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As humans and animals experience the world, they learn to associate states and actions 
with the expected values of the reward that is likely to follow​1–3​. Neural correlates of 
expected value are found in many brain regions, including the orbitofrontal cortex 
(OFC)​4–9​. While OFC value representations have been identified across many tasks and 
species​10–15​, their computational role remains  controversial​16–18​. ​One influential hypothesis 
holds that they drive value-based choosing: The OFC represents the expected values of 
available options, and choices are made by comparing these values to one another​4,7,9​. A 
contrasting hypothesis holds that they drive learning: The OFC represents the expected 
values of immediately impending outcomes, which are compared to rewards actually 
received, so as to learn and adapt expectations to match the world​5,6,19,20​.  ​In common 
laboratory tasks the items to be decided between are also the items to be learned about, 
making the two hypothesized roles difficult to distinguish. Here, we use a 
recently-developed multi-step task for rats​21​ that separates choosing from learning. In a 
first step, rats choose one of two ports (“choice ports”) whose expected values are 
computed using planning, and are not learned. In the second step, rats are led to one of two 
other ports (“outcome ports”) which are not chosen between, but whose expected values 
are learned based on reward history. We found relatively weak OFC encoding of choice 
port values, needed for choosing but not learning, but far stronger encoding of outcome 
port values, needed for learning but not choosing. Moreover, temporally-specific silencing 
of OFC during outcome port entry was sufficient to disrupt behavior, and the nature of this 
disruption was consistent with impairment of a value learning process, but was not 
consistent with impairment of a choice process. We therefore suggest that value 
representations in the OFC directly drive learning, but do not directly drive choice.  
 
We trained rats on a two-step decision task, adapted from the human literature​22​, in which a 
choice made by the subject in a first step is probabilistically, not deterministically, linked to an 
outcome that occurs in a second step (​Fig, 1a​). In each trial of our rat version of this task​21​, the 
rat first initiated the trial by poking its nose into a neutral center port, and then made a decision 
between one of two choice ports (​Fig. 1a i,ii​). One choice caused a left outcome port to become 
available with high probability (“common” transition), and a right outcome port to become 
available with low probability (“uncommon” transition), while the opposite choice reversed these 
probabilities (​Fig. 1a iii)​. Following the initial choice, an auditory tone informed the rat which of 
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the two outcome ports had in fact become available on that trial, and after poking into a second 
neutral center poke, the available outcome port was further indicated by a light (​Fig. 1a iv,v​). 
The rat was required to poke into the available outcome port, where it received a water reward 
with a given probability (​Fig. 1a v,vi​). The two outcome ports differed in the probability with 
which they delivered reward, and these reward probabilities changed at unpredictable intervals 
(​Fig. 1b​). The subjects were thus required to continually update their estimates of the value of 
each outcome port ​o ​(which we label ​R​(o)​), through a learning process in which they compare 
their expectations to actual reward received (“Update Outcome Values” in ​Fig. 1c​).  
 
Previously, we have shown​21​ that rats solve the task using a particular strategy termed 
“model-based planning​23–25​”. This strategy utilizes an internal model of action-outcome 
relationships, which in this task are the probabilities linking choice ports ​c​ to outcome ports ​o 
(which we label ​P(o|c) ​and which were fixed throughout the experiment, but counterbalanced 
across rats), to compute  the expected values of the two choice ports (which we label ​Q(c)​). A 
planning strategy results in very different roles for outcome-port values and choice-port values in 
our task. Outcome port values, ​R​(o)​,​ ​are learned incrementally from recent rewards (​Fig. 1c​, 
“Update Outcome Values”), while choice port values, ​Q(c)​, are computed based on ​R​(o)​ and the 
world model ​P(o|c) ​(​Fig. 1c​, “Use World Model”​)​, and are then used to determine the next 
choice​21​ (​Fig. 1c​, “Make Choice”). The values of the choice ports ​Q(c)​ therefore drive choice 
directly, while the learned values of the outcome ports ​R(o) ​support choice only indirectly. 
Crucially, our task features a non-deterministic ​P(o|c)​, implying that ​R(o​t​)​ and ​Q(c​t​)​ will be 
different from one another, and can thus be estimated separately. Consistent with previous 
results​21​, rats in the current study adopted such a planning strategy, as indicated both by an index 
quantifying the extent to which the rats’ behavior is sensitive to ​P(o|c)​ (​Fig. 1d, ​planning 
index​21​, Methods), and by fits of an artificial planning agent (​Fig. 1e​). This artificial agent 
matches rat behavior on the task, and allows us to probe the role of the OFC in two key ways. 
First, once the agent’s parameters have been fit to a particular rat, the model can provide a 
trial-by-trial estimate of the value placed by that rat on the choice and on the outcome ports, 
which we compare below to trial-by-trial physiology data​13,22,26–29​. Second, the model can be 
altered to selectively impair information about expected values of the choice or the outcome 
ports, and used to generate synthetic behavioral datasets that predict the consequences of such 
specific impairments. Below we compare these predictions to data from rats undergoing 
silencing of the OFC. 
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Figure 1. Two-step task separates choice values from outcome values​. ​a: ​Two-step task optimized for rats. Rat 
initiates the trial by entering the lit top neutral center port (i), then indicates its decision by entering one of two lit 
choice ports (ii). This leads to a probabilistic transition (iii) to one of two possible paths. In both paths, rat enters the 
lit bottom neutral center port (v), causing one of the two outcome ports to immediately illuminate. Rat enters that 
outcome port (v), and receives a reward (vi). ​b: ​Example behavioral session. At unpredictable intervals, reward 
probabilities at the two outcomes port flip synchronously between high and low. Rat adjusts choices accordingly​ c: 
Schematic of a planning agent solving the task. Agent maintains outcome value estimates (​R​) for each outcome port, 
based on a history of recent rewards at that port, as well as choice value estimates (​Q​) for each choice port, which 
are computed on each trial based on the outcome values and the world model ​P(o|c)​. ​d: ​Planning index and 
model-free index, measures that do not involve a model agent​21​, shown for electrophysiology rats (n=6, squares), 
optogenetics rats (n=9, triangles), and sham optogenetics rats (n=4, diamonds), indicate behavior dominated by 
planning. The indices are calculated using a trial-history regression analysis (see ​Methods​ for details)​ e:​ Agent-based 
analysis: weights of an agent-based model fit to rats’ behavioral data also lead to the conclusion that the behavior is 
dominated by planning.  
 

