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Understanding how external stimuli give rise to sensory percepts 
and how individual sensory neurons support this process are cen-
tral questions of systems neuroscience. One of the crucial require-
ments for the claim that a particular group of neurons is critical 
for the generation of a perceptual event is that “fluctuations in 
the firing of some set of the candidate neurons to the repeated 
presentation of identical external stimuli should be predictive of 
the observer’s judgment on individual stimulus presentations”1.  
Such correlations between the response fluctuations in a single 
neuron’s firing rate and the subject’s perceptual decision have  
been found in many cortical areas (for example, V1 (ref. 2), V2  
(ref. 3), IT4, MT2,5–12, MST13 and VIP7). They are usually quantified 
as choice probabilities5. The quantitative interpretation of choice 
probabilities has been problematic, however, as their connection 
to the read-out weight of a neuron is confounded by correlations 
among the sensory neurons14. For instance, a neuron that itself 
is not directly involved in a decision might display a significant 
choice probability purely because it is correlated with another sen-
sory neuron that does directly contribute to the decision15. This 
indicates the importance of correlated variability and its structure, 
something that was recognized early on14 and was highlighted again 
more recently16. A central challenge for all studies of choice prob-
ability is that this relationship between correlation structure and 
choice probabilities has not been characterized analytically. Thus, 
all previous studies are based on numerical simulations in which the 
key parameter, the correlation matrix, is very high dimensional—
quadratic in the number of neurons in the considered population. 
This makes it infeasible to exhaustively explore the behavior of the 
system, fit it to empirical data, draw conclusions about the incom-
patibility of a particular model with a set of data, or acquire a deep 

understanding of the relationship between choice probabilities, 
sensory encoding and decision-making.

We mathematically derived the relationship between correlated var-
iability, choice probabilities and read-out weights. We found simple 
relationships that explained how correlation structure and read-out 
weights together determine choice probabilities. This allowed us to 
prove earlier numerical results as well as a recent conjecture16 about 
how choice probabilities depend on correlations for the previously 
much-studied case of a uniform read-out. Notably, we determined 
how our analytical solution allows one to infer aspects of the decoding 
weight profile from empirically observed neuronal correlations and 
choice probabilities. Finally, we derived a simple test for whether the 
read-out mechanism is optimal for the task, even in the absence of 
any knowledge about correlations.

RESULTS
Choice probabilities, correlations and read-out weights
We followed previous studies in modeling the decision-making cir-
cuit by assuming that a decision-making area linearly reads out and 
sums the activity of a population of neurons in a sensory area14,16,17 
(Fig. 1). A noise stimulus was presented and the task was to decide 
whether the stimulus contains more power for stimulus value s1 or 
for s2 (Fig. 1a). Examples may be a stimulus consisting of randomly 
moving dots, with the task to decide whether the net motion is in 
one or another direction5,18, or a stereo image with the task to decide 
whether it is in front or behind the fixation point3,19. We examined a 
population response with each of n neurons in the population emit-
ting rk spikes in a given trial (Fig. 1b). These neural responses will, 
in general, be correlated, and we modeled this correlated variability 
by a multivariate Gaussian distribution with covariance matrix C,  

1Max Planck Institute for Biological Cybernetics, Tübingen, Germany. 2Bernstein Center for Computational Neuroscience, Tübingen, Germany. 3Volen National Center 
for Complex Systems, Brandeis University, Waltham, Massachusetts, USA. 4Werner Reichhardt Centre for Integrative Neuroscience, Tübingen, Germany. 5Institute for 
Information Technology (OFFIS), R&D Division Transportation, Oldenburg, Germany. 6Neural Computation and Behaviour Group, Max Planck Institute for Biological 
Cybernetics, Tübingen, Germany. 7Institute of Theoretical Physics, University of Tübingen. Correspondence should be addressed to R.M.H. (ralf.haefner@gmail.com).

Received 3 October 2012; accepted 14 December 2012; published online 13 January 2013; doi:10.1038/nn.3309

Inferring decoding strategies from choice probabilities 
in the presence of correlated variability
Ralf M Haefner1–3, Sebastian Gerwinn1,4,5, Jakob H Macke2,4,6 & Matthias Bethge1,2,4,7

The activity of cortical neurons in sensory areas covaries with perceptual decisions, a relationship that is often quantified by 
choice probabilities. Although choice probabilities have been measured extensively, their interpretation has remained fraught 
with difficulty. We derive the mathematical relationship between choice probabilities, read-out weights and correlated variability 
in the standard neural decision-making model. Our solution allowed us to prove and generalize earlier observations on the basis 
of numerical simulations and to derive new predictions. Notably, our results indicate how the read-out weight profile, or decoding 
strategy, can be inferred from experimentally measurable quantities. Furthermore, we developed a test to decide whether the 
decoding weights of individual neurons are optimal for the task, even without knowing the underlying correlations. We confirmed 
the practicality of our approach using simulated data from a realistic population model. Thus, our findings provide a theoretical 
foundation for a growing body of experimental results on choice probabilities and correlations.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3309
http://www.nature.com/natureneuroscience/


236  VOLUME 16 | NUMBER 2 | FEBRUARY 2013 nature neurOSCIenCe

a r t I C l e S

where Cjk is the covariance between the responses of neuron j and 
neuron k, and Ckk is the variance of neuron k. C is also called the 
noise covariance matrix and, when normalized by the variance, 
the noise correlation matrix. We modeled a linear read-out, which 
means that the activity of each neuron was multiplied by a weight βk  
(Fig. 1c). The sign of the sum of the weighted responses determined 
the choice (Fig. 1d).

