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SUMMARY

The ability to group physical stimuli into behaviorally
relevant categories is fundamental to perception and
cognition. Despite a large body of work on stimulus
categorization at the behavioral and cognitive levels,
little is known about the underlying mechanisms at
the neuronal level. Here, combining mouse auditory
psychophysical behavior and in vivo two-photon im-
aging from the auditory cortex, we investigate how
sensory-to-category transformation is implemented
by cortical neurons during a stimulus categorization
task. Distinct from responses during passive
listening, many neurons exhibited emergent selec-
tivity to stimuli near the category boundary during
task performance, reshaping local tuning maps;
other neurons became more selective to category
membership of stimuli. At the population level, local
cortical ensembles robustly encode category infor-
mation and predict trial-by-trial decisions during
task performance. Our data uncover a task-depen-
dent dynamic reorganization of cortical response
patterns serving as a neural mechanism for sen-
sory-to-category transformation during perceptual
decision-making.

INTRODUCTION

The ability to classify sensory information into discrete cate-

gories is essential for survival and fundamental to cognition

(Ashby and Maddox, 2005; Freedman and Assad, 2006;

Freedman et al., 2001; Harnad, 1990; Liberman et al., 1957;

Seger and Miller, 2010). During categorization, the brain trans-

forms continuous sensory information into discrete classes, a

computational process that represents the critical intermediate

steps between sensory input and motor output during deci-

sion-making (Freedman and Assad, 2011; Grinband et al.,

2006). Neural activity correlated with stimulus categories has
been observed in various brain regions of different species

(Chang et al., 2010; Freedman and Assad, 2006; Freedman

et al., 2001; Prather et al., 2009; Tsunada et al., 2011). However,

the patterns of these activities are often directly mapped to the

category memberships, reflecting the readout of categorization

processes, whereas the neural circuit mechanism for the catego-

rization computations is still unclear (Russ et al., 2007).

The sensory cortices have been shown to carry out behavior-

ally relevant computations in addition to sensory feature anal-

ysis. For instance, the sensory cortices receive rich top-down

feedback inputs (Zhang et al., 2014; Zingg et al., 2014), exhibit

choice-related activity (Britten et al., 1996; Newsome et al.,

1989; Nienborg and Cumming, 2009; Yang et al., 2016), and

are strongly modulated by motor actions (Nelson et al., 2013;

Schneider et al., 2014; Xu et al., 2012). The primary auditory cor-

tex has been shown to be modulated by behavioral contexts

(Francis et al., 2018; Kato et al., 2015; Kuchibhotla et al., 2017)

and involved in more complex computations beyond basic

feature extraction (Jaramillo and Zador, 2011; King and Nelken,

2009; Nelken, 2004; Schreiner and Winer, 2007; Tsunada et al.,

2011, 2016; Znamenskiy and Zador, 2013). Here, we sought to

understandwhether and how sensory information is transformed

into behaviorally relevant categories in the primary sensory cor-

tex at the single-neuron and population levels. Using mice per-

forming an auditory categorization task and employing in vivo

two-photon functional imaging from layer 2/3 (L2/3) of the audi-

tory cortex, we found that neuronal ensembles are dynamically

reorganized during a categorization task, reflecting implementa-

tion of a cortical computation underlying sensory-to-category

transformation during perceptual decision-making.

RESULTS

Categorical Auditory Decisions in Head-Fixed Mice
To probe how the brain maps continuous sensory information to

behaviorally relevant categories, we developed an auditory psy-

chophysics task in head-fixed mice based on a two-alternative

forced choice (2AFC) paradigm (Guo et al., 2014; Znamenskiy

and Zador, 2013). Head fixation allows reliable and precise stim-

ulus delivery as well as cellular-resolution two-photon imaging

during task performance. Mice were first trained to discriminate
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Figure 1. The Auditory Categorization Task in Mice Involves the

Auditory Cortex

(A) Schematic showing behavioral task configuration. Top: behavioral

configuration. Bottom: trial time structure (STAR Methods).

(B) Example psychometric function of one behavior session (STAR Methods).

The dashed black line marks the defined category boundary. Error bars indi-

cate 95% confidence interval.

(C) Typical learning phase of one mouse.

(D) Distribution of the psychometric boundary (n = 30 sessions).

(E) Distribution of the slope values at the boundary (n = 30 sessions).

(F) Influence of performance after muscimol silencing of bilateral auditory

cortex. Top: schematic showing the muscimol injection site. Bottom: task

performance. Mice’s performance was significantly impaired after muscimol
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two exemplar tones (low and high; e.g., 8 and 32 kHz) by direc-

tional licking to left and right lick ports (Figure 1A). After reaching

a stable performance level (>85% correct; Figure 1C), the inter-

mediate frequencies were introduced (Figure 1B). Psychometric

functions were constructed based on the probability of choosing

right lick port as a function of tone frequencies (logarithmically

scaled in octave), which represent mice’s decisions on catego-

rizing tones as high- or low-frequency categories. The hallmark

of categorization is a sharp change in choice proportions upon

continuously varying stimulus parameters (Freedman and As-

sad, 2006; Freedman et al., 2001; Liberman et al., 1957; Wytten-

bach et al., 1996), which indicates the ‘‘boundary’’ between cat-

egories. Here, we first examined whether mice show categorical

responses to tone frequencies by presenting intermediate fre-

quencies in ‘‘probe’’ trials (STAR Methods). We found that

mice exhibited a sharp change in choice proportions near the

midpoint of the tested frequency range (Figures 1B, 1D, and

1E; see also Figure S1A), indicating that mice are capable of

making categorical judgments on basic acoustic stimuli.

The involvement of cortical areas in a given perceptual task

often depends on task conditions and training stages (Gimenez

et al., 2015; Hong et al., 2018; Jaramillo and Zador, 2011; Ku-

chibhotla et al., 2017; Otchy et al., 2015; Talwar et al., 2001).

Here, we first examined whether the primary auditory cortex

was involved in our behavioral task. We performed reversible

inactivation by bilateral injection of muscimol (a GABAA receptor

agonist) in the primary auditory cortex and found that mice’s

discrimination for the exemplar tones was significantly impaired

(Figure 1F). This result is consistent with previous studies that

also used muscimol silencing of bilateral auditory cortex to

assess the requirement of auditory cortex in task performance

(Jaramillo and Zador, 2011; Kuchibhotla et al., 2017). In addition,

we expressed hM4D, a designer receptor exclusively activated

by designer drug (DREADD) (Armbruster et al., 2007), in bilateral

primary auditory cortex of Emx1-IRES-Cre mice using adeno-

associated virus (AAV). Intraperitoneal injection of clozapine-N-

oxide (CNO) significantly impaired task performance in hM4D

expressing mice, but not in control mice (Figure 1G). These re-

sults suggest that the mouse primary auditory cortex may

contribute to our frequency categorization task.

Two-Photon Calcium Imaging in Awake Mice Reveals
Spatial Organization of Local Cortical Populations
To examine how neuronal activity in auditory cortex may

contribute to stimulus categorization, we performed in vivo

two-photon calcium imaging from L2/3 neuronal populations.

We expressed a genetically encoded calcium indicator,
injection (0.53 ± 0.077) compared to control mice (0.96 ± 0.025) and mice in-

jected with cortex buffer (0.97 ± 0.014). Two-sample t test; n = 4 animals for

each condition. Error bars indicate SEM. N.S., p > 0.05; **, p < 0.01.

(G) Similar to (F), but with chemogenetic inactivation of the auditory cortex.

Performance was significantly impaired in mice expressing hM4D in bilateral

auditory cortex and CNO injection (0.67 ± 0.034) compared with saline injec-

tion (0.89 ± 0.035), but not for CNO injection only in control mice (0.90 ± 0.033).

Two-sample t test; n = 12 sessions for each condition. Error bars indicate SEM.

N.S., p > 0.05; ***, p < 0.001.

