was presented at +40 dB SNR (ratio of peak-

to-peak amplitude) relative to the TORCs. This difference was gradually reduced over the course of

2–3 weeks until the animal consistently performed above chance (three behavioral blocks with per-

formance yielding d’>1, see below) at 0 dB SNR.

For the tone-in-noise task, the SNR of the tone with respect to the overall level of the TORCs

(fixed at 55 or 60 dB SPL depending on the animal) varied between +5 and �20 dB SNR, in 5 dB

steps. Each session included five target/noise SNRs. To manipulate task difficulty within each session,

the probability of each of the five target/noise SNRs varied, yielding two difficulty conditions: a high

SNR (‘easy’) condition in which 60% of the trials the target/noise SNR was either the highest or the

second to the highest SNR within the target/noise SNR distribution; and a low SNR (‘hard’) condition

in which the two lowest target/noise SNRs occurred in 60% of the trials. For example, for ferret B,

the distribution after training was completed and kept between 0 and �20 dB SNR, so that in the

easy condition 0 and �5 dB SNR targets would appear 60% of the time, �10 dB SNR 20% of the

time, and the remaining �15 and �20 dB SNR would be presented another 20% of the trials. During

electrophysiological tone-in-noise experiments, the tone was embedded in a single TORC sample,
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which also occurred in the reference period. We confirmed that animals were not biased to respond

to this TORC exemplar in the reference phase.

Sound presentation
Behavioral training and subsequent neurophysiological recording took place in a sound-attenuating

chamber (Gretch-Ken) with a custom double-wall insert. Stimulus presentation and behavior were

controlled by custom MATLAB software (code available at https://bitbucket.org/lbhb/baphy). Digital

acoustic signals were transformed to analog (National Instruments), amplified (Crown), and delivered

through two free-field speakers (Manger, 50–35 000 Hz flat gain) positioned ±30˚ azimuth and 80 cm

distant from the animal. Stimuli were presented either from the left or the right speaker, contralater-

ally to the recording site. Sound level was equalized and calibrated against a standard reference

(Brüel and Kjær).

Pupil recording
During experiments, infrared video of one eye was collected for offline measurement of pupil size as

an index of arousal (pupil-indexed arousal). Ambient light was maintained at a constant level to pre-

vent light-evoked changes in pupil and to maximize the dynamic range of pupil-related changes

(Schwartz et al., 2020). Recordings were collected using a CCD camera (Adafruit TTL Serial Camera

397) fitted with a lens (M12 Lenses PT-2514BMP 25.0 mm) whose focal length allowed placement of

the camera 10 cm from the eye. To improve contrast, the imaged eye was illuminated by a bank of

infrared LEDs. Ambient luminance was provided using a ring light (AmScope LED-144S). At the start

of each recording day, the intensity of the ring light was set to a level (~1500 lux measured at the

recorded eye) chosen to give a maximum dynamic range of pupil sizes. Light intensity remained

fixed across the recording session. Pupil size was measured from the video signal offline using cus-

tom MATLAB software, which is detailed in Schwartz et al., 2020.

Neurophysiology
Data were recorded during behavior and pupillometry from 129 units in A1 and 66 units in IC. For

one supplementary analysis (Figure 7—figure supplement 1), additional data were collected during

behavior but without pupillometry (IC: 135 additional units, A1: 125 additional units). After animals

demonstrated consistent above-chance performance (target versus reference d’ > 1, see below), a

small craniotomy was opened to access either A1 or IC. Extracellular neuronal activity was recorded

in non-anesthetized ferrets either using a tetrode (Thomas Recording Inc) or a linear 64-channel sili-

con probe (Shobe et al., 2015). The impedance of the tetrode was measured to be 1–2 MOhm, and

the 64-channel probe was electroplated to reach a 0.7-MOhm impedance in each channel. The tet-

rode and probe were inserted using a motorized electrode positioning system (Alpha-Omega).

Amplified (tetrodes, AM Systems; arrays, Intan) and digitized (National Instruments) electrophysi-

ological signals were stored using the open-source data acquisition software MANTA (Englitz et al.,

2013) or Open Ephys (Black et al., 2017). Recording sites in A1 and IC were initially targeted ste-

reotactically (Moore et al., 1983; Shamma et al., 1993). Sites in A1 were confirmed based on tono-

topy—which changes from high to low BF as one moves from dorso-medial to ventro-lateral

regions—and relatively reliable and simple frequency tuning (Shamma et al., 1993). Recording sites

in the IC were classified based on tonotopy and response properties (Aitkin et al., 1975;

Moore et al., 1983). Neurons in the central nucleus of the IC (here referred to as ICC) receive input

from the auditory brainstem, and have a characteristic short response latency, dorsal-ventral tono-

topy, and narrow bandwidth tuning. Conversely, regions around the central nucleus do not receive

direct ascending input and present longer response latencies, considerably less sharp tuning, lack

consistent tonotopic organization; these areas were grouped together as NCIC (Slee and David,

2015).