Consider the case of an ambiguous stimulus, one that contains 
equal evidence for either decision. Each sensory neuron will fire with 
a mean firing rate determined by its tuning function and a certain 
variability that we modeled as Gaussian distributed. If we split the 
trials into two groups, those that led to decision 1 and those that led 
to decision 2, and determine the distribution of firing rates, we may 
find that they are slightly different for each group. One is shifted to 
lower and the other to higher firing rates (Supplementary Fig. 1a). 
Such an effect has been observed in several sensory areas in cortex and 
its strength is usually quantified as choice probability5,20. More pre-
cisely, choice probability is defined as the probability that a random 
sample from the distribution for choice 1 trials is indeed larger than 
a random sample from the distribution for choice 2 trials. It is 0.5 if 
both distributions are identical and increases up to 1 as they are more 
and more separated. Although the stimulus will typically contain a 
small residual signal supporting one of the two decisions, this residual  
signal has a small effect on the differential firing distributions5 and 
can be corrected for19. In the absence of any noise correlations, we 
could infer the read-out weight for a particular neuron from its choice 
probability alone: the larger the choice probability, the larger the neu-
ron’s read-out weight. However, in the presence of noise correlations, 
this is no longer true: a neuron might be assigned a zero read-out 
weight and show a large choice probability only because it is correlated 
with a neuron with nonzero read-out weight.

We derived the analytical relationship linking choice probabilities  
and read-out weights in the presence of arbitrary correlations  
(Online Methods): 
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CPk is the choice probability of neuron k with respect to choice 1, 
which depends on the high-dimensional noise covariance matrix 
only through three numbers: Ckk (the response variance of neuron k),  
(Cb)k = j

n
kj jC=1∑ b  (the sum over all covariances of neuron k with 

all other neurons, weighted by their read-out weights plus the 
weighted variance of neuron k), bTCb = =1 =1k

n
j
n

k kj jC∑ ∑ b b  (the total 
variance summed across all neurons, weighted with the respective 
read-out weight plus the weighted sum over the covariances across  
all pairs).

(1)(1)

A simplification of equation (1), allowing for an easier intuition, is 
given by its first order approximation 
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The error incurred by this approximation is very small, ranging from 
zero at CP = 1/2 to 5% for CP = 1 (Supplementary Fig. 1b). For clarity 
of exposition, we use this approximation to present our results for the 
choice probability in various scenarios.

Although our mathematical derivation relies on the assumptions of 
Gaussian response variability and perfect integration over the entire 
stimulus presentation, we confirmed its validity in more realistic 
settings (Poisson spiking, integration to bound17, attractor-based 
decision-making21 and pooling of noise only change choice prob-
abilities by a scaling factor; see Discussion, Supplementary Note and 
Supplementary Figs. 2–5).

Interpretation of choice probabilities
The interpretation of choice probabilities, and particularly whether 
they tell us anything about how a neuron is read out by the decision-
making mechanism, has long been a controversial topic16,20. On the 
one hand, it was observed that choice probabilities would only be large 
enough to be measurable in the presence of correlations in neuronal 
variability14 and, based on simulations, that in large populations all 
neurons have the same choice probability regardless of their indi-
vidual read-out weight15. On the other hand, empirical choice prob-
abilities have been interpreted as information about how neurons are 
being read-out12,21.

Equation (2) resolves this controversy by showing how choice prob-
ability is computed from a linear numerator, Cb, determining the 
shape of the choice probability profile, and a quadratic denominator 
bTCb, scaling its magnitude. The linear part, 

CP
n
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j

n
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implies that, in addition to its own weight and its response variance, 
the choice probability of any neuron depends on its covariance with 
all other neurons in the population and their weights. Only one term 
in this sum depends on the read-out weight of the neuron itself; all of 
the other terms represent how the neuron is correlated with the other 
neurons in the population and what their read-out weight is. This 
means that, the larger the number of neurons contributing to the deci-
sion, the less the neuron’s own read-out weight influences its choice 
probability. For the case of large correlated neuronal populations, 
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Figure 1 Illustration of model setup. (a) A noisy  
stimulus is presented containing power at two 
stimulus values s1 and s2. The task was to 
discriminate between s1 and s2. (b) Neuronal 
population response (neurons are sorted by 
preferred stimulus). The neural responses on 
each trial were variable and this variability was 
correlated (cov, covariance). (c) The activity of 
each neuron was weighted differently depending 
on their identity (here, preferred stimulus). (d) The  
decision was based on the sum of the weighted 
neural responses. Depending on the sign of the 
sum, either choice 1 or choice 2 was reported.
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the choice probability of a neuron essentially depends only on its 
covariance with the other neurons and on the other neurons’ read-
out weights. Notably, as each term containing a correlation is in fact 
a product of a correlation and a read-out weight, even in large neu-
ronal populations choice probabilities reflect both correlations and 
read-out weights.

To examine our results, we used a classic coarse motion discrimina-
tion task18 in which the subject has to decide whether the net motion 
in a random dot kinematogram is in one or the opposite direction. 
The neuronal population consists of n neurons with preferred direc-
tions φ between 0 and 2π. The two to-be-discriminated directions 
are π/2 and 3π/2. This implies that neurons with preferred direction  
0 < φ < π support choice 1 and neurons with π < φ < 2π support choice 
2. Note that this division into two pools is purely a result of the task 
context; the stimulus itself contains equal power in all directions. Our 
framework equally applies to fine discrimination tasks11, tasks involv-
ing other stimulus dimensions19,23 and other modalities22.