See also Figure S1.
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GCaMP6s (Chen et al., 2013), in mouse auditory cortex using

AAV vector and implanted a chronic imaging window (Figures

2A and 2B; STAR Methods). Reliable single-neuron responses

with a high signal-to-noise ratio were evoked by pure tone stimuli

during task performance and passive tone stimulation (Figures

2C, 2G, and 2H; STAR Methods). We first examined the fre-

quency selectivity of individual neurons in response to pure

tones of various frequencies randomly delivered under a passive

awake condition (Figures 2C and S2C). In some cases, nearby

neurons show distinct frequency selectivity (Figures 2D), consis-

tent with previous imaging results in anesthetized mice (Bandyo-

padhyay et al., 2010; Rothschild et al., 2010). However, for local

populations, we also found that the best frequency (BF) of indi-

vidual neurons within the same imaging field (�250 3 250 mm)

are not randomly distributed, with a higher proportion of neurons

showing similar frequency preference (Figures 2D and 2E). We

defined the frequency preferred by majority of neurons in the

local imaging field as the dominant frequency and found that dur-

ing both task and passive stimulation, the proportion of neurons

preferring the dominant frequency was significantly higher than

random distribution (Figures 2E and 2F). These results indicate

that the frequency representations in local population of the

L2/3 of auditory cortex of awake mice are spatially organized,

with clustering ensemble structures, consistent with a previous

study in unanesthetized mice (Issa et al., 2014).

Changes in Frequency Selectivity of Auditory Cortex
Neurons during Task Performance
Previous studies comparing sound evoked responses in the

auditory cortex between passive stimulation and behavior condi-

tions reported general enhancement or suppression of neuronal

responses by behavior (David et al., 2012; Francis et al., 2018;

Fritz et al., 2003; Kato et al., 2015; Kuchibhotla et al., 2017; Otazu

et al., 2009). It is yet unclear whether behavioral tasks may spe-

cifically modulate stimulus selectivity of auditory cortex neurons

in favor of behavioral needs. Our two-choice auditory categori-

zation task provides a unique opportunity to examine cate-

gory-related modulation. Figure 2I shows Z-scored mean Ca2+
Figure 2. Two-Photon Imaging of Auditory Cortex L2/3 Neurons

(A) Schematic showing the injection site of the virus (top) and GCaMP6s express

(B) Schematic showing in vivo two-photon imaging of auditory cortex during audi

plastic tube. Top right: an example image of L2/3 neurons in auditory cortex.

(C) Calcium signals of 10 example neurons. Vertical gray lines represent stimulu

Neurons were sorted by their best frequency (BF; vertical axis), which is indicate

(D) BFs of individual neurons from an example imaging field. The dashed orange c

indicate neurons shown in (C).

(E) Histogram of the BF values in (D). Dashed gray line indicates the distribution

(F) Bar plot of the difference between the dominant frequency fraction and the even

Student’s t test, n = 21, ***, p < 0.001). Error bars indicate SEM.

(G and H) Response profile of example neurons for task (G) and passive condition

onset time (gray solid lines, gray dashed lines, sound offset time). Bottom: color

(I) Temporal dynamics of all imaged neurons during task (left) and passive conditio

by peak time under the task condition. Green shading indicates sound period.

(J) Single-neuron response value to BFpass (STAR Method) between task and pa

between task and passive conditions (two-sample t test).

(K) Frequency difference between BFpass and BFtask (in octaves); only neurons sh

(L) Histogram of BFtask for the population of neurons in (K). Top: BFtask for neurons

neurons having the same BF in two conditions.

See also Figure S2.
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signals of all imaged neurons sorted according to the peak

time in behavioral trials. A significant proportion of neurons

show short-latency tone evoked responses aligned to the stim-

ulus time (Figures 2G and 2H). We first compared responses to

the BF determined using passive stimulation (BFpass) between

task performance and passive stimulation. We observed signifi-

cant difference in responses to the BFpass in 32% of neurons,

among which majority of neurons (29%) show suppressed

response during the taskwhile only a small proportion of neurons

(3%) show enhanced responses (Figure 2J).

We further askedwhether the auditory cortical neurons show a

change in frequency selectivity during task compared to passive

stimulation. We found that among neurons showing suppressed

responses to the BFpass, a majority (90.9%) showed different fre-

quency preference during the task (Figure 2K). Remarkably, for

these neurons, the frequency preferences during the task were

not uniformly distributed across the tested frequencies, with

more neurons preferring the frequencies near the category

boundary (Figure 2L). A smaller fraction (9.1%) of neurons

showing suppressed responses to BFpass showed similar fre-

quency preference during task and passive stimulation. How-

ever, these neurons exhibited near-uniform distribution of fre-

quency preference during the task (Figure 2L). These results

indicate that rather than a broad-range and nonselective sup-

pression of responses, task-dependent modulation changed

the stimulus selectivity of auditory cortex neurons.

Categorization Task Reshapes Cortical Neuronal
Response Profiles
To further test whether the behavioral modulation of neuronal re-

sponses may reshape sensory representations in a task-relevant

manner, we compared response profiles of individual neurons in

the auditory cortex between task performance and passive stim-

ulation conditions.We found that a substantial proportion (23.2%)

of the imaged neurons exhibited categorization-related modula-

tions. First, some neurons became strongly selective to category

membership. As shown in Figures 3A and 3B, the neuron

exhibited strong responses to tone stimuli belonging to the
ion in auditory cortex (bottom).

tory-guided 2AFC task. The mouse was head-fixed with body constrained in a

s onset time. Trials were sorted by stimulus frequency (horizontal direction).

d by the color map in (D).

ircles indicate neurons with no significant response. Green circles and numbers

of BF values of a pseudo-randomly (evenly) distributed representation.

ly distributed fraction (purple line in E; task, 0.24 ± 0.029; passive, 0.19 ± 0.017;

s (H). Top: color-coded calcium signals (% DF/F). Trials were aligned to sound

-encoded mean calcium trace for each frequency.

ns (right). Each rowwas the across-trial averaged activity of one neuron, sorted

ssive conditions. Orange dots depict neurons showing significant difference

owing suppressed BFpass responses in (J) were used.

having different BFs between task and passive conditions. Bottom: BFtask for
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Figure 3. Single-Neuron Activity Is Modulated by a Categorization Task

(A) Color raster plot of calcium signals for one example category-selective neuron in the task session (same arrangement as in Figure 2H).

(B) Averaged calcium traces for the neuron in (A). Color encodes tone frequency. Green shading indicates the sound period.

(C) Responses amplitude for the neuron in (A) as a function of tone frequencies for both task (orange) and passive (black) sessions. Error bars indicate SEM.

(D) Averaged response of all category-selective neurons as a function of frequency ordered by preferred versus non-preferred categories. Single-neuron activity

was normalized before average. Error bars indicate SEM.

(E) Color plot as in (A) showing calcium signals of an example neuron selective to near-boundary stimuli.

(F) Averaged calcium traces for (E).

(G) Responses amplitude for neuron in (E).

(H) Averaged responses (Z scored) of all neurons showing preference to near-boundary frequency, plotted as a function of distance to behavior boundary. Circles

and error bars indicate the mean and SEM of response values within each bin.