Electrophysiological recordings during 51 behavioral sessions in six rats yielded 391 activity 
traces. Traces with an average firing rate of less than 1Hz were discarded, leaving 329 units, 
including both single- and multi-unit traces. Results were similar across the two (Extended Data 
Fig. ED1-4​) and we therefore report both combined unless otherwise indicated. To quantify the 
coding properties of these units, we fit regression models to predict their spiking activity. Since 
the computations supporting learning and choosing must take place between outcome port entry 
on one trial and choice port entry on the next, we used regressors from the last few events of one 
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trial (identity of the chosen choice port, identity of the outcome port rat was led to, reward 
presence versus omission, outcome-port-by-reward interaction, and a model-derived estimate of 
outcome port value​28,29​, termed “outcome-value”) as well as regressors from  the 
choosing-related events of the subsequent trial (identity of port chosen in this subsequent trial, 
and two model-derived quantities: estimated value of this chosen port, termed “chosen-value”, 
and difference in estimated value between the two choice ports, termed 
“choice-value-difference”​28,29​), and estimated to what extent spike rates depended on these 
regressors. We separately did this for spikes time-locked to a variety of events: we used 
time-locking to the last two port entry events of the first trial (bottom neutral center port; 
outcome port) and to the first two port entry events of the subsequent  trial (top neutral center 
port; choice port). For each of these time-lockings, we carried out fits at each of multiple 200 
ms-wide time bins around the corresponding event (Methods).  
 
Since the different regressors are correlated with one another (Extended Data ​Fig. ED6​), we 
quantified the contribution of each by its coefficient of partial determination (CPD; also called 
“partial r-squared”), which is the fraction of variance in spiking activity that regressor explained, 
after accounting for the influence of all other regressors​14,30​. CPD can be computed for a 
particular fit (i.e. one unit in one time bin), or for a collection of fits (aggregating variance over 
units, bins, or both). First, we considered coding in individual units, computing CPD in windows 
of five time bins (1s total) centered around entry into each nose port. We found that a large 
fraction of units significantly modulated their firing rate according to outcome-value, with the 
largest fraction at the time of entry into the outcome port (158/329, 48%, permutation test at 
p<0.01). In contrast, a much smaller fraction of units modulated their firing rate according to 
choice-value-difference, with the largest fraction at outcome port entry (34/329, 10%), or to 
chosen-value, with the largest fraction at choice port entry (41/329, 12%). Furthermore, the 
magnitude of CPD was larger for outcome-value than for the other predictors, whether taken at 
the port with the largest number of significant units: the median unit had CPD for outcome-value 
2.1x larger than for choice-value-difference, and 2.2x larger than for chosen-value (p=10​-25​, 
p=10​-32​, signrank test; ​Fig. 2a​;​ ​note logarithmic axes, and see also​ Figs. ED2 ED3, ​and​ ED5​). 
Similar results were obtained by computing CPD by aggregating variance over all time bins 
(p=10​-11​, p=10​-9​, ​Fig. ED1​). 
 