We compared the expected choice probabilities for two different 
correlation structures and three different read-out weight profiles 
in a small and a large neuronal population (18 and 2,000 neurons, 
respectively; Fig. 2). For uniform correlations, choice probabilities 
contained a lot of information about the read-out weight of a neuron 
in small populations and very little in large ones (Fig. 2c). In prac-
tice, the choice probability profile for a selective read-out (Fig. 2c) is 
impossible to distinguish from that of a constant one (Fig. 2b), given 
typical measurement errors (s.e.m. of 0.05 for 100 trials). The majority 
of neurons with zero weights had a significant choice probability only 
because they were correlated with those neurons that had a nonzero 
weight, as noted previously14,15. For the case of optimal decoding 
(Fig. 2d), within each pool, neurons far away from the decision direc-
tion were generally subtracted from those whose preferred direction 
was close to the decision direction. This improves decision-making 
by subtracting (positively correlated) noise while leaving the signal 
largely unchanged24,25. The choice probabilities followed a roughly 
sinusoidal profile that reflects the shape of the neuronal tuning curves, 
as we show later, and the number of neurons in the population. We 
also examined a correlation structure that was based on empirical 
data26 and its implications for the choice probabilities (Fig. 2e–h). 
Even if all neurons in a pool had the same weight, their choice prob-
abilities could differ (Fig. 2f). If the correlations are largest between 

similar neurons, the neurons at the center of the pool have the largest 
choice probabilities because they are overall most correlated with 
the other neurons in their pool and least correlated with those in the 
other pool. Therefore, choice probabilities decreased in the direction 
of the pool boundaries, which was solely driven by the correlation 
structure, and not by their read-out weights (Fig. 2g). However, unlike 
for the case of uniform correlations, the choice probability profiles for 
uniform and selective weights remained different (Fig. 2f,g) even in 
arbitrarily large neuronal populations, making it possible to distin-
guish between these weight profiles by observing choice probabilities 
and correlations (Supplementary Fig. 6). The results for the optimal 
read-out are very similar for the two correlation structures shown here 
(Fig. 2d,h), apart from a substantial difference in overall magnitude 
for the large neuronal population.

The eigenvectors v(i) (or principal components) of the noise  
covariance matrix, C, are those vectors for which multiplication with 
C changes their length, but not their direction: Cv(i) = λiv(i), where 
the scalar λi is called the corresponding eigenvalue. If the read-out 
weights β are equal to an eigenvector v(i), then 

CP v− ∝1
2

( )li
i

as Cb = λiv(i) and bTCb = λi (vTv = 1 by definition). This implies 
that read-out weight profiles corresponding to eigenvectors with large 
eigenvalues will lead to large choice probabilities, and those profiles 
that resemble eigenvectors with small eigenvalues will lead to choice 
probabilities close to 0.5.

From now on we assume the correlation structure based on 
 empirical data26 (Figs. 2e and 3a,b). For this correlation structure, 
the smaller the eigenvalue, the higher the frequency of the associated 
eigenvector (Fig. 3c,d). Because the actual read-out weights can be 
expressed as a linear combination of all the eigenvectors, b = ∑ v i i

i
( ) ( )v ,  

it is clear that, owing to measurement noise, empirical choice prob-
abilities, contain more information about the low-frequency com-
ponents of the read-out weight profile than the high-frequency 
ones (Fig. 3e). Consequently, the precision of the choice probability 
measurements imposes an upper limit on the frequencies for which 
the choice probabilities contain information, similar to how the 
Nyquist frequency is determined by the temporal resolution of a 
time series.

(4)(4)

Figure 2 Choice probabilities for example 
cases. (a) Correlation matrix with a correlation 
coefficient of 0.2 between neurons in the same 
pool and 0.1 between neurons in different 
pools. (b–d) Choice probabilities produced 
by correlation matrix in a for different read-
out profiles. The overall scale of the read-out 
weights (shown in black) was arbitrary (the 
decisions, and thus the choice probabilities, 
only depend on the sign of the summed 
responses weighted by the read-out weights, 

i
n

i ir=1∑ b , and are therefore unaffected if 
the weights β are all scaled by the same 
positive number). Blue dots represent choice 
probabilities implied by the respective read-
out weight profile assuming there are a total 
of 18 neurons in the sensory population. Red 
curves represent choice probabilities produced 
assuming a population size of 2,000 neurons. (b) Uniform weights within each pool. (c) All weights were zero apart from the 5% of neurons, which 
were best-tuned to the stimuli that were distinguished in the task. (d) The weights were chosen to be linear-optimal for the task based on the assumed 
correlation structure (a). (e–h) Data are presented as in a–d assuming the correlation structure shown in e, which is based on empirical data26. We 
assumed homogenous populations with circular Gaussian tuning curves (von-Mises, κ = 1.5). The neurons were sorted by their preferred stimulus, φ. 
The task was to distinguish between stimuli moving in directions π/2 and 3π/2.
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As an example for the importance of this, we considered the case of 
uniform correlations within each of two large pools15 (Fig. 2a). Such a 
correlation function has only two eigenfunctions with nonzero eigen-
values (Supplementary Fig. 7b–d), both of which are constant within 
each neuronal pool. This means that all deviations from a uniform 
read-out are present in a space about which the choice probabilities 
contain no information. This fact explains previous findings15, based 
on simulations, that, regardless of the read-out weights of the individual 
neurons, the choice probabilities of different neurons in a pool are 
indistinguishable. In practice, however, a piecewise constant correlation 
function is unrealistic, and empirical correlation functions are likely to 
have a large number of nonzero eigenvalues (such as in Fig. 3c).