See also Figure S3.
low-frequency category but showed almost no responses to tone

stimuli belonging to the high-frequency category. Such category

preference, however, was not present during passive stimulation

with the same set of tone stimuli (Figure 3C). We identified these

neurons by comparing sigmoidal fits for responses from task and

passive conditions (FiguresS3A andS3B; 9.8%of all imagedneu-

rons; STAR Methods). Averaging the responses during task per-

formance across these neurons as a function of tone frequencies

ordered by an individual neuron’s preferred category gave rise to

a sigmoidal population response curve, exhibiting strong selec-

tivity to category membership resembling behavioral categoriza-

tion function (Figures 3D). However, during passive stimulation,

these neurons show diverse frequency selectivity, and averaging

across neurons gave rise to an almost flat population response

curve lacking category selectivity (Figures 3D). Therefore, the

strong selectivity to stimulus category membership in these neu-

rons arose from task-related modulation.
Second, we found that many neurons showed enhanced re-

sponses to the tone frequencies near category boundaries dur-

ing task performance compared to passive stimulation (Fig-

ure 2L). As shown in Figures 3E–3G, the neuron exhibited

stronger responses to stimuli near the category boundary during

task performance than during passive stimulation. The enhanced

neuronal responses to the near-boundary stimuli may either

reflect a task-demanded enhancement in differentiating stimuli

near category boundaries (Bonnasse-Gahot and Nadal, 2008;

Raizada and Poldrack, 2007) or coincide with an enhanced sen-

sory response by gain modulation. The former would suggest

that the response enhancement for near-boundary stimuli was

independent of the sensory selectivity during passive stimula-

tion, while the latter would suggest an enhanced response

without changes in stimulus selectivity. To distinguish these pos-

sibilities, we identified neurons with enhanced responses to

near-boundary stimuli by first using aGaussian fit to an individual
Neuron 103, 909–921, September 4, 2019 913
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Figure 4. Dynamic Reorganization of Fre-

quency Representation in Local Ensembles

during Categorization Task

(A and B) Color-coded BF distribution for passive

(A) and task (B) condition of an example imaging

field.

(C) Histogram of the BF distributions in (A) and (B).

The light green shade indicates the frequency

range considered as the near-boundary range.

(D) Comparison of the distance between preferred

frequency and behavior boundary between pas-

sive and task conditions (in octaves; passive,

0.74 ± 0.071; task, 0.44 ± 0.084; paired t test). Red

arrow indicates the example field in (A)–(C).

(E) The fraction of neurons with near-boundary

BFs compared between passive and task condi-

tions. Each gray line represents one imaging field.

Black circles and error bars represent the mean

and SEM (passive, 0.28 ± 0.036; task, 0.44 ±

0.046; paired t test, n = 21, p = 0.008).

(F) Comparison of single-neuron BF to behavior

boundary distance between task (brown) and

passive (black) conditions. The inserted bar plot is

the averaged distance, and error bars indicate

95% confidence interval. p value was calculated

using the Wilcoxon rank-sum test.

See also Figures S4.
neuron’s tuning curve during the task and then selected neurons

with preferred frequency near the category boundary (within 0.2

octaves from the inflection point of the psychometric function;

see Figures S3C and S3D; STAR Methods). When averaging

the responses across the population (13.4% of all imaged neu-

rons), we found a consistent enhancement for responses near

the category boundary, which was not present for responses

during passive stimulation (Figure 3H). Thus, the task-dependent

selective enhancement of neuronal responses near the category

boundary likely reflects an increased discrimination demand for

near-boundary stimuli during stimulus categorization.

Enhanced Ensemble Representation of Near-Boundary
Stimuli via Task-Dependent Neuronal Recruitment
The increased responses to the near-boundary stimuli may

reflect an increased demand for neuronal resources to enhance

discrimination near the decision boundary during categorization

(Bonnasse-Gahot and Nadal, 2008; Freedman and Assad, 2006;

Freedman et al., 2001; Guenther et al., 2004; Liberman et al.,

1957; Raizada and Poldrack, 2007). We thus asked whether

the categorization task was accompanied by a reorganization

of local ensemble structures to meet behavioral demands. We

found that during task performance, the same population of neu-
914 Neuron 103, 909–921, September 4, 2019
rons exhibited a different population pref-

erence than during passive stimulation,

such that the local dominant frequency

was closer to the category boundary (Fig-

ures 4B and 4C). Overall, for each imag-

ing field, the distance from the population

dominant frequency during the task to the

behavioral category boundary is signifi-
cantly smaller than that for the dominant frequency during pas-

sive stimulation (Figure 4D). In each imaging field, a significantly

greater fraction of neurons show a preference for near-boundary

frequencies during the task than during passive stimulation (Fig-

ure 4E). For individual neurons across the entire dataset, the dis-

tance from the BF to the behavioral boundary was also signifi-

cantly smaller during task performance than during passive

stimulation (Figures 4F). Thus, during the categorization task,

the stimuli near the category boundary became more highly rep-

resented, reflecting task-related modulation to meet behavioral

demands.

Task-Related Modulation of Stimulus Selectivity
Followed Learned Category Boundary Changes
It has been shown that mice can learn to categorize tones based

on different category boundaries (Jaramillo and Zador, 2014).

Wewonder whether the category-relatedmodulation of neuronal

activity we observed in the auditory cortex would also change

when the animal learns to perform stimulus categorization based

on new category boundaries. We trained mice to first perform

stimulus categorization on tones in a lower frequency range

(4–16 kHz). After mice reached performance criterion, they

were then trained to categorize tones in a higher frequency range
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Figure 5. Task-Related Modulation of Stimulus Selectivity following Changes in Category Boundary

(A) Summarized psychometric function for two frequency-categorization tasks using different categorization boundaries.

(B) Neuron’s preferred frequency distribution within the overlapped frequency range of the two task contexts.

(C) Summary of changes in population preferred frequencies across sessions (n = 12) when category-boundary was changed from the low to the high value.

Population preferred frequency during the task, but not passive, session was significantly shifted to the same direction as the training boundary change. Student’s

t test, n = 12. **, p < 0.01; ***, p < 0.001.

(D) Summary of the neural fraction difference between task and passive conditions compared between two frequency ranges. Student’s t test, n = 12. **, p < 0.01.

All error bars indicate SEM. See also Figures S5.
(7–28 kHz). Mice were capable of performing stimulus categori-

zation under both task contexts, changing category boundaries

at a lower frequency in the first task context to a higher frequency

in the second task context (Figures 5A and 5C). This result also

excludes the possibility that the steep slope at the category

boundary we observed may be due to a coincidence that mice

could have higher sensory discrimination near the category

boundary without task training.

In vivo chronic two-photon imaging allowed us to track the

same population of neurons in the auditory cortex before and af-

ter mice learned to perform stimulus categorization under the

two task contexts (two frequency ranges). Similar to what we

found for the frequency range of 8–32 kHz, under both of the

new task contexts, the neuron population best frequencies

were closer to the category boundary under the task condition

than under the passive condition (Figure S5). For categorization

in the first task context (4–16 kHz), the population preference

during task performance was closer to the lower frequency cate-

gory boundary, while for categorization in the second task

context (7–28 kHz), the population preference was shifted to-

ward the higher frequency boundary (Figures 5B–5D). In

contrast, under passive stimulation, although the population

preferred frequencies showed some degree of variability be-

tween the two frequency ranges (Figure 5B), presumably due

to differential training histories, the population preference to

the category boundary and its changes following the task
context change was not present (Figures 5B and 5C). These re-

sults indicate that the category-related modulation of neuronal

activity co-varies with the learning-induced changes in the

behavioral category boundary under different task contexts.

Categorical Frequency Discrimination by
Simultaneously Imaged Neuronal Populations
While individual neurons in the auditory cortex exhibit category-

related modulation during the categorization task, we wonder

whether categorical information is present at the population

level of simultaneously imaged neurons. We used a linear clas-

sifier (Hung et al., 2005) to decode stimulus information from the

population activity by training the classifier to discriminate pairs

of tone frequencies (STARMethods). We then constructed pop-

ulation discrimination matrices to visualize the degree of

discrimination by simultaneously imaged neurons for pairs of

tone frequencies belonging to the same or different categories.

Interestingly, the discrimination matrix constructed from popu-

lation responses during task shows a distinctive pattern, with

higher discrimination accuracy for stimuli belonging to different

categories than for stimuli belonging to the same categories

(Figures 6A and 6C), indicating that the population coding for

the difference in tone stimuli also exhibits categorical structure.

In contrast, this categorical discrimination pattern was largely

diminished for responses from the same population of neurons

during passive stimulation (Figures 6B and 6D). Across the
Neuron 103, 909–921, September 4, 2019 915
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Figure 6. Population Discrimination of Tone Stimulus

(A and B) Population discrimination accuracy of paired-tone frequencies from

an example field for task (A) and passive (B) conditions.