For tetrode recordings, upon unit isolation, a series of brief (100 ms duration, 200–400 ms inter-

stimulus interval, 50 dB SPL) tones and/or narrowband noise bursts were used to determine the

range of frequencies that evoked the strongest response, the BF of the unit(s). If a unit(s) in the site

did not respond to the sound stimuli (an evoked increase or decrease in activity compared to spon-

taneous activity either during or after sound presentation), the electrode was moved to a new
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recording depth with small, 5 mm incremental steps. For the 64-channel recordings, we lowered the

probe so that its entire extent (1 mm) spanned the target region (A1 or IC).

Spike sorting
Putative spikes were sorted offline by band-pass filtering the raw trace (300–6000 Hz) and extracting

events from the continuous signal that deviated �4 standard deviations from zero. To separate sin-

gle units and stable multiunits from the electrode signal, we used the Catamaran clustering program

(kindly provided by D. Schwarz and L. Carney) (Schwarz et al., 2012) for tetrode recordings and the

software KiloSort (Pachitariu et al., 2016) for array recordings. In both cases, units were defined

based on visual inspection of traces and by having less than 1% of inter-spike intervals shorter than

0.75 ms (single units) and less than 2.5% inter-spike intervals shorter than 0.75 ms (multiunits). Stabil-

ity of single-unit isolation was verified by examining waveforms and interval histograms. If isolation

was lost during an experiment, only activity during the stable period was analyzed.

Analysis
Data preprocessing and analysis were performed using custom MATLAB and Python scripts. All anal-

yses were performed on biological replicates, either different behavior sessions, different neurons

(single- or multiunit, see above), or different neuron-behavior condition pairs. Neural and pupil activ-

ity were binned at 20 samples/s before analysis. A Python library used for the modeling portion of

this analysis is available at https://github.com/LBHB/NEMS/. Sample size (number of animals, num-

ber of units per condition) was determined based on norms established in previous studies of neural

activity in awake, behaving animals (Fritz et al., 2003; Niwa et al., 2012; Otazu et al., 2009).

Task performance
Behavioral performance was measured using signal detection theory (Green and Swets, 1966;

Stanislaw and Todorov, 1999). Hits or FAs occurred when the animal licked the piezo waterspout

upon presentation of the target or the reference stimuli, respectively. Misses or correct rejections

(CRs) occurred when the animal did not lick following presentation of the target or reference. HR

was calculated as the proportion of licks that occurred upon presentation of the target during the

response window (0.1–1.5 s after target onset), HR = hits/(hits+misses). FA rate (FAR) was calculated

as the proportion of reference stimuli that elicited a lick, during the same window following refer-

ence onset, FAR = FAs/(FAs + CRs). Sensitivity (d’), a measure of the animals’ ability to discriminate

between target tone and reference noise, was measured by the difference between the z-scored HR

and the FA rate, d’ = HRz� FARz. No discrimination, that is, equal likelihood of responding to target

and reference is indicated by d’ = 0. Animals were considered trained to the task and ready to

undergo electrophysiological recordings when they performed consistently above chance (d’ > 1) for

three consecutive sessions.

Auditory tuning properties
Tuning properties of A1 and IC units were characterized using the STRF estimated by reverse corre-

lation between time-varying neuronal spike rate and the rippled noise used as reference sounds dur-

ing behavior (Klein et al., 2000). The STRF provides a quick and efficient measure of stimulus

frequencies that enhance or suppress neural firing. In the current study, the STRF was used to mea-

sure BF as the center of mass of a spectral tuning curve computed from the first principle compo-

nent of the STRF matrix (Simon et al., 2007). Auditory responsiveness was computed as the SNR of

single trial responses to the reference noise stimuli during passive listening (Klein et al., 2000).

State-dependent models
We fit a generalized linear model in which time-varying state variables pupil size, p tð Þ, and task

engagement, b tð Þ, were used to re-weight each unit’s mean evoked response to each noise stimu-

lus, r0 tð Þ, and spontaneous rate, s0, to generate a prediction of the single-trial spike rate, rfull tð Þ, at

each point in time. The model included multiplicative gain parameters (g) and DC offset parameters

(d) to capture both types of modulation. We refer to this model as the full model:

rfull tð Þ ¼ s0Fd d0þ dpp tð Þþ dbb tð Þ
� �

þ r0 tð ÞFg g0þ gpp tð Þþ gbb tð Þ
� �

(1)
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To account for nonlinear threshold and saturation of state effects, the summed state signal was

passed through a sigmoid nonlinearity, Fd or Fg, before scaling response baseline or gain, respec-

tively (difference of exponentials) (Thorson et al., 2015). With additional constant terms g0 and d0,

this model required a total of six free parameters. For comparison, we calculated a state-indepen-

dent model here referred to as the null model, in which the state variable regressors were shuffled in

time. Because shuffling removes any possible correlation between state and neural activity, gain and

offset parameters are reduced to d0=g0=1 and dp=db=gp=gb=0, effectively reducing the model to

rnull tð Þ ¼ s0þ r0 tð Þ (2)

In practice, fitting to the shuffled data produces parameter values slightly different from zero,

and controls for noise in the regression procedure.