Reconstruction of read-out weights
If the complete correlation matrix for the sensory population as 
well as the choice probability of all neurons are known, then we can, 
in principle, invert equation (2) and deduce the read-out weights 
associated with individual neurons directly. However, there are two 
main challenges to performing this computation directly. First, in 
most cases, it is impossible to record from the complete neuronal 
population, and we can only record from a small subset of it. Second, 
measurement errors limit the accuracy of the reconstruction process.  
We overcame the first challenge by restricting ourselves to construct-
ing a ‘smooth model’. The central idea is to reconstruct the smooth 
read-out profile, β(ξ), which is implied by the mean correlation func-
tion, c(ξ1, ξ2), and mean choice probabilities, CP(ξ). For our example 
case, we chose ξ to be the preferred stimulus direction, φ. However, 
other dimensions, such as neuronal sensitivity27, neuronal type or 
alternative stimulus preferences22, are possible. The second challenge  
can be addressed by restricting the reconstruction to the space 
spanned by those eigenfunctions whose eigenvalue is sufficiently 
large in relation to the measurement error in the choice probabilities.  
We obtained v(i), the projection of the read-out weights onto eigen-
function v(i)(φ), from the projection of the observed choice prob-
abilities onto that same eigenfunction (Online Methods). Akin to 
representing a signal by its Fourier series in which all terms above 
the Nyquist frequency have been set to zero, we only considered the 
eigenfunctions with the largest eigenvalues.

We examined the feasibility of this approach using a realistic simu-
lation of an experiment in which a small subset of a large neuronal 
population was recorded. We considered two scenarios. In the first, 
the true underlying read-out weights are constant within each pool, 
 corresponding to a simple averaging of responses across each pool. 
In the second, the read-out is chosen optimally for each neuron to 
maximize discrimination performance for trials in which there is a 
signal in the stimulus (Supplementary Note). We now show that, 
using equation (18), it is possible to reconstruct the underlying weight 

profile from limited observations of correlations and choice probabili-
ties and to reliably distinguish between the two example scenarios.

To account for neuronal heterogeneity, we assumed a true under-
lying correlation structure that was chosen randomly around the 
empirical mean26 (shown in Fig. 4a for the 256 observed neurons; 
see Online Methods). Figure 4b shows the read-out weights for the 
two scenarios that we consider: constant weights and optimal weights. 
The dashed red line shows the optimal read-out weight profile for the  
corresponding average model, in which the variable correlation struc-
ture is replaced by its mean, and the variable neuronal tuning proper-
ties by their average quantities (assuming a homogenous population). 
The actual weights represented by red dots deviate from the optimal 
average read-out, as they also exploit small-scale differences between 
neighboring neuron’s tuning properties and correlations to maximize 
performance. Figure  4c shows the measured choice probabilities 
for. The choice probabilities implied by the two weight profiles are  
systematically different for the two cases even in the presence of mea-
surement noise (Fig. 4c), allowing us to differentiate between the two 
scenarios based on empirical data. An estimate of the full correlation 
structure from the empirical data was obtained by fitting a smooth 
correlation function to the noisy observed correlation coefficients 
(Online Methods and Supplementary  Fig.  8). This allowed us to 
compute the eigenfunctions of C and to incorporate prior informa-
tion about the read-out weight profile into the reconstruction. In our 
case, for instance, the rotational symmetry of the problem implies that 
only two of the seven eigenfunctions are relevant for the reconstruc-
tion (Online Methods). This leaves a two-dimensional space spanned 
by the eigenfunctions shown in Figure 3e in which we performed 
the reconstruction. The results of the reconstruction are shown in 
Figure 4d. The reconstructed weight profiles have to be compared 
with the ground truth (Fig. 4b) projected into the two-dimensional 
reconstruction space. Despite the fact that we only considered a two-
dimensional space, the weight profiles preserve their characteristic 
properties: for the uniform weights scenario, all reconstructed weights 
have the same sign within each pool, and for the optimal weights sce-
nario, the reconstructed weights have opposite signs near the decision 
directions and close to the pool boundary.

Restricting the weights reconstruction to the eigenfunctions with 
the largest eigenvalues has a noteworthy side-effect: the choice prob-
abilities implied by the reconstructed model are larger than the choice 
probabilities implied by the full model. This is because the magnitude 
of the choice probabilities is proportional to the square root of the 
relevant eigenvalues, l , and the closer the actual read-out weight 
vector is aligned with eigenfunctions with small eigenvalues (which 
are ignored), the more the smooth reconstruction (which is based on 
large eigenvalues only) overestimates the choice probability magnitude 
(Supplementary Note). This effect is particularly large for non-smooth 
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weight profiles that have significant power in higher frequencies. This 
applies to read-out profiles that are close to optimal, as they will have 
the highest power in eigenfunctions with small eigenvalues. The effect 
was apparent when we plotted the true choice probabilities along-
side the choice probabilities implied by the smooth reconstructions  
(Fig. 4e). The average model recovered in the case of constant weights 
was very close to the simulated data. The choice probabilities implied 
by the average model for the optimal weights, on the other hand, were 
substantially larger than those observed. Notably, the shape of the 
choice probability profile was unchanged, and only the magnitude was 
greater. The heterogeneity in neuronal tuning curves is crucial here: 
if the underlying population were homogenous, the reconstructed 
model’s choice probability predictions would be almost correct (data 
not shown), similar to the case of constant weights. This is because the 
weights profile optimal for a homogenous population has little power 
at higher frequencies that are ignored by the reconstruction.

We overlaid existing empirical5,15 for comparison with our simulation 
results (Fig. 4e). We stress that the simulation results shown are not a 
fit to the choice probability data, but are the 
prediction from an optimal read-out based on a 
correlation structure extrapolated from the data 
in one of the two shown experiments26 (red 
dots; Fig. 4e). To bring the magnitude of the 
choice probabilities for a uniform read-out into 
agreement with the data, one would need to 
invoke either a significant pooling noise more 
important than the entire sensory evidence or 
a decision mechanism that discards most of the 
sensory spikes (even in a reaction-time task like 
the one used to record this data). If the read-out 
was optimal, this magnitude problem would 
disappear or be at least greatly diminished. To 
distinguish between these two possibilities, one 
needs to consider the ratio of the reconstructed 
coefficients v(1) and v(2) as described below.