(C and D) Average population discrimination accuracy for all sessions for task

(C) and passive (D) conditions (n = 21 sessions).

(E) Comparison of population discrimination accuracy for different types of

tone pairs (STAR Methods). Win, within category; Bet, between category.

Task: within category, 0.83 ± 0.023; between category, 0.88 ± 0.025. Passive:

within category, 0.79 ± 0.025; between category, 0.80 ± 0.034 (paired t test; n =

21 sessions, N.S., p > 0.05; *, p < 0.05). Error bars indicate SEM.
grouped data over all imaging fields, we compared the popula-

tion discrimination accuracies for between-category stimulus

pairs versus within-category stimulus pairs (Figure 6E; STAR

Methods). We found that during task performance, the popula-

tion discrimination accuracy for between-category tones is

significantly higher than that for within-category tones (Fig-

ure 6E). In contrast, the discrimination accuracy from popula-

tion activity during passive stimulation is not significantly

different for between- and within-category stimulus pairs (Fig-

ure 6E). Thus, cortical neuron populations exhibit categorical

stimulus discrimination during the categorization task, but not

during passive stimulation, suggesting a task-dependent mod-

ulation imposing a category structure to population sensory

representations.
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Population Representation of Categorical Perceptual
Decisions
Neural correlates of perceptual decisions based on activity of in-

dividual neurons have been widely studied in sensory regions by

constructing individual neurons’ neurometric functions to link

neuronal activity to perceptual judgments (Liu et al., 2013; News-

ome et al., 1989; Parker and Newsome, 1998). However, the link

between simultaneously recorded population activity patterns in

sensory cortex and the categorical perceptual judgments is yet

to be demonstrated. To examine this, we first analyzed the pop-

ulation dynamics as a trajectory in a state space of neuronal pop-

ulation activity (Briggman et al., 2005; Harvey et al., 2012). The

averaged trajectories across trials of a given stimulus (visualized

using factor analysis for dimensionality reduction) depict the

population representation for this stimulus evolving over the trial

time (Figure 7A). We constructed a population selectivity index

based on the Euclidean distance from the trajectories of individ-

ual trials to the mean trajectories of all trials of the opposite stim-

ulus category as a measure of population discrimination (Fig-

ure 7B; STAR Methods). The trajectories for the tone stimuli of

high- and low-frequency categories start to separate soon after

stimulus onset, indicating sensory-driven changes in population

dynamics. The population trajectories exhibit a fast separation

following stimulus onset and a lasting separation throughout

the trial time (Figures 7A and 7B), reflecting early sensory re-

sponses and ongoing feedback activity during the conscious

perceptual process (Dehaene and Naccache, 2001; Dehaene

and Changeux, 2011; Gaillard et al., 2009). This lasting separa-

tion was unlikely due to the delayed calcium signaling, since it

was not present for the passive stimulation condition (Figure 7A).

In addition, population decoding using an estimated spike rate

from calcium signals (STAR Methods), which reduced the decay

time of calcium fluorescence signals, also revealed a lasting

effect in decoding accuracy for activity during the task, but not

during passive stimulation (Figure S6).

To quantify the relation between population dynamics and cat-

egorical decisions, we examined the peak values of the selec-

tivity index for each stimulus as a function of tone frequency

and compared it with psychometric function (STAR Methods).

We found that the population neurometric function largely

captured the characteristics of the behavioral psychometric

function (Figures 7C and 7D). Across all the imaging sessions,

the category boundaries of the population neurometric functions

are strongly correlated with the behavioral category boundaries

(Figure 7E). In addition, we constructed a categorization index

(CI) based on the differences between averaged proportion of

choices on the two categories (STAR Methods). A CI value >0.5

would indicate significant categorization. We found that the CI

values based on neuronal population activity during task perfor-

mance are comparable to those computed from behavioral

choices (Figure 7F) and are on average >0.5 in both cases. Taken

together, these results support a population representation of

stimulus categorization in the auditory cortex that matches

behavioral performance.

In addition to using model-free population dynamics to

examine population representation of stimulus categorization,

we also used a population decoding approach (as shown in

Figure 6) to examine the stimulus categorization by cortical
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Figure 7. Population Dynamics for Stimulus

Categorization

(A) Mean trajectories of the 8-kHz (blue) or 32-kHz

(red) tone stimuli trials in state space. Inset:

Euclidean distance between the two trajectories

as a function of time, for task and passive condi-

tions. Dashed gray line indicates sound onset time.

(B) Mean traces of selectivity index for each fre-

quency as a function of time for one session.

Green stripe represents sound period. Shadings

indicate SEM.

(C) Neurometric and behavioral function for the

example session in (B).

(D) Averaged neurometric and psychometric

functions across all sessions (n = 21). Error bars

indicate SEM.

(E) Correlation of neurometric boundary and psy-

chometric boundary. Black line represents a linear

fit of all data. p value was calculated using stu-

dent’s t test.

(F) Comparison of neurometric and psychometric

CI (behavior, 0.67 ± 0.026; task, 0.68 ± 0.022;

paired t test, p = 0.61; STAR Methods).

See also Figure S6.
population activity. We found that the probability of rightward

choices upon different tone frequencies was strongly predicted

by the classifier based on the population activity in the same ses-

sions (Figure 8A). Furthermore, we examined whether population

activity could predict the trial-by-trial varying choices (STAR

Methods). We found that the predicted choices for themost diffi-

cult stimuli in each session were strongly correlated with the

behavioral choices across individual trials (Figure 8B), indicating

that the population activity can indeed predict trial-by-trial

behavioral choices. To confirm that temporally the Ca2+ signals

can indicate the contribution of population activity to perceptual

choices, we used deconvolution on the calcium signals to

recover spike rates and performed population decoding over

the time course of each trial. We found that significant decoding

occurred before the end of the 300-ms tone stimulus (Figure S6),

suggesting that the population activity indicated by Ca2+ signals

can indeed contribute to decisions.

As shown in Figure 7, we also constructed the neurometric

function using the trial-by-trial decoded choices from simulta-

neously imaged population neurons. We found that the
Neu
population neurometric function also

well captured the behavioral psychomet-

ric function (Figure 8C), with significant

session-by-session correlation of the

threshold (Figure 8D) and boundary (Fig-

ure 8E) between the neurometric function

and psychometric function. Furthermore,

for the experiments where we changed

the category boundary (Figure 5), we

also found that the neurometric bound-

aries based on population decoding in

different frequency ranges were strongly

correlated with the psychometric bound-

aries in the corresponding frequency
ranges (Figure 8F). Thus, the behavioral choices during stimulus

categorization can be accurately predicted based on simulta-

neously imaged population activity.

To confirm the robustness of the population decoding results,

instead of directly decoding trial-by-trial choices, we used the

linear classifier to find a hyperplane in the high-dimensional pop-

ulation activity space that best separates the left and right

choices (Figure S7; STAR Methods). The average distance

from the points in the activity space, which represent the popu-

lation responses to a particular stimulus, to the discriminant hy-

perplane represents the probability of the population activity to

report a stimulus as high- or low-frequency categories to an ideal

observer (Kiani et al., 2014). We define this distance as the pop-

ulation decision variable (PDV). We found that the neurometric

function constructed using PDVs also captured characteristics

of the psychometric function from the same imaging session

(Figure S7). Taken together, the activity of simultaneously

imaged neuronal populations in the auditory cortex robustly en-

codes sufficient information to predict the stimulus categoriza-

tion at the behavioral level.
ron 103, 909–921, September 4, 2019 917
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Figure 8. Population Decoding for Perceptual Decisions
(A) Scatterplot showing behavioral rightward choice against the rightward choices predicted by population decoding (STARMethods). Line represents a linear fit

of all data.

(B) Prediction of single-trial choice using population activity. The binary choices were moving averaged for visualization (span, 20 trials).