We also considered two partial models, one to predict responses based on pupil size only, rp tð Þ,

and the other to predict responses based on behavior only, rb tð Þ; in which the other regressor was

shuffled in time. Thus, the pupil-only model accounted only for effects of pupil size,

rp tð Þ ¼ s0Fd d0 þ dpp tð Þ
� �

þ r0 tð ÞFg g0 þ gpp tð Þ
� �

(3)

and the task-only model accounted only for task engagement,

rb tð Þ ¼ s0Fd d0 þ dbb tð Þ½ �þ r0 tð ÞFg g0 þ gbb tð Þ½ � (4)

These models tested the effects of a single state variable while ignoring the other.

By comparing performance of the full model to each partial model, we determined the unique

contribution of each state variable to the neuron’s activity. We used a 20-fold, nested cross-valida-

tion procedure to evaluate model performance, which permitted using the full data set for both

model fitting and validation without introducing bias from over-fitting. The model was fit to 95% of

the data and used to predict the remaining 5%. Fit and test data were taken from interleaved trials.

This procedure was repeated 20 times with nonoverlapping test sets, so that the final result was a

prediction of the entire response. Model performance was then quantified by the fraction of variance

explained, that is, the squared correlation coefficient, r2, between the predicted and actual time-

varying response. Variance uniquely explained by single state variables was calculated as the differ-

ence between r2 for the full model and for the partial model in which the relevant variable was shuf-

fled in time.

When comparing pupil and neural data, a 750 ms offset was applied to pupil trace to account for

the lagged relationship between changes in pupil size and neural activity in A1 (McGinley et al.,

2015).

Modulation Index
To quantify the modulatory effects of task and pupil size on the firing rate of A1 and IC units, we

computed a modulation index, MI (Otazu et al., 2009; Schwartz and David, 2018). The sound-

evoked response was computed by averaging firing rate over the 750 ms duration of a stimulus pre-

sentation. MI was defined as the difference between the mean response to the same stimulus in two

conditions, a and b, normalized by the sum,

MIab ¼
ra� rb

raþ rb
(5)

MI could be calculated between different behavioral blocks or between state conditions. In the

case of task engagement, MI was calculated between active and passive conditions, MIAP. For pupil-

dependent changes, data from an experiment were divided at the median pupil diameter, and MILS
was computed between large pupil (above median, high arousal) and small pupil (below median,

low arousal). To quantify the differences between the first and the second passives, MIP1P2 was com-

puted between the first and second passive blocks.

To quantify the changes in firing rates due to unique contributions of task condition or pupil size,

we used MI to test how well the regression model could predict state-related changes in neural

activity. The modulation between conditions a and b predicted by the full model is denoted as

MIab full, where a and b are either active/passive (MIAP full) or large/small pupil (MILS full). Similarly,
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modulations between conditions a and b predicted by the pupil partial model or the behavior partial

model are denoted MIab pupil-only and MIab task-only, respectively. The MI uniquely predicted by

including task engagement as a regressor is

MIAP task unique¼MIAP full�MIAP pupilonly (6)

that is, MI predicted by the full model minus MI predicted by a model in which behavior condition,

but not pupil, is shuffled. The net result is the MI predicted by task engagement above and beyond

modulation predicted by changes in pupil size alone. Similarly, MI uniquely predicted by including

pupil size as a regressor is

MILS pupilunique¼MILS full�MILS task only (7)

Significant effects of regressing out pupil size were quantified by comparing the signed-normal-

ized differences between MIAP task-unique and MIAP task-only and differences of the same quantities

across areas were quantified using a hierarchical bootstrap test (Saravanan et al., 2020). Sign nor-

malization was achieved by multiplying the difference between MIAP task-unique and MIAP task-only

in each unit by the sign of their mean.

Significantly modulated units were determined by comparing Pearson’s R coefficients associated

with the full model and with the difference between the full model and the task and pupil partial

models using jackknifed t-test with a = 0.05 (Efron and Tibshirani, 1986).

Statistical tests
Several analyses assessed changes in the median of repeatedly sampled data, e.g., average pupil

size measured across multiple behavior blocks (Figure 1) or average state-dependent modulation

measured across multiple units (Figures 3 and 5–8). In this case, significant differences were

assessed using a hierarchical bootstrap test (Saravanan et al., 2020). The hierarchical bootstrap is

nonparametric, like the more traditional Wilcoxon signed-rank test, but it accounts for potential bias

resulting from the relatively small number of array recordings in the data set. A statistical test that

treats each unit as an independent measure could potentially be biased if a single array recording

produced spuriously large effects, and the hierarchical bootstrap controls for this possibility. The

bootstrap analysis was run for 10,000 iterations, so that the minimum measurable p-value was 10�5.

Thus, results that returned p = 0 after this many iterations are reported as p < 10�5.

State-dependent changes in individual neurons were assessed using a combination of nested

cross-validation and a jackknife t-test (see above, Efron and Tibshirani, 1986). To determine if any

population-level effects depended on task performance or between animal differences, we used

multivariate ANOVA (Figure 4).
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