As each simulation is slightly different because of the simulated 
stochasticity in the experiment, we examined the distribution of 
reconstruction results for 1,000 independent simulations (Fig. 5). 
Figure 5a shows the average reconstructed profiles together with 
their variability across simulations. Figure 5b shows the distribution 
of the two reconstructed coefficients as two well-separated clouds. 
This demonstrates that an experimenter, who only has access to 
one point in this space, can distinguish between a uniform and an 
optimal read-out with high confidence.

Two potential complications may occur when trying to use v(1) 
and v(2) to decide whether a set of empirical data is compatible with 
a constant read-out or an optimal one: the subject may be using 
an internal integration-to-bound17 or attractor-based21 decision-
making scheme rather than perfectly integrate the evidence over 
the entire trial, or noise may be added during the decision stage of 
the read-out14. Both possibilities have the same effect on the choice 
probabilities: a uniform scaling down by a factor compared with 
our analytical solution (Supplementary Fig. 3), leading to an equal 
uniform scaling of the v(i). To make our inference over the read-out 
weight profile independent of such factors, we considered the ratio 
of different v(i) values, here v(1) and v(2) (Fig. 5c). Although not as 
well separated as the coefficients themselves, their overlap was small 
and the power of this test was high (area under the receiver operat-
ing characteristic (ROC) curve is 0.93), even for the case of limited 
data that we considered (Supplementary Fig. 9). This indicates that, 
even in the absence of any information about pooling noise or for 
imperfect integration, it is possible to distinguish between uniform 
and optimal read-outs.
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heterogenous neuronal population and limited data. (a) Ground truth 
correlation structure (sampled around the mean shown in Fig. 3b).  
(b) Ground truth weights β chosen to be constant in each subpopulation 
(blue) and linearly optimal (red). (c) Observed choice probabilities  
implied by correlation structure in a, weights in b and 200 trials.  
(d) Reconstructed weights (thick lines) based on the observed 
subpopulation of 128 neuron pairs. Thin lines represent the ground truth: 
the true weights as reconstructed from their projections onto the relevant 
eigenfunctions. (e) Ground truth choice probabilities for all neurons in our 
simulation (without any measurement noise, which is included in c).  
Cyan and magenta curves indicate choice probabilities profiles implied 
by the reconstructed smooth model (ignoring the heterogeneity in the 
neuronal response properties and in the correlation matrix). Black error 
bars indicate choice probability data from ref. 15 (s.e.m.). Black star 
indicates average choice probability found in ref. 5.

Figure 5 Reliability of reconstruction procedure for the simulated example case across 1,000 
repetitions. (a) Reconstructed read-out profiles. Thick lines indicate mean reconstruction results 
and thin lines indicate s.d. Blue indicates the reconstruction for the uniform weight profile and red 
indicates the reconstruction for the optimal weights case. (b) Results for individual simulations  
in the reconstruction space spanned by the eigenfunctions with the two largest eigenvalues  
(and correct symmetry; see blue and red curves and dots in Fig. 3c,d). (c) Histogram of the ratios of 
the reconstructed projections onto the two relevant eigenfunctions (same as in b).
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Optimality test
We then used our framework to test the hypothesis that the weights 
are optimal for a particular task, even if the correlation structure is 
not known. This is possible because the formula that relates optimal 
weights to the correlation matrix, 

optimal ∝ −−C [r r1 ( ) ( )]1 2s s

is mathematically similar to the one relating choice probabilities to 
the correlation structure (equation (3)). Here, r(s1) and r(s2) are the 
neural responses to the two stimuli, s1 and s2, that are to be distin-
guished, and we assumed that C is approximately independent of 
the stimulus around the zero-signal stimulus28 (Supplementary 
Note). Thus, if the read-out weights are optimal, the choice 
probability of a neuron is proportional to its sensitivity (d′) in  
this task 

CP r s r s
Ck

k k

kk
− ∝ −1
2

( ) ( )1 2

Note that, although the choice probabilities are measured on the  
basis of responses to zero-signal stimuli, the right-hand side of  
equation (6) requires knowledge of how the neurons’ responses 
depend on the stimulus. However, to keep the subject motivated  
during a behavioral experiment, zero-signal trials are always inter-
leaved with signal trials, and those responses can be used to compute 
rk(s1) – rk(s2) (Supplementary Information).

We examined the relationship between the two sides of equation (6)  
(Fig. 6a). Although the running average of the simulated data for the 
case of constant weights showed a characteristic deviation from a 
straight line through the point (0;0.5), the running average for the sim-
ulated data in the optimal weights scenario lay close to a straight line. 
The scatter of the data points around the average was purely a result 
of measurement errors for CPk, responses rk(s1) and rk(s2) and the 
response variability, Ckk, for each neuron: in the absence of measure-
ment errors this relationship is perfect for an optimal linear read-out. 
By computing the average deviation of the empirically measured points 
from the best-fit straight line through (0;0.5) and comparing it with 
the deviations expected from measurement noise alone (for example,  
by resampling), one can statistically test whether the empirical data 
based on one experiment is compatible with an optimal read-out. 
We plotted histograms of the mean square error with respect to the 
best-fitting straight line for repeated simulated experiments (Fig. 6b).  

(5)(5)

(6)(6)

The small overlap between the histograms revealed the power of this 
test even for the limited amount of data used in our simulations (area 
under the ROC curve = 95%; for results based on more data from 
an electrode array, see Supplementary Fig. 10). What is particularly 
appealing about this relationship is that it involves only quantities 
that can easily be measured by traditional techniques (for example, 
single electrode recordings) and can therefore be applied to already 
existing data.