(C) Neurometric function based on trial-by-trial population decoding and psychometric function averaged across sessions (n = 21). Error bars indicate SEM.

(D) Correlation of threshold value for neurometric function and psychometric function. Student’s t test; n = 21 sessions.

(E) Correlation of the neurometric boundary and psychometric boundary. Student’s t test; n = 21.

(F) Correlation of the neurometric boundary and psychometric boundary for 4–16 kHz sessions (n = 12) and 7–28 kHz sessions (n = 12).

See also Figure S7.
DISCUSSION

Decision-making, even in its simpler form of perceptual deci-

sions, involves an aggregation of distinct subprocesses,

including sensory detection, categorization, motor planning,

and outcome evaluation. Among these, categorization is an

essential step for making perceptual judgments linking sensory

input and motor output. Despite a large body of work on catego-

rization in perceptual and cognitive processes (Ashby and Mad-

dox, 2005; Harnad, 1990; Zentall et al., 2008), few studies have
918 Neuron 103, 909–921, September 4, 2019
examined how neuronal circuits compute to transform high-

dimensional and continuous physical stimuli into discrete cate-

gories. In the current study, we used a two-choice auditory

psychophysics task to evaluate mice’s ability to classify equal-

spaced tone frequencies into high and low categories, and we

used in vivo two-photon imaging to simultaneously record large

populations of neurons in the auditory cortex. We found that in

addition to conventional general modulation of neuronal re-

sponses by choice, reward, or motor planning (Francis et al.,

2018; Kato et al., 2015; Kuchibhotla et al., 2017; Niell and



Stryker, 2010; Schneider et al., 2014; Yang et al., 2016), a stim-

ulus categorization task dynamically reshapes both single-

neuron response profiles and local cortical ensemble structures

in a stimulus-specific manner, transforming sensory coding into

category representations. First, we found some neurons show

stronger selectivity to category membership compared to pas-

sive stimulation, similar to those observed in higher-order

cortical areas (Freedman and Assad, 2006; Freedman et al.,

2001), which may reflect a readout of categorization computa-

tion (Figure 3D). Second, a greater proportion of neurons show

enhanced responses to stimuli near category boundaries during

task performance, which may reflect a demand for increased

discriminability for more ambiguous stimuli near boundaries dur-

ing categorization (Figure 3H). At the population level, local

cortical ensembles were dynamically reorganized to form

augmented representations for near-boundary stimuli (Figure 4),

which followed the flexible changes in behavioral level categori-

zation criteria (Figure 5). The category-related modulation was

also manifested in population discrimination of individual stimuli

(Figure 6). Finally, the population dynamics of simultaneously

imaged neurons (Figure 7) as well as the readout of population

coding by an ideal observer (Figure 8) accurately captured

behavioral categorical decisions, indicating that neuronal popu-

lations in the auditory cortex encode sufficient information for

stimulus categorization.

It has been controversial whether the cerebral cortex is caus-

ally involved in various perceptual behaviors (Gimenez et al.,

2015; Hong et al., 2018; Otchy et al., 2015; Talwar et al., 2001).

Due to the highly redundant brain circuits that are prone to plas-

ticity changes, the requirement for a particular cortical region is

likely to be strongly dependent on experimental conditions

such as the animal species, type of tasks, the stimuli being

used, training history, and methods of manipulation. Recent

studies on neuronal activity in the auditory cortex showed that

pharmacological or optogenetic inactivation impaired perfor-

mance on auditory tasks (Jaramillo and Zador, 2011; Kato

et al., 2015; Kuchibhotla et al., 2017; Talwar et al., 2001), while

permanent lesions of the auditory thalamus, but not the auditory

cortex, impaired an auditory discrimination task (Gimenez et al.,

2015). It is therefore important to first assess whether the region

of auditory cortex under examination contributes to the fre-

quency categorization task. We used two independent methods

of inactivation to address this question and found a consistent

effect of impairment on task performance (Figures 1F and 1G).

There are various types of stimulus categorization with different

levels of abstraction, some of which can be accompanied by

strong perceptual effects known as categorical perception (Gold-

stone and Hendrickson, 2010; Harnad, 1990; Russ et al., 2007),

while others can be more flexible and abstract (Ashby and Mad-

dox, 1998; Rosch, 1978; Russ et al., 2007;Wutz et al., 2018; Zen-

tall et al., 2002). Our behavioral task captures the basic feature of

stimulus categorization, which is the ability to group stimuli or

sensory items based on behavioral needs or task rules. The ani-

mals were able to perform categorization based on a short period

of training with exemplar stimuli (Figures 1 and S1) and exhibited

considerable flexibility by learning to categorize tone stimuli using

different category boundaries (Figure 5). The neural representa-

tions exhibited dynamic reorganization that mirrored behavioral
flexibility. Thus, our resultsmay have general implications for neu-

ral mechanisms of stimulus categorization.

Activity related to perceptual decisions in various sensory

cortices has been widely reported in past decades (Britten

et al., 1996; Celebrini and Newsome, 1994; Cohen and News-

ome, 2009; Liu et al., 2013; Nienborg and Cumming, 2009;

Nienborg et al., 2012; Romo et al., 2002; Tsunada et al., 2016;

Yang et al., 2016). Although these studies provide important

links between sensory cortex activity and choice behavior, a

mechanistic understanding of how choice-related activity may

contribute to specific subprocesses of decision-making (e.g.,

categorization) remains absent. A classical poolingmodel frame-

work has been used to account for choice-related activity in the

sensory cortex (Nienborg et al., 2012; Shadlen et al., 1996). It is,

however, unclear whether and how task-related top-down infor-

mation may play a role in this framework (Cumming and Nien-

borg, 2016; Nienborg et al., 2012). Our data show that the cate-

gorization task reshapes response profiles of both single

neurons and neuronal ensembles, reflecting strong top-down in-

fluences.When such top-downmodulation is incorporated into a

conventional pooling model via stimulus-specific amplification

(Raizada and Poldrack, 2007), the pooling sum from the two

oppositely tuned populations may produce a steeper neuromet-

ric slope mirroring the behavioral level stimulus categorization.

This is demonstrated by a simple model incorporating selective

weighting by the response function based on the response

selectivity to near-boundary stimulus into the poolingmodel (Fig-

ures S8). A similar idea has also been demonstrated previously

(Jazayeri and Movshon, 2007). Thus, incorporating top-down

modulation via selective amplification into conventional pooling

model may represent a circuit level framework for understanding

the computational mechanisms of stimulus categorization.

In summary, by combining an auditory psychophysics task in

mice with in vivo two-photon imaging, we demonstrate that

neuronal ensembles in the auditory cortex are markedly modu-

lated by task demands, exhibiting dynamic reorganization of

population response profiles that may serve as a mechanism

for sensory-to-category transformation during perceptual deci-

sion-making. An important future direction would be to investi-

gate the local and long-range circuit mechanisms for such

task-dependent modulation.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, N.L.X.

(xunl@ion.ac.cn). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental aspects were carried out in compliance with the procedures approved by the Animal Care and Use Committee of the

Institute of Neuroscience, Chinese Academy of Sciences. Data were mainly acquired from male C57BL/6J (SLAC), some Emx1-

IRES-Cre mice (Jax number: 005628) were also used for chemogenetic inactivation experiments. Animal age was 8–10 weeks at

the start of behavioral training and 10–14 weeks during imaging. Mice had no previous history of any other experiments. On days

not trained, mice received 1 mL of water. On training days, mice were tested in experimental sessions lasting 1 to 2 hours where

they received all their water (0.5 to 1 ml). Each mouse’s weight was measured daily to ensure that it was not below 80% of the

mouse’s pre-water restriction weight.