Next, we considered coding at the population level, computing CPD aggregated over all units for 
each time bin. We found that population coding of outcome-value began to rise at entry into the 
neutral bottom-center port, peaking at 1.5 shortly after entry into the outcome port (​Fig 2e​). In 
contrast, population CPD for the two choice-related value regressors remained low in all time 
bins, with a maximum value of 0.51. These results indicate that neural activity in OFC encodes 
information about values of the outcome ports, needed for learning, much more strongly than it 
encodes either type of value information about the choice ports, needed for choosing. 
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Figure 2. OFC encodes outcome values, but not choice-related values. ​ ​a​. Left: Scatterplot 
showing the coefficient of partial determination (CPD) for each unit (n=329) for the 
outcome-value regressor against CPD for the choice-value-difference regressor, both computed in 
a one-second window (five timebins) centered on entry into the outcome port (the port entry event 
with the strongest coding for both of these regressors). Right: Scatterplot showing CPD for 
outcome-value (computed at outcome port entry as in ​a​), against CPD for the chosen-value 
regressor, computed at choice port entry (the port entry event with the strongest coding). ​b​, 
Average firing rates of three example units at outcome port entry on rewarded (left) and 
unrewarded trials (right), separated by the expected value of the outcome port, ​R​t​(​o​t​). Cells 
displayed are the best, 80​th​ percentile, and 60​th​ percentile cells by reduction in sum-squared-error 
attributable to the outcome-value regressor (see Methods). ​c​.Same as panel b, but cells are selected 
and separated based on the choice-value-difference regressor, ​Q​(​left​) - ​Q​(​right​). ​d​. Same as panels 
b and c, but cells are selected and separated based on the chosen-value regressor ​Q​(​c​t​), and firing 
rates are shown at choice port entry. ​e​. Timecourse of population CPD for the three value 
regressors. ​f​. Timecourse of population CPD for the five remaining regressors. 
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To help assess the causal role of the OFC’s value signals, we silenced activity in the OFC using 
the optogenetic construct halorhodopsin (eNpHR3.0) during either the ​outcome period 
(beginning with entry into the outcome port and lasting until the end of reward consumption), the 
choice period​ (beginning at the end of reward consumption and lasting until entry into the choice 
port on the subsequent trial), or​ both periods​ (​Fig. 3a​). Previous work​21​ had shown that 
whole-session silencing of the OFC specifically attenuates the planning index (​Fig. 1e​), which 
summarizes the extent to which the rats’ choices are  modulated by past trials’ outcomes in a 
way consistent with planning. Indeed,  inactivation that spanned both periods decreased the 
planning index on the subsequent trial (p=0.007, t-test; ​Fig 3b​). We found that inactivation 
during the outcome period alone similarly disrupted planning (p=0.0006, ​Fig 3b​), in a manner 
indistinguishable from inactivation of both periods (p=0.47, paired t-test, for outcome period vs. 
both periods), and significantly greater than inactivation during the choice period (p=0.007, 
paired t-test). Choice period inactivation alone had no effect (p=0.65). A control group of four 
rats that received sham inactivation showed no effect on planning for any time period (all 
p>0.15; Figure 3B, grey diamonds), and significant differences were found between 
experimental and control rats for outcome-period and both-period inactivation (p=0.02, p=0.02, 
two-sample t-tests​). ​Together, these results confirm that silencing the OFC at the time of the 
outcome is sufficient to disrupt planning behavior.  
 