DISCUSSION
The discovery that the response of individual sensory neurons 
is correlated with an animal’s behavior even when there is no  
signal in the stimulus5 has been replicated for different decision 
procedures and in different sensory cortices2–13 (for reviews, see  
refs. 1,16,17,20). In addition, appreciation of the crucial role of noise 
 correlations for our understanding of sensory coding has grown29,30. 
Our results link these two lines of research by an analytical frame-
work and show mathematically how choice probabilities, noise cor-
relations and read-out weights are related. There are clear benefits of 
an analytical framework over numerical simulations: it allows us to 
fit parameters; to investigate much larger and more realistic popula-
tions, cutting computation time by several orders of magnitude; to 
extrapolate to arbitrarily large populations; and to devise rigorous 
tests for which types of models may or may not be compatible with  
the data.

As an application of our solution, and contrary to earlier conclu-
sions15, we found how one can reconstruct the decoding strategy of the 
brain for a classic perceptual decision task, under realistic conditions 
and with a reasonable amount of data using existing recording tech-
niques. Although noise correlations were originally primarily seen as 
a complicating factor in inferring read-out weights from choice proba-
bilities, our findings reveal that it is only because of their presence and 
their observed structure that we can use choice probabilities to infer 
anything at all about the read-out in large neuronal populations.

In addition, we used our framework to derive a test for whether 
the read-out of sensory neurons is optimal for a particular task with 
respect to tuning curves, response variability and noise correla-
tions without requiring knowledge of noise correlations that have 
been difficult to measure. Applying this test to already existing data 
sets on a neuron-by-neuron basis should reveal whether decision  
neurons ‘know’ about tuning curves, response variability and noise 
correlations of their input neurons and account for them when pool-
ing sensory information. This framework allows one, for the first time 
(to the best of our knowledge), to test the hypothesis of an optimal 
sensory read-out in common decision tasks.

At this point, there is little data available that combines mea-
surement of interneuronal correlations with choice probabilities in 
a decision-making task15,26,31. However, with the increased use of 
population recording techniques32–34, we expect more such data to 
become available very soon and our framework should prove readily 
applicable to infer decoding weights and shed light on the decoding 
strategies of the brain in various contexts.

Our analytical framework follows most previous studies in assum-
ing a linear read-out14,16,20,27. In addition, we assume that the noise 
is additive and Gaussian and that the evidence is integrated for the 
entire stimulus presentation. In numerical simulations, we confirmed 
that our analytical results are excellent approximations if the spike 
counts are Poisson distributed (Supplementary Fig. 2). If the evi-
dence integration was not perfect, but mediated by an integration-
to-bound scheme17 or attractor network21, or degraded by pooling 
noise14, the deviations from our analytical solution could be captured 
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Figure 6 Optimality test. (a) Optimality test from equation (6) applied 
to the simulation in Figure 4. Blue and red dots represent the simulated 
data (constant and optimal weights, respectively, 1 dot per observed 
neuron). Thick curves represent running averages over 16 adjacent values. 
(b) Deviations from the proportionality relationship for the two cases as 
quantified by the mean square error.
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by a single factor uniformly scaling down all choice probabilities  
(Supplementary  Figs.  3  and  4). Any remaining deviations were  
substantially smaller than the measurement error resulting from high-
quality recordings (500 trials).

A topic of recent debate has been the origin of choice probabili-
ties16,19. We emphasize that, although our model appears to be explic-
itly bottom-up or feedforward, it is in fact largely agnostic about the 
source of its main ingredient, noise correlations. Although some noise 
correlation structures have traditionally been explained in a bottom-
up way35, correlations that depend on whether neurons belong to the 
same or to different pools are likely a result of top-down influences 
such as fluctuations in attention-like processes26. These sources of 
correlations are all compatible with our model assumptions. What is 
not covered by our assumptions is nonlinear dynamic feedback of the 
decision variable onto the sensory neurons. In general, given that our 
framework is necessarily an abstraction of more complicated mecha-
nistic processes in the brain, our read-out weights are best interpreted 
as functional entities, representing the weights in an equivalent lin-
ear model that shows the observed responses and behavior (Online 
Methods and Supplementary Fig. 5).

Our results are not restricted to the coarse direction discrimina-
tion task, but equally apply to other domains (for example, disparity 
and vestibular direction3,4,9,19,22,23, and fine discrimination11). It is 
unclear how our results translate to the interpretation of detect prob-
abilities7, as the symmetry in the two-choice task21 was exploited in 
the derivation of our solution.

Given that, for most systems, it is only possible to observe a small 
subset of neurons, it is necessary to extrapolate the information for 
an observed subpopulation to the entire population. We showed how 
this problem can be solved by assuming correlations and read-out 
weights to depend on certain parameters, but not others; for example, 
preferred values for different stimulus parameters (such as, vestibular 
versus visual22), neuron type (such as, excitatory versus inhibitory), 
neuronal sensitivity27 or brain area. Given current data limitations, 
we demonstrate such an extrapolation along only one dimension: 
the preferred direction of a neuron. In general, a limited number of 
observations means that weight variations above a certain frequency 
cannot be resolved. This frequency depends on the properties of the 
covariance structure and the quantity (number of neurons) and qual-
ity (number of trials) of the measurements. The use of electrode arrays 
will substantially increase the number of neurons and neuron pairs 
available, and thus the quality of the reconstruction. Furthermore, 
by applying our methods to multi-unit activity15 or local field poten-
tials36, it may be possible to increase the number of trials by com-
bining recordings across days, entailing a marked improvement in 
reconstruction accuracy (Supplementary Figs. 9 and 10).