METHOD DETAILS

Surgery and virus injection
During surgery, mice were anaesthetized with isoflurane (1�2%). For chronic imaging window implantation, a craniotomy (�2 mm in

diameter) wasmade over the left auditory cortex, with the dura left intact. AAV-hSyn-GCaMP6s virus was slowly injected (�50-150 nL

per site, 3 - 4 injection sites per animal). The injection system comprised of a pulled glass pipette (25–30 um O.D.; Drummond Sci-

entific, Wiretrol II Capillary Microdispenser) back-filled with mineral oil. A fitted plunger was inserted into the pipette and advanced to

displace the contents using a hydraulic manipulator (Narashige, MO-10). Retraction of the plunger was used to load the pipette with

virus solution. The injection pipette was positioned with a Sutter MP-225 manipulator. After injection, the craniotomy was covered

with a double-layered glass coverslip, sealed in place with dental cement (Jet Repair Acrylic, Lang Dental Manufacturing). The dou-

ble-layered glass comprised a 200-um-thick glass coverslip (diameter,�2 mm) attached to a larger glass coverslip (diameter, 5 mm,

0.22 mm thickness) using ultraviolet cured optical adhesives. A titanium head-post with an opening on the left side was attached to
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the skull with cyanoacrylate glue and dental cement to permit head fixation and two-photon imaging over the cranial window. Mice

were allowed to recover for at least 7 days before water restriction.

After all imaging sessions were finished, the imaging location was verified by DiI injection (Figure S2B). The chronic window was

removed and the dura was kept intact, the imaging field was estimated by the vasculature location. Then the DiI (10-20 nl) was in-

jected at the center of all imaging fields (2-3 fields for each animal). After surgery the animal was perfused immediately using 4%

paraformaldehyde and frozen sliced (�40 um) to confirm the two-photon imaging position.

Behavioral Apparatus
Experiments were conducted inside custom-designed and fabricated double-walled sound-attenuating boxes. Mice were head-

fixed with a pair of clamps and thumbscrews (Guo et al., 2014; Xu et al., 2012). The mouse body was contained in an acrylic

‘body tube’ (1 inch i.d.), with the mouse head extending out and the front paws gripping the tube edge after head-fixation. The holder

and body tube in turn were attached to a custom-designed tube holder mounted to a caddy which was mounted to the behavior box

with table clamps after head-fixation. Water reward was provided by two custom-made metal lickports placed in front of the mouse

mouth (bilateral sides alongside animal mouth). The lickports were connected to a capacitive-sensing board that sense the contact of

the tongue during licking. The amount of water deliveredwas controlled by valves open time calibrated at least once aweek. The fluid

pressure was similar for each behavioral session.

The mouse auditory decision behavior was controlled by a custom-developed low-cost, high-precision real-time control system,

the PX-Behavior System. The system includes a custom-designed tone-generating module (TGM) to generate sound waveforms of

arbitrarily high frequencies with high fidelity, and an Arduino microcontroller implementing a real-time virtual state machine frame-

work for programming the behavioral protocols, stimulus delivery, and measurement of behavioral events. The Arduino board com-

municates with the TGM through a custom-designed cache board without interrupting the flow of the behavioral protocols. The TGM

sends the specified sound waveforms to an amplifier and speakers to produce acoustic stimuli. Behavioral data were logged via se-

rial port using custom-written software in python. Behavioral trials were synchronized with two-photon image acquisition by digital

outputs from the PX-Behavior System to the ScanImage system.

Sounds were delivered through electrostatic speakers (ES1, Tucker-Davis Technologies) placed on the right side of the mice. The

sound system was calibrated using a free-field microphone (Type 4939, Br€uel and Kjær) over 3–60 kHz and showed a smooth spec-

trum (±5 dB SPL). Measurements were performed with the behavioral box closed and the microphone positioned at the location and

orientation of the mouse ear-position in the presence of the mouse mounting system. The microphone was connected to a pream-

plifier (Type 2670, Br€uel and Kjær), and signals were digitized with a National Instruments acquisition card (NI 9201) at 500,000 sam-

ples per second for further analysis, 5 ms cosine ramps are applied to the rise and fall of all tones.

Animal behavior
After one week’s recovery following surgery, mice were started with water restriction procedure. Each mouse received 1 mL water

per day and the body weight was monitored. After �7 days of water restriction, behavior training was started. Water consumption

was calculated using the body weight change before and after each training session. If mice consumed less than 0.5 mL water, addi-

tional water supplement was provided. Mice were allowed to perform the task until sated.

The behavioral task is based on the auditory-guided two-alternative-forced-choice task (Guo et al., 2014; Uchida and Mainen,

2003; Znamenskiy and Zador, 2013). During the initial training stage, mice were trained to discriminate two easy tone stimuli that

were 2 octaves apart (e.g., 8 kHz and 32 kHz). Tone frequencies were chosen according to the typical hearing range of laboratory

mouse (Heffner and Heffner, 2007). The initiation of each trial is not explicitly cued, and the animal needs to wait for the tone stimulus

to occur. Following the inter-trial interval of the previous trial, a 0.5-1 s random delay was imposed before tone stimuli (duration,

300 ms) to ensure that the onset of tone stimuli cannot be predicted by animal. Mice were required to respond within a 3 s answer

period after a 500 ms post-stimulus-offset delay (Shading in Figure 1A) following the stimulus offset, by licking left or right lickport

placed in front of the animal. During the post-stimulus delay, licking will not produce any consequences. Correct answers were

defined as licking the left lickport in response to the lower frequency tone (e.g., 8 kHz), or licking the right lickport in response to

the higher frequency tone (e.g., 32 kHz). Correct responses lead to the water valve open to dispense a small amount of water reward

(�6ul). Error responses lead to a 2�6 s time-out punishment, during which licking to the wrong side would reinitiate the time-out

period. If mice made no response lick within the 3 s response window, the trial was defined as a ‘miss’ trial, leading to the initiation

of inter-trial-interval (ITI). Once mice reached criteria of > 85% correct performance, the second training stage was started for testing

categorization performance. In this stage, 6-8 different frequencies (from 8 to 32 kHz, separated by linearly spaced intervals in

octave) were delivered in randomly interleaved trials. For example, since the difference between 8 and 32 kHz in octave is 2, for 6

different tones, the difference in octave between neighboring tones is 0.4, therefore the 6 tone frequencies are 8000 Hz,

10556 Hz, 13929 Hz, 18379 Hz, 24252 Hz, and 32000 Hz. In some behavioral sessions, 8 stimuli were used, with 2 additional

more difficult tones located 0.1 octave from the defined boundary on either side (8000 Hz, 10556 Hz, 13929 Hz, 14929kHz,

17148kHz, 18379 Hz, 24252 Hz, and 32000 Hz). The sound intensity was 70 or 75dB SPL for all frequencies. Reward contingency

was based on the mid frequency (16 kHz) as the boundary, with correct answers defined as licking leftward when tone frequencies

were lower than the boundary and licking rightward when the tone frequencies were higher than the boundary. Imaging experiments

were started after 2-5 days of training in the second training stage.
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In a separate group of animals, we tested mice’s internal categorization boundary after the initial training with the 8 and 32 kHz

exemplar tones, the intermediate frequencies were delivered in ‘probe’ trials, constituting a minor fraction of total trials (< 30%),

and were randomly rewarded with no punishment (Figures 1 and S1).

Psychometric function was obtained by fitting the behavioral data using a 4-parameter sigmoidal (logistic) function (Carandini and

Churchland, 2013; Wichmann and Hill, 2001)

yðxÞ = g+ ð1� g� lÞ � 0:5 � ð1+ erfððx � uÞ=sqrtð2 � v^2ÞÞÞ
where yðxÞ is the probability that animal would make a right choice, and x is the tone frequency (in octave). Parameters to be fitted

are: g the guess rate, l the lapse rate, u the subject bias (boundary), and v the discrimination sensitivity (threshold). erfðÞ represents
error function. Using this function, parameter u indicates the psychometric boundary, and parameter v indicates the psychometric

threshold.