To assess which aspect of the behavior was affected by OFC outcome period inactivation, we 
perturbed our artificial planning agent in three separate ways. In the first, we attenuated 
choice-value representations,  transiently scaling the agent’s ​Q​t+1​(c) ​towards 0.5 for all ​c​ (​Fig. 3c​, 
left). In the second, we attenuated the reward representation, scaling ​r​t​ ​(​Fig. 3c​, middle). And in 
the third, we attenuated outcome-value representations, scaling ​R​t​(o​t​) ​(​Fig 3c​, right). Each of 
these produced a distinct pattern of behavior, most clearly visible when we separately computed 
the contribution to the planning index of the past three trials’ rewards​ ​(​Fig. 3c​). We therefore 
performed the same three past trial analysis on the experimental data ​(Fig. 3d​). We found that 
silencing OFC during the outcome period on a particular trial did not affect the influence of that 
trial’s reward on the upcoming choice (p=0.2, signrank test), but that it did affect the influence of 
the previous two trials’ outcomes (p=0.004, p=0.04, ​Fig. 3d​). Comparing to the inactivations in 
our artificial agent, this pattern was only reproduced by a scaling down of the outcome value 
R​t​(o​t​)​ (compare ​Fig. 3d ​to ​c​). This is because ​R​t​(o​t​) ​acts as a summarized memory of the rewards 
of previous trials, and thus mediates the influence of past rewards (​r​t-1​, ​r​t-2​, etc) on behavior (​Fig. 
3e​). In contrast, scaling ​r​t​  ​or ​Q​t+1​(c)​ on a particular trial affects the influence of that trial’s 
reward on the upcoming choice. We conclude that silencing the OFC in our task predominantly 
affects ​R​t​(o​t​)​, values needed for learning, but has no effect on ​Q​t+1​(c)​ , values needed for 
choosing.  
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Figure 3. Inactivation of OFC attenuates influence of outcome values​. ​a:​ Schematic showing the three 
inactivation time periods. Outcome-period inactivation began at the time the rat entered the outcome port, and 
continued until the rat exited the port, for a minimum of two seconds. Choice-period inactivation began either at the 
time the rat exited the outcome port or two seconds after it entered the outcome port, whichever was later, and 
continued until the rat entered the choice port on the next trial. Both-period inactivation encompassed both of these 
periods. If a scheduled inactivation would have continued for more than 15 seconds, the inactivation was terminated, 
and that trial was not considered for analysis. ​b:​ Effects of inactivation on the planning index on the subsequent trial 
for experimental rats (n=9, colored triangles) and sham-inactivation rats (n=4, grey diamonds) in each of the three 
conditions. Error bars give standard errors across rats. ​c:​ Analysis of datasets generated with synthetic agents, 
illustrating different possible effects of OFC inactivation. Each panel shows the contribution to the planning index 
on trials (​t+1​) of rewards at different lags (​r​t​, ​r​t-1​, ​r​t-2​), both on control trials (black) and on trials with simulated 
inactivation on trial ​t​ (colored). Simulated inactivation consisted of either scaling the choice values (​Q​t+1​; left), 
scaling the reward (​r​t​; middle) or scaling the outcome value (​R​t​(o​t​)​; right) towards 0.5. Error bars give standard error 
across different simulated rats (see Methods) ​d​: Same analysis as in c, applied to actual data from optogenetic 
inactivation of the OFC during the outcome period. ​e​: Schematic of a model illustrating the computational roles of 
outcome value, choice value, and reward on choice within a model-based planning agent.  
 
Although learning and choosing are very different reasons to compute expected value, 
experiments to date have not distinguished whether value signals in the OFC drive one process, 
the other process, or both. The two-step planning task gave us the opportunity to separate the two 
roles, both in terms of neural firing rate encoding, and in terms of the impact of OFC silencing. 
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Both the electrophysiological and the optogenetic results challenge the influential view that the 
OFC directly drives choice by representing values of available options so that they can be 
compared​4,7,9​. We find limited representation of values associated with options, little effect of 
silencing OFC at the putative time of choice, and effects of silencing inconsistent with impairing 
choice values in a computational model. These data are consistent with the recent finding that 
silencing the OFC does not impair economic choice​31​. Instead, we find strong representation of 
values associated with immediately impending reward outcomes, a strong effect of silencing 
OFC at the time of those outcomes, and effects of silencing consistent with impairing outcome 
values in a computational model.  These results thus support an alternative view, in which OFC 
supports choice only indirectly, by directly driving learning​5,6,19,20​. This account is consistent with 
recent proposals that the OFC represents a model of the task environment​32–34​, or else a supports 
a “state space” for reinforcement learning​35–37​,  either of which might be  used by other parts of 
the brain to compute the expected values of choices. While the source and detailed nature of the 
OFC’s representations remain an important area for future research, our results resolve a key 
question about their computational role. Specifically, we propose that outcome value information 
in the OFC constitutes critical input to a learning process that updates choice values elsewhere in 
the brain.  
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Methods 
 

Subjects 
All subjects were adult male Long-Evans rats (Taconic Biosciences; Hilltop Lab Animals), placed on a restricted 
water schedule to motivate them to work for water rewards. Rats were housed on a reverse 12-hour light cycle and 
trained during the dark phase of the cycle. Rats were pair housed during behavioral training and then single housed 
after being implanted with microwire arrays or optical fiber implants. Animal use procedures were approved by the 
Princeton University Institutional Animal Care and Use Committee and carried out in accordance with NIH 
standards. 
 

Two-Step Behavioral Task 
Rats were trained on a two-step behavioral task, following a shaping procedure which has been previously 
described​21​. Rats performed the task in custom behavioral chambers containing six “nose ports” arranged in two 
rows of three, each outfitted with a white LED for delivering visual stimuli, as well as an infrared LED and 
phototransistor for detecting rats’ entries into the port. The left and right ports in the bottom row also contained 
sipper tubes for delivering water rewards. The rat initiated each trial by entering the illuminated top center port, 
causing the two top side ports (“choice ports”) to illuminate. The rat then made his choice by entering one of these 
ports. Immediately upon entry into a choice port, two things happened: the bottom center port light illuminateed, and 
one of two possible sounds began to play, indicating which of the two bottom side ports (“outcome ports”) would 
eventually be illuminated.  The rat then entered the bottom center port, which caused the appropriate outcome port to 
illuminate. Finally, the rat entered the outcome port which illuminated, and received either a water reward or an 
omission. Once the rat had consumed the reward, a trial-end sound played, and the top center port illuminated again 
to indicate that the next trial was ready. 
The selection of each choice port led to one of the outcome ports becoming available with 80% probability 
(common transition), and to the other becoming available with 20% probability (uncommon transition). These 
probabilities were counterbalanced across rats, but kept fixed within rat for the entirety of the animal’s experience 
with the task. The probability that entry into each bottom side port would result in reward switched in blocks. In 
each block one port resulted in reward 80% of the time, and the other port resulted in reward 20% of the time. Block 
shifts happened unpredictably, with a minimum block length of 10 trials and a 2% probability of block change on 
each subsequent trial.  
 