Neuronal properties are known to be very heterogenous and we found 
that accounting for this variability was important for understanding 
empirical choice probabilities. We show that ignoring the variability 
in the read-out beyond what can be inferred from experimental data 
systematically overestimates the magnitude of the choice probabilities  
(Fig. 4e and Supplementary Note). In particular, read-out schemes 
that exploit neuronal heterogeneity to improve performance (as 
opposed to averaging) will have substantial power at higher frequen-
cies, and thus lead to lower choice probabilities. The overall magnitude 
of choice probabilities may therefore provide valuable information as 
to the kind of read-out that the brain has implemented for any one 
task. Our work provides an example of the importance of accounting 
for neuronal heterogeneity in theoretical models. Simply averaging 
over variability in the data will lead to models that are not self-con-
sistent. The inconsistency increases with the number of neurons, 

the variability in their tuning curve properties and in their response 
variabilities. The latter quantities are easily accessible empirically 
and, although already available in existing studies, are not routinely 
published on a cell-by-cell level. Our study adds to a growing body of 
literature that emphasizes the importance of reporting and modeling 
heterogeneity for understanding low-level function37, sensory38,39 
and motor40 circuits.

The right-hand side of equation (6) is sometimes called neuronal 
sensitivity and a positive correlation between choice probabilities and 
neuronal sensitivity has been observed in several studies5,8,11,13,22.  
It was alternatively attributed to increased correlations between the 
most sensitive neurons14 or to a preferential read-out of the most 
informative neurons on the basis of intuition and numerical simu-
lations12,41. We analytically derived the relationship between choice 
probabilities and neuronal sensitivity for the case of an optimal read-
out code. Comparing predictions for a model with constant weights and 
those for a model with optimal weights, we found that the correlation 
between neuronal sensitivity and choice probability was positive in 
both cases. Notably, a positive correlation therefore cannot be taken as 
evidence that more sensitive neurons are weighted preferentially as has 
previously been assumed41. However, it is likely that an increased corre-
lation between sensitivity and choice probabilities, given unchanged 
noise correlations (for example, over time12), is indicative of an 
improved read-out on the basis of sensitivities and correlations.

Equation (6) specifically predicts that the choice probabilities for an 
optimal read-out will gradually approach 0.5 as r(s1) – r(s2) becomes 
zero, which happens at the decision boundary. This appears to be in 
contradiction with some empirical data15 that shows a discontinuity at 
the decision bound with choice probabilities being significantly differ-
ent from 0.5 even very close to the decision boundary on either side. 
A fine-discrimination study11, on the other hand, found that choice 
probabilities did become 0.5 at the decision boundary, compatible 
with an optimal read-out in their task. Our prediction suggests that 
data collected for neurons with preferred direction halfway between 
the two choices is particularly informative in distinguishing between 
optimal and non-optimal read-out weights. By providing the exact 
relationship expected from an optimal read-out code, we provide the 
basis for a rigorous statistical test of whether decision neurons take 
into account response amplitude, response variability and correlations 
when reading out sensory neurons.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METhODS
Notation and derivation. We assumed that the decision is based on a linear 
combination of the responses r = ( ,.., )1r rn  of a population of n sensory neurons 

D r
k

n

k k=
=1
∑ ≡ Τb  r

where  = ( ,.. )1b b., n  are the weights with which neurons 1…n contribute to the 
decision. We assumed that the decision is unbiased for a stimulus that does not 
contain any evidence, or equal amounts of evidence for both choices, implying 
〈 〉D = 0. Our convention was that if D < 0, choice 1 is elicited, if D > 0, choice 2 
is initiated.

We further assumed that the neuronal responses can be modeled as a multivari-
ate normal distribution whose means are given by the neuron’s tuning functions 
〈 〉r f sk k= ( ). We assumed that the neuronal responses can be correlated and denoted 
the noise covariance matrix with C. Ckk is the response variance of neuron k and Cjk 
is the covariance between the responses of neuron j and neuron k.

Based on these assumptions, we derived the choice-conditioned stimulus  
distribution P r Dk( | < 0) for choice 1, and P r Dk( | > 0) for choice 2. Given that 

P r D P D P r D P D r P rk k k k( | < 0) ( < 0) = ( , < 0) = ( < 0 | ) ( )

and P D P D( < 0) = ( > 0) =1/2 (assuming unbiased decision-making), it  
follows that 

P r D P r P D rk k k( | < 0) = 2 ( ) ( < 0 | )

and similarly for P r Dk( | > 0). Given that we assumed the rk to be normally dis-
tributed, D is also normally distributed, as is D rk| . Applying the formula for the 
mean and variance of conditional Gaussians, we found 
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In the above, f[ : , ( )]x x x〈 〉 var  is the probability density function of the normal 
distribution and d r r f sk k k= ( )−  is the deviation of the response of neuron k from 
its mean across all trials and choices. Denoting with Φ the cumulative normal 
distribution function, we obtained 
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are as described in the main text. Equation (11) represents a skew-normal  
distribution (generally defined as P x x x( ) = 2 ( ) ( )f aΦ , where α is a scalar shape 
parameter; Supplementary Fig. 1a).