For experiments with shifted category boundaries, mice were first trained with 8 kHz and 32 kHz to learn 2AFC task. The animals

were then trained with 4 kHz and 16 kHz tones to perform categorization task in 4 �16 kHz frequency range with reward

contingencies based on the boundary at 8 kHz. The same animals were then further trained to perform categorization task in the

7 - 28 kHz frequency range based on the boundary at 14 kHz. Imaging experiments were carried out after animal performed the cate-

gorization task with > 75% correct.

Reversible silencing of the auditory cortex
Two parallel approaches were used to reversibly silence the auditory cortex to test its involvement in our auditory decision task. First,

we used the GABA (c-aminobutyric acid) agonist muscimol hydrobromide (Sigma-Aldrich) dissolved in saline (5 mg/ml). 60nl of the

solution was injected slowly (10nl per min) using a thin glass pipette to bilateral auditory cortex (4.8 mm lateral to midline and 2.6 mm

anterior to Bregma, depth�500 um under the pia). As control, the same dose of muscimol was injected to primary visual cortex bilat-

erally in different sessions in the same animals (Figure S1). The animals were left to recover for 1 hour following muscimol injection

before the start of behavioral sessions. Second, we used a chemogenetic approach based on DREADDs to reversibly silence excit-

atory neurons in the auditory cortex. AAV2/9-hSyn-DIO-hM4D(Gi)–mCherry (1.723 1012 genomic copies permilliliter) was injected to

bilateral auditory cortex of Emx1- IRES-Cre mice, followed by 3 weeks virus expression. Clozapine-N-Oxide (CNO) was dissolved

in saline (0.9% NaCl solution) to a stocking solution of 20mg/mL stored at �20�C, and then diluted to a working concentration of

0.2 mg/mL each day before experiments. At the day of experiments, saline or CNO (2 mg/kg b.w.) was administered intraperitoneally

(i.p.) to the mice expressing hM4D(Gi) in the auditory cortex 30�40 min before behavioral session. For CNO control experiments,

animals without hM4D(Gi) virus injection received the same dose of CNO treatment before behavior session.

Two-photon calcium imaging
Calcium imaging was performed using a custom built two-photon microscope (https://wiki.janelia.org/wiki/display/shareddesigns/

MIMMS). To eliminate potential influence from ambient noise of the two-photon imaging system and the noise of the laser scanning

system on the auditory guided behavior and auditory evoked activity, the entire microscope was enclosed in a custom-designed and

fabricated, double-walled sound attenuation box (internal noise level < 30 dB SPL with the two-photon imaging system running). The

noise produced by the resonant scanner were attenuated to < 30 dB SPL using an optical window sealing the output opening of the

resonant scanner module. GCaMP6s was excited using a Ti-Sapphire laser (Chameleon Ultra II, Coherent) tuned to 925 nm. Images

were acquired using a 16x 0.8 NA objective (Nikon), and the GCaMP6s fluorescence was isolated using a bandpass filter (525/50,

Semrock), and detected using GaAsP photomultiplier tubes (10770PB-40, Hamamatsu). Horizontal scanning was accomplished us-

ing a resonant galvanometer (Thorlabs; 16 kHz line rate, bidirectional). The average power for imaging was�70mW,measured at the

entrance pupil of the objective. The field of view was�3003 300 imaged at high frame rate (�55 Hz for 2563 256 pixels, or�28 Hz

for 512 3 512 pixels). The acquisition system was controlled using ScanImage (https://scanimage.org) (Pologruto et al., 2003). For

each mouse the optical axis was adjusted (45-50 degree from vertical) to be perpendicular to the imaging window in the auditory

cortex. Different fields-of-view in the samemouse were imaged on different sessions. At the initiation of each trial, ScanImage acqui-

sition was triggered by a starting signal from the PX-Behavior System and a fixed number of frames (500 frames at 55 Hz frame rate,

or 280 frames at 28 Hz frame rate) covering the entire behavioral trial were recorded. After completion of one behavioral session, we

imaged a passive stimulation session for the same imaging field. During passive session, lick ports weremoved away from the animal

and the same set of sound stimulus were delivered in pseudo-randomly interleaved trials (Figure S2A).

For chronic imaging experiments, to image the same population of neurons across sessions/days, the supporting platform position

was fixed and the optical axis was adjusted to the same angle for each animal across days. The same field of views were tracked by

vascular features and the spatial location of landmarks (bright and stable structures of somas and neuropils) in the field of view. The

presence of each individual neuron within the same field of view across days was visually checked. Only neurons showing clear and

similar cell body morphology across sessions were included for analysis.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Imaging data analysis
Since the acquisition rate of image frames was high, we do not find detectable intra-frame movement. We thus performed frame by

frame registration to correct brain motion. All imaging frames from each imaging/behavior session were aligned to a target image

frame using a cross-correlation-based registration algorithm (discrete Fourier transformation, DFT, algorithm). The target image

was obtained by mean projection of visually identified frames (> = 30 frames) with few motion artifacts. To extract fluorescence sig-

nals from individual neurons, regions of interest (ROIs) were drawn manually based on neuronal shape using a custom-written GUI

software inMATLAB. The pixels within each ROI in a framewere averaged as the fluorescence intensity of a neuron at that frame time.

The fluorescence intensity of each neuron was then extracted over all the frames as the fluorescence time series (F). For each trial,

averaged fluorescence value before sound onset was used as F0 for that trial, and DF/F0 was calculated as (F – F0)/F0 3 100%. The

DF/F0 traces were used for all following analysis. Miss trials were not included for all analysis.

To focus on behavioral modulation of sound evoked responses, we only used the mean Ca2+ signals within a 1 s time

window following stimulus onset to avoid the confounding effects from uncontrolled behavioral variables in late trial epochs

(Figure 2G and 2H). The sound evoked responses were calculated for each frequency, and then single neuron best frequency

(BF) was defined as the frequency that could elicit maximum response. During task and passive condition, single neuron could

have different frequency preference. So here defined BFpass as the BF measured under passive condition, and BFtask as the BF

measured under task condition, respectively. The population preferred frequency is the dominant BF (Figure 2E) for specific imaging

sessions.

To estimate the spike rates from the calcium signals, we used the Fast Nonnegative Deconvolution algorithm (Vogelstein et al.,

2010) to deconvolve the fluorescence traces. Estimated firing rates for the initial four frames were manually set to zeros to avoid arti-

ficial fluctuations (Figure S6).

Neuronal response classification
To classify single neuron response type, we fit single neuron activity to a sigmoidal function (Figure S3A) as:

SRðxÞ = b1 +
b2

1+ e
�ðx� b3Þ

b4

and a Gaussian function (Figure S3C)

GRðxÞ = c1e
�ðx� c2Þ2

2�c2
3 + c4

To evaluate the goodness of fitting, we calculated an error function as:

E =
X
x

ðRRealðxÞ � RFitðxÞÞ2
,X

x

ðRRealðxÞÞ2

in which RRealðxÞ and RFitðxÞ was the real response value and fit value to frequency x. We set a threshold of 0.1, such that when the

fitting error was below the threshold, the fit was accepted and the neuron was classified as putative category-selective (Figure S3A)

or frequency-tuned neurons (Figure S3C). For a ‘frequency-tuned’ neuron, if the BF during task was less than 0.2 octave from

behavior boundary, it was considered as selective to near-boundary stimuli.

Factor analysis
Factor analysis was performed using MATLAB Statistics and Machine Learning Toolbox. 15 common factors were used in our anal-

ysis and the first three factors were plotted for visualization (Figure 7A). For each imaging session, the DF/F trace for individual trial

was first smoothed using a moving average method (30 frames window). Then single session data was reshaped into a T (Number of

frames acquired in a session) by N (number of neurons) matrix. After projecting the raw data into state space (each dimension is one

common factor), spatial-temporal patterns of two categories in the state space was defined as the averaged trajectories of all correct

left choice or right choice trials. Then for each trial, we evaluated its similarity with the low- and high-frequency category trajectories

by calculating a selectivity index at each time points. The selectivity index was calculated based on the Euclidean distances (D)

between single trial trajectory and category trajectories at each time points. SI = (Dto low-freq category traj – Dto high-freq category traj) /

(Dto low-freq category traj + Dto high-freq category traj). SI = 1 indicates that current trajectory was overlapped with the trajectory indicates

high-frequency category, while SI = –1 indicates that current trajectory was overlappedwith the trajectory of low-frequency category.