Analysis of Behavioral Data: Planning Index & Model-Free Index 
We quantify the effect of past trials and their outcomes on future decisions using a logistic regression analysis based 
on previous trials and their outcomes​21,38​. We define vectors for each of the four possible trial outcomes: 
common-reward (CR), common-omission (CO), uncommon-reward (UR), and uncommon-omission (UO), each 
taking on a value of +1 for trials of their type where the rat selected the left choice port, a value of -1 for trials of 
their type where the rat selected the right choice port, and a value of 0 for trials of other types. We define the 
following regression model: 

 

 

 

(1) 

where 𝛽​cr​, 𝛽​co​, 𝛽​ur​, and 𝛽​uo​ are vectors of regression weights which quantify the tendency to repeat on the next trial a 
choice that was made 𝜏 trials ago and resulted in the outcome of their type, and ​T​ is a hyperparameter governing the 
number of past trials used by the model to predict upcoming choice, which was set to 3 for all analyses. 
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We expect model-free agents to repeat choices which lead to reward and switch away from those which lead to 
omissions​22​, so we define a model-free index for a dataset as the sum of the appropriate weights from a regression 
model fit to that dataset: 

 

  
(2) 

We expect that planning agents will show the opposite pattern after uncommon transition trials, since the uncommon 
transition from one choice is the common transition from the other choice. We define a planning index:  

 

  
(3) 

We also compute the main effect of past choices on future choice:  

 

 

  
(4) 

 

Behavior Model 
We model behavior and obtain trial-by-trial estimates of value signals using an agent-based computational model 
which we have previously shown to provide a good explanation of rat behavior on the two-step task​21​. This model 
adopts the mixture-of-agents approach, in which each rat’s behavior is described as resulting from the influence of a 
weighted average of several different “agents” implementing different behavioral strategies to solve the task. On 
each trial, each agent ​A​ computes a value, ​Q​A​(c),​ for each of the two available choices ​c​, and the combined model 
makes a decision according to a weighted average of the various strategies’ values, ​Q​total​(c)​:  

 

 
 

 

(5) 

where the 𝛽’s are weighting parameters determining the influence of each agent, and 𝜋​(c)​ is the probability that the 
mixture-of-agents will select choice ​c​ on that trial. The model which we have previously shown to provide the best 
explanation of rat’s behavior contains four such agents: model-based temporal difference learning, novelty 
preference, perseveration, and bias. 

Model-Based Temporal Difference Learning.​ Model-based temporal difference learning is a planning strategy, 
which maintains separate estimates of the probability with which each action (selecting the left or the right choice 
port) will lead to each outcome (the left or the right outcome port becoming available), ​P(o|a)​, as well as the 
probability, ​R(o)​,​ ​ with which each outcome will lead to reward. This strategy assigns values to the actions by 
combining these probabilities to compute the expected probability with which selection of each action will 
ultimately lead to reward: 

 
 

(6) 
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At the beginning of each session, the reward estimate ​R(o)​ is initialized to 0.5 for both outcomes, and the transition 
estimate ​P(o|c)​ is set to the true transition function for the rat being modeled (0.8 for common and 0.2 for 
uncommon transitions). After each trial, the reward estimate for both outcomes is updated according to 

 

 
(7) 

where ​o​t​ is the outcome that was observed on that trial, ​r​t​ is a binary variable indicating reward delivery, and α is a 
learning rate parameter constrained to lie between zero and one. 

Novelty Preference. ​The novelty preference agent follows an​ “​uncommon-stay/common switch” pattern, which 
tends to repeat choices when they lead to uncommon transitions on the previous trial, and to switch away from them 
when they lead to common transitions. Note that some rats have positive values of the ​β​np​ parameter weighting this 
agent (novelty preferring) while others have negative values (novelty averse; see ​Fig 1e​): 

 

 
 

 

(8) 

Perseveration. ​Perseveration is a pattern which tends to repeat the choice that was made on the previous trial, 
regardless of whether it led to a common or an uncommon transition, and regardless of whether or not it led to 
reward. 

  
 

(9) 

Bias. ​Bias is a pattern which tends to select the same choice port on every trial. Its value function is therefore static, 
with the extent and direction of the bias being governed by the magnitude and sign of this strategy’s weighting 
parameter ​β​bias​. 