Having derived the general choice-triggered response distribution  
(equation (11)), we computed the choice probability according to5 

C d dP r P r D r P r Dk k k
rk

k k= ( | > 0) ( | < 0)
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d

In the following we sketch the solution restricting ourselves to the major steps 
(for details, see Supplementary Note). Defining 
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C C
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it follows from equations (11) and (12) that
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where zero mean and unit variance have been omitted from φ and Φ for brevity. 
Partially integrating both terms, we obtained 
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We performed the integral on the right, F x x x( ) = ( ) ( )2a f a
−∞
∞

∫ d Φ , by  
differentiation and integrated to find 

d
d

d

d

F xx x x

F xx x x x

( ) = ( ) ( )

= 1 ( ) 2 ( ) ( ) (

2 2a
a

a f a

a
a

a
f a f

−

− −

−∞
∞

−∞
∞

∫

∫

Φ

Φ ))

= 1 ( ) 1 1

(1 ) 22 2
− −

+ +a
a

p a a a
F

The homogenous part of this differential equation implies F( ) 1/a a∝ , leading 
to the ansatz F g( ) = ( )/a a a . Substituting this into equation (14) and integrat-
ing yielded 

g c( ) = 1

22
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p
a

a
−

+









 +arctan

where c is an integration constant. Substituting g(α) back into F, and F into  
eq. (13), and choosing c appropriately, we arrived at 

CPk =
1
2

2

22
+

+p
a

a
arctan

which, after substituting in α, yields our central result in equation (1).

Choice  probability  convention. In our convention, choice probabilities are 
always reported with respect to choice 1. This means that the choice probabilities 
can range from 0 to 1, with values smaller than 0.5 indicating that the neural noise 
for such a neuron is anticorrelated with choice 1. Given that a choice probability 
of x with respect to choice 1 is equivalent to a choice probability of 1 – x with 
respect to choice 2, experimental papers usually convert all choice probabilities 
to values between 0.5 and 1.

details  for  reconstruction  of  weights. If we write the read-out weight  
function β(φ) as linear combination of the eigenfunctions, v(i)(φ), of the  
covariance function, c(φ1,φ2), 

b f n f( ) = ( )( ) ( )
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i iv∑

we find 
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Multiplying this equation by v(k)(φ), rearranging terms, and integrating over 
φ on both sides yields 
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Computing the left-hand side of this equation using the measured choice  
probabilities and response variabilities, Cjj, yields 

p
l

f f n

n lk j

N

j jj
k

j

k

i

i
i

N
P C v

2
1 [ ( ) 0.5] ( )

=1

( )
( )

( )2∑
∑

− ≈C

The right hand side of equation (17) is the desired coefficient v(k), normal-
ized by  Τ ∑C = ( )2

i
i

in l . However, as the overall scaling of β, and hence of the 
coefficients v(k), does not affect behavior or choice probabilities, we can define 
bTCb ≡ 1s without loss of generality to obtain v(k).

The number of choice probability measurements and their accuracy (number 
of trials) limits the accuracy with which the left hand side of equation (18) can 
be determined from experiments. At the same time, the quality of the covariance 
measurements limits the accuracy with which eigenfunctions and eigenvalues 
can be computed. Together, this implies that only the coefficients belonging to 
the eigenfunctions with the largest eigenvalues can be estimated reliably from 
data. For our simulations, we restricted the reconstruction to the seven eigen-
functions with the largest eigenvalues (Supplementary Fig. 8). In our case, the 
rotational symmetry of the problem implies that, within each pool, the weight 
profile should be symmetric around the decision axis (here π/2 and 3π/2) and 
antisymmetric around the pool boundary at π, which is why, for simplicity, we 
only consider the two of those seven eigenfunctions that obeyed the rotational 
symmetries of the task (Supplementary Fig. 8c,d). In principle, the read-out 
profile used by the brain may not conform to these symmetry requirements 
and may be biased in some way (for example, to cardinal axes, or as a result 
of experience from prior tasks). Thus, it would be interesting to compute the 
coefficients v(i) for the other eigenfunctions that do not obey these symmetry 
requirements and (by boot-strapping the data to get confidence intervals) to test 
whether they are significantly different from zero.

(18)(18)

Simulation details. Our ‘ground truth’ is a population consisting of 2,048 neurons  
with diverse tuning curve amplitudes and tuning widths, response variability 
and correlation coefficients. The tuning curve of each neuron is given by a  
von-Mises function whose width parameter κ is randomly drawn from a dis-
tribution covering values between 0.3 and 5, with a peak at 1.5. Tuning curve 
amplitudes and baselines are drawn from a Poisson distribution with a mean of 
10 and their preferred directions evenly cover the 0…2π range (Supplementary 
Fig. 11a–c). Furthermore, we assumed the neurons’ response variability to be 
proportional to their mean response. To account for the underlying heterogeneity  
in correlation coefficients, we sampled the correlation matrix from a Wishart 
distribution around a mean based on linear fits (separate in each quadrant) to 
empirical data for this task26 (Fig. 3a,b). The individual correlation coefficients 
had a standard deviation of 0.025 (similar to empirical data39 of 0.03; A. Ecker, 
personal communication). Note that the observed variability is much higher as a 
result of measurement noise from the limited numbers of trials (Supplementary 
Fig. 8b). We recorded responses from 128 pairs of neurons in 200 simulated 
trials each and, from these responses, estimated the correlation coefficients and 
choice probabilities. The estimated correlation coefficients were used to fit a 
piece-wise linear correlation function for which we computed eigenvalues and 
eigenfunctions necessary for the read-out weight reconstruction (Supplementary 
Fig. 8a,b). To compute the neuronal sensitivity in Figure 6b, we assumed 200 
signal trials for each of the two stimuli that were to be distinguished. The sta-
tistical power of the tests distinguishing between uniform and optimal read-out 
based on the relative weight on the first two symmetric eigenfunctions (Fig. 5c) 
and deviation from the sensitivity–choice probability proportionality (Fig. 6c), 
respectively, was quantified by the areas under the ROC curve.

Code. Matlab code implementing the analytical computation of choice probabilities 
from read-out weights and noise correlations, and the reconstruction of the decod-
ing strategy from choice probabilities and noise correlations, is available at http://
bethgelab.org/code/haefner2013/. This material has not been peer reviewed.
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