Generally speaking, a negative selectivity index value means that the distance to low-frequency category trajectory is less than the

distance to high-frequency category trajectory, indicating current population activity is more likely to represent a low-frequency

perception, and vice versa.
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We further generated a neurometric function based on the selectivity index. For each frequency, we first averaged the SI traces

across all trial repeats. Then for each averaged trace, the peak or vale value within 1 s time window after stimulus onset was

used as the selectivity index for corresponded stimuli. The neurometric function was then constructed from the normalized SI (scaled

by the behavioral rightward choice probability) as a function of frequency, by fitting with the same sigmoidal function used for psy-

chometric function.

To compare categorization characteristics independent of curve fitting, we calculated a categorization index (CI, Figure 7F). The CI

was defined as the difference between averaged rightward probability for stimuli in the high-frequency category and that for stimuli in

the low-frequency category, such that a zeros CI value indicates a flat selectivity independent of stimulus; while a CI value close to 1

indicates a near prefect categorization. The neurometric CI was calculated using the normalized SI values.

Population decoding
We also used support vector machine (SVM) based algorithm for population decoding analysis, linear kernel and C = 1 was used for

all SVM classifiers. The minimum population size of all 21 sessions have 69 neurons. We first evaluated population discrimination of

paired stimulus. For two stimulus S1 and S2, single neuron response from individual trials were arranged as twomatrix M13N andM2

3 N, whereas M1 and M2 indicates the repeated number for S1 and S2 respectively, N indicates the neuron number. Elements within

matrix were neuron response in individual trials, which was the averaged responsewithin 1 s timewindow after stimuli onset. A binary

classifier was then trained to classify the two dataset. Classification accuracywas calculated using 10-folds cross-validationmethod.

When comparing the decoding accuracy for between-category stimulus pairs versuswithin-category stimulus pairs, to control for the

factor that greater frequency difference in certain between-category stimulus pairsmay contribute to higher decoding accuracies, we

only compared the decoding accuracy for pairs with the frequency differences (octave steps) co-exists for between-category or

within-category pairs. In our case, only tone pairs that were 0.4 or 0.8 octave different were included for comparison. For example,

the decoding accuracy for a between-category pair, 13.9 kHz and 24.3 kHz (distance, 0.8 octave), is included since there are within-

category pairs with the same octave distance (such as 8 kHz and 13.9 kHz, 0.8 octave distance). In contrary, the decoding accuracy

for a between-category pair, 8 kHz and 18.4 kHz (distance, 1.2 octave), was not included since no such frequency difference was

existed in within-category pair.

To predict single trial choice using population neuron activity, session data was arranged into aM3Nmatrix, whereasM indicates

the total trial number within a session. Population prediction of single trial choice was calculated using leave-one-out method, so that

each trial could be predicted once. Since we have a complete prediction of all individual trials, we could also generate a neurometric

function using predicted choices. In order to calculate the trial-by-trial correlation of animal performed choice and population pre-

dicted choice, we considered only the worst performed stimuli within each session. The performance of this stimuli was around

chance level (0.53 ± 0.16, one-sample t test with the mean value of 0.5, p = 0.44), so we could have largest choice variability for

the same stimuli. And by using single stimuli for analysis, we could minimum the choice bias caused by frequency difference.

We also constructed neurometric function using population decision variables (Figure S7). Population activity can be represented

by high-dimensional data points, with the number of dimensions equals the number of neurons. We first trained an SVM classifier to

find the optimal hyperplane to discriminate patterns corresponded to two choices. To produce a training dataset, a small subset of

trials (�30) were sampled from all trials. Then trials with the same behavior choice were averaged, so we could have two high-dimen-

sional data points corresponded to two choices. This subsampling was repeated 300 times. This dataset was then used to train a

SVM classifier to find the classification hyperplane that separates two choice clusters. Then for each frequency, population response

of were averaged across trials, and this averaged population activity was used as the population response pattern for that frequency

(single point in the neuronal space). We then defined the population decision variable (PDV), which was the Euclidean distance of the

population responses vector of each stimulus to the discriminant hyperplane (Figure S7A). In order to discriminate choice preference

for each stimulus, the PDVs were given a negative sign for those points being classified as left choice category by the trained clas-

sifier. PDVs was used to represent the likelihood of each frequency to be classified as high-frequency or low-frequency category as

shown in Figure S7B (Kiani et al., 2014). To generate a neurometric function, the PDVswere normalized to theminimumandmaximum

values of behavioral rightward probability of all stimulus (Figures S7C and S7D). The neurometric function was generated by fitting the

normalized PDVs using the same sigmoidal function used to produce psychometric function.

For analysis of population decoding across time using estimated spike rate (Figure S6), classifiers were trained and tested using

data in 100 ms time bins. For each time bin, we randomly selected 80% of trials to train an SVM classifier, and then use the trained

classifier to predict the rest 20% of trials. This process was repeated 1000 times and the averaged prediction accuracy was used as

the population decoding accuracy for each time bin.

Modeling selective amplification
To understand the potential neuronal computation mechanisms underlying stimulus categorization, we incorporated a selective-

amplification (Jazayeri and Movshon, 2007; Raizada and Poldrack, 2007) with a modified pooling model (Figure S8). According to

pooling model, we consider two neuron pools with preferred frequencies lie either in lower frequency range below the boundary

or in higher frequency range above the boundary. The difference between the summation of responses of the two pools was
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used as the population readout, representing the population decision (Nienborg et al., 2012; Shadlen et al., 1996). We then examined

the categorization performancewith or without applying selective amplification to the pooling summation difference. The tuning func-

tion of individual neuron within the pools was defined as:

fpreferðxÞ = a � exp
 

� ðx � mÞ2
2 � s2

!
+d

where the four coefficients are: a, tuning amplitude; d, baseline activity level; m, preferred frequency; s, tuning width. For simulation,

the preferred frequencies (between 8 kHz and 32kHz) were set to be evenly distributed in the neuron pools. The amplitude awas set to

1 and d was set to zeros. Neurons with tuning frequency lower than task defined boundary (16 kHz) were assigned to low category

pool, and neurons with higher tuning frequency were assigned to high category pool. A neurometric decision can be defined as the

difference in the pooling sum:

CðxÞ = 1

N

XN
1

fRðxÞ � 1

N

XN
1

fLðxÞ

CðxÞ was the choice function, which was the pooling sum difference as a function of frequencies (choice function). A negative value

represents a decision for low-frequency category; a positive value represents a decision for high-frequency category.

We use a Gaussian function GðxÞ to represent enhanced responses to near-boundary stimuli, by fitting to the data of boundary-

selective neurons (Figure 3H),

GðxÞ = am � exp
 

� ðx � mmÞ2
2 � s2

m

!
+dm

where am = 2 was the modulation amplitude, mm = 0 was the category boundary, sm = 0.4 was the modulation width (the octave step

we have been used in current study), and dm = 1was themodulation baseline when only considering facilitation effect. We applied the

selective amplification to the choice function by:

PðxÞ = CðxÞ �GðxÞ
where PðxÞ represents the final choice function after selective amplification, which exhibit a steeper categorization than the CðxÞ
function.

Statistical Analysis
Statistical analysis was performed using MATLAB 2016a (MathWorks). All data are shown as mean ± s.e.m. unless mentioned other-

wise. The Comparison significance was tested using Student’s t test, two-sample t test, paired-sample t test, Wilcoxon signed-rank

test. N.S., p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.

DATA AND CODE AVAILABILITY

The data generated in this study to reproduce all the results have been deposited in the Mendeley Data (https://doi.org/10.17632/

bvx47zg5mt.1).
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