  
 

(10) 

Model Fitting 
We implemented the model described above using the probabilistic programming language Stan​39,40​, and performed 
maximum-a-posteriori fits using weakly informative priors on all parameters​41​ The prior over the weighting 
parameters ​β​ was normal with mean 0 and sd 0.5, and the prior over ​α​ was a beta distribution with ​a​=​b​=3. For ease 
of comparison, we normalize the weighting parameters ​β​plan​, ​β​np​, and ​β​persev​,  dividing each by the standard deviation 
of its agent’s associated values (​Q​plan​, ​Q​np​, and ​Q​persev​) taken across trials. Since each weighting parameter affects 
behavior only by scaling the value output by its agent, this technique brings the weights into a common scale and 
facilitates interpretation of their relative magnitudes, analogous to the use of standardized coefficients in regression 
models. 

Surgery: Microwire Array Implants 
Six rats were implanted with microwire arrays (Tucker-David Technologies) targeting OFC unilaterally. Arrays 
contained tungsten microwires 4.5mm long and 50 μm in diameter, cut at a 60° angle at the tips. Wires were 
arranged in four rows of eight, with spacing 250 μm within-row and 375 μm between rows, for a total of 32 wires in 
a 1.125 mm by 1.75 mm rectangle. Target coordinates for the implant with respect to bregma were 3.1-4.2mm 
anterior, 2.4-4.2mm lateral, and 5.2mm ventral (~4.2mm ventral to brain surface at the posterior-middle of the 
array).  
In order to expose enough of the skull for a craniotomy in this location, the jaw muscle was carefully resected from 
the lateral skull ridge in the area near the target coordinates. Dimpling of the brain surface was minimized following 
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procedures described in more detail elsewhere​42​. Briefly, a bolus of petroleum jelly (Puralube, Dechra Veterinary 
Products) was placed in the center of the craniotomy to protect it, while cyanoacrylate glue (Vetbond, 3M) was used 
to adhere the pia mater to the skull at the periphery. The petroleum jelly was then removed, and the microwire array 
inserted slowly into the brain. Rats recovered for a minimum of one week, with ad lib access to food and water, 
before returning to training. 
 

Electrophysiological Recordings 
Once rats had recovered from surgery, recording sessions were performed in a behavioral chamber outfitted with a 
32 channel recording system (Neuralynx). Spiking data was acquired using a bandpass filter between 600 and 6000 
Hz and a spike detection threshold of 30 μV. Clusters were manually cut (Spikesort 3D, Neuralynx), and both 
single- and multi-units were considered, on the condition that they showed an average firing rate greater than 1 Hz.  
 

Analysis of Electrophysiology Data 
To determine the extent to which different variables were encoded in the neural signal, we fit a series of regression 
models to our spiking data. Models were fit to the spike counts emitted by each unit in 200 ms time bins taken 
relative to the four noseport entry events that made up each trial. There were eight total regressors, defined relative 
to pairs of adjacent trials, and consisting of the choice port selected (left or right), the outcome port visited (left or 
right), the reward received (reward or omission), the interaction between outcome port and reward, and the expected 
value of the outcome port visited (​V​) for the first trial, and the choice port selected, the value difference between the 
choice ports (​Q(left)​ - ​Q(right)​), and the value of the choice port selected (​Q(chosen)​) for the subsequent trial. These 
last three regressors were obtained using the agent-based computational model described above, with parameters fit 
separately to each rat’s behavioral data. Regressors were z-scored to facilitate comparison of fit regression weights. 
Models were fit using the Matlab function ​lassoglm​ using a Poisson noise model and L1 regularization 
parameters (pure lasso regression; α = 1, ​λ​ = 10​-4​) sufficient to yield a non-null model for all units.  
In our task, many of these regressors were correlated with one another (​Fig. ED6​), so we quantify encoding using 
the coefficient of partial determination (CPD; also known as partial r-squared) associated with each​14,30​. This 
measure quantifies the fraction of variance explained by each regressor, once the variance explained by all other 
regressors has been taken account of:  

 

 
(11) 

where ​u​ refers to a particular unit, ​t​ refers to a particular time bin, and SSE(​X​all​) refers to the sum-squared-error of a 
regression model considering all eight regressors described above, and SSE(X​-i​) refers to the sum-squared-error of a 
model considering the seven regressors other than ​X​i​. We compute total CPD for each unit by summing the SSE 
associated with the regression models for that unit for all time bins: 

 

 
(12) 

We report this measure both for each unit taken over all time bins (Fig ED1), as well as for the case where the sum 
is taken over the five bins making up a 1s time window centered on a particular port entry event (top neutral center 
port, choice port, bottom neutral center port, or outcome port). Cells were labeled as significantly encoding a 
regressor if the CPD for that regressor exceeded that of more than 99% of CPDs computed based on datasets with 
circularly permuted trial labels. We use permuted, rather than shuffled, labels in order to preserve trial-by-trial 
correlational structure. Differences in the strength of encoding of different regressors were assessed using a sign test 
on the differences in CPD. 
 
We compute total population CPD for a particular time bin in an analogous way: 
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(13) 

Time bins were labeled as significantly encoding a regressor if the population CPD for that time bin exceeded the 
largest population CPD for any regressor in more than 99% of the datasets with permuted trial labels. We compute 
total CPD for each regressor by summing SSE over both units and time bins, and assess the significance of 
differences in this quantity by comparing them to differences in total CPD computed for the shuffled datasets.  
 

Surgery: Optical Fiber Implant and Virus Injection 
Rats were implanted with sharpened fiber optics and received virus injections following procedures similar to those 
described previously​42–44​, and documented in detail on the Brody lab website 
(http://brodywiki.princeton.edu/wiki/index.php/Etching_Fiber_Optics). A 50/125 μm LC-LC duplex fiber cable 
(Fiber Cables) was dissected to produce four blunt fiber segments with LC connectors. These segments were then 
sharpened by immersing them in hydroflouric acid and slowly retracting them using a custom-built motorized jig 
attached to a micromanipulator (Narashige International) holding the fiber. Each rat was implanted with two 
sharpened fibers, in order to target OFC bilaterally. Target coordinates with respect to bregma were 3.5mm anterior, 
2.5mm lateral, 5mm ventral. Fibers were angled 10 degrees laterally, to make space for female-female LC 
connectors which were attached to each and included as part of the implant.  
Four rats were implanted with sharpened optical fibers only, but received no injection of virus. These rats served as 
uninfected controls. 
Nine additional rats received both fiber implants as well as injections of a virus (AAV5-CaMKII​α-eNpHR3.0-eYFP; 
UNC Vector Core) ​into the OFC to drive expression of the light-activated inhibitory opsin eNpHR3.0. Virus was 
loaded into a glass micropipette mounted into a Nanoject III (Drummond Scientific), which was used for injections. 
Injections involved five tracks arranged in a plus-shape, with spacing 500μm. The center track was located 3.5mm 
anterior and 2.5mm lateral to bregma, and all tracks extended from 4.3 to 5.7mm ventral to bregma. In each track, 15 
injections of 23 nL were made at 100μm intervals, pausing for ten seconds between injections, and for one minute at 
the bottom of each track. In total 1.7 μl of virus were delivered to each hemisphere over a period of about 20 
minutes. 
Rats recovered for a minimum of one week, with ad lib access to food and water, before returning to training. Rats 
with virus injections returned to training, but did not begin inactivation experiments until a minimum of six weeks 
had passed, to allow for virus expression. 
 

Optogenetic Perturbation Experiments 
During inactivation experiments, rats performed the task in a behavioral chamber outfitted with a dual fiber optic 
patch cable connected to a splitter and a single-fiber commutator (Princetel) mounted in the ceiling. This fiber was 
coupled to a 200 mW 532 nm laser (OEM Laser Systems) under the control of a mechanical shutter (ThorLabs) by 
way of a fiber port (ThorLabs). The laser power was tuned such that each of the two fibers entering the implant 
received between 25 and 30 mW of light when the shutter was open. 
Each rat received several sessions in which the shutter remained closed, in order to acclimate to performing the task 
while tethered. Once the rat showed behavioral performance while tethered that was similar to his performance 
before the implant, inactivation sessions began. During these sessions, the laser shutter was opened (causing light to 
flow into the implant, activate eNpHR3.0 and silence neural activity) on 7% of trials each in one of three time 
periods. “Outcome period” inactivation began when the rat entered the bottom center port at the end of the trial, and 
ended either when the rat had left the port and remained out for a minimum of 500 ms, or after 2.5 s. “Choice 
period” inactivation began at the end of the outcome period and lasted until the rat entered the choice port on the 
following trial. “Both period” inactivation encompassed both the outcome period and the choice period. The total 
duration of the inactivation therefore depended in part on the movement times of the rat, and was somewhat variable 
from trials to trial (​Fig ED8​). If a scheduled inactivation would last more than 15 s, inactivation was terminated, and 
that trial was excluded from analysis. Due to constraints of the bControl software, inactivation was only performed 
on even-numbered trials.  
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Analysis of Optogenetic Effects on Behavior 
We quantify the effects of optogenetic inhibition on behavior by computing separately the planning index for trials 
following inactivation of each type (outcome period, choice period, both periods) and for control trials. Specifically, 
we fit the trial history regression model of Equation 1 with a separate set of weights for trials following inactivation 
of each type: 

 

 

 

(14) 

 

 

 
 

(15) 

We used maximum a posteriori fitting in which the priors were Normal(0,1) for weights corresponding to control 
trials, and Normal(​β​X, cntrl​, 1) for weights corresponding to inactivation trials, where ​β​X, cntrl​ ​is the corresponding 
control trial weight – e.g. the prior for ​β​CR, out​(1) is Normal(​β​CR, cntrl​(1), 1). This prior embodies the belief that 
inactivation is most likely to have no effect on behavior, and than any effect is has is equally likely to be positive or 
negative with respect to each ​β​. This ensures that our priors cannot induce any spurious differences between control 
and inactivation conditions into the parameter estimates. We then compute a planning index separately for the 
weights of each type, modifying equation 3: 

 

  
(16) 

We compute the relative change in planning index for each inactivation condition: (​PlanningIndex​i​ - 
PlanningIndex​cntrl​) / ​PlanningIndex​cntrl​, and report three types of significance tests on this quantity. First, we test for 
each inactivation condition the hypothesis that there was a significant change in the planning index, reporting the 
results of a one-sample t-test over rats. Next, we test the hypothesis that different inactivation conditions had effects 
of different sizes on the planning index, reporting a paired t-test over rats. Finally, we test the hypothesis for each 
condition that inactivation had a different effect than sham inactivation (conducted in rats which had not received 
virus injections to deliver eNpHR3.0), reporting a two-sample t-test. 
 
To test the hypothesis that inactivation specifically impairs the effect of distant past outcomes on upcoming choice, 
we break down the planning index for each condition by the index of the weights the contribute to it: 
 

   (17) 

We report these trial-lagged planning indices for each inactivation condition, and assess the significance of the 
difference between inactivation and control conditions at each lag using a signrank test across rats. 
 

Synthetic Datasets 
To generate synthetic datasets for comparison to optogenetic inactivation data, we generalized the behavioral model 
to separate the contributions of representations of expected value and of immediate reward. In particular, we 
replaced the learning equation within the model-based RL agent (Equation 7) with the following: 
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(18) 

where ​α​value​ and ​α​reward​ are separate learning rate parameters, constrained to be nonnegative and to have a sum no 
larger than one, and E[​V​] represents the expected reward of a random-choice policy on the task, which in the case of 
our task is equal to 0.5.  

To generate synthetic datasets in which silencing the OFC impairs choice value representations, outcome value 
representations, or reward representations, we decrease the parameter ​β​plan​, ​α​value​, or ​α​reward​, respectively. Specifically, 
we first fit the model to the dataset for each rat in the optogenetics experiment (n=9) as above (i.e. using equation 7 
as the learning rule) to obtain maximum a posteriori parameters. We translated these parameters to the optogenetics 
(equation 18) version of the model by setting ​α​value​ equal to the fit parameter ​α ​and ​α​reward​ equal to 1 - ​α​. We then 
generated four synthetic datasets for each rat. For the control dataset, the fit parameters were used on trials of all 
types, regardless of whether inhibition of OFC was scheduled on that trial. For the “impaired outcome values” 
dataset,  ​α​value​ ​was decreased specifically for trials with inhibition scheduled during the outcome period or both 
periods, but not on trials with inhibition during the choice period or on control trials.  For the “impaired reward 
processing” dataset, ​α​reward​ was decreased on these trials instead. For the “impaired decision-making” dataset, ​β​plan 
was decreased specifically on trials following inhibition. In all cases, the parameter to be decreased was multiplied 
by 0.3, and synthetic datasets consisted of 100,000 total trials per rat. 

Histological Verification of Targeting 
We verified that surgical implants were successfully placed in the OFC using standard histological techniques. At 
experimental endpoint, rats with electrode arrays were anesthetized, and microlesions were made at the site of each 
electrode tip by passing current through the electrodes. Rats were then perfused transcardially with saline followed 
by formalin. Brains were sliced using a vibratome and imaged using an epifluorescent microscope. Recording sites 
were identified using these microlesions and the scars created by the electrodes in passing, as well dimples in the 
surface of the brain. Locations of optical fibers were identified using the scars created by their passage. Sharp optical 
fibers do not leave a visible scar near their tips, so we estimated the position of the tips using the trajectory of the 
scar and the known distance below brain surface to which fibers were lowered during surgery. Location of virus 
expression was identified by imaging the GFP conjugated to the eNpHR3.0 molecule. Note that at the time of the 
first submission of this paper, histological verification of targeting is still underway.  

Data and Code Availability 

All data collected for the purpose of this paper, and all software used in the analysis of this data, are available from 
the corresponding author upon reasonable request. Software used for training rats is available on the Brody lab 
website. 
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Figure ED1:​ Left: Coefficient of Partial Determination (CPD) for the outcome-value and the 
choice-value-difference regressors, computed aggregating variance over all time bins for each 
single unit (green) and multi-unit (red) cluster. P-values shown are the result of a sign test over 
units. Right: CPD for the outcome-value and the chosen-value predictors. 
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Figure ED2​: Coding of outcome value and choice value difference at the time of port entry. 
Each panel shows CPD for the outcome-value and the choice-value-difference regressor,each 
computed in a one-second window (five 200ms time bins) centered on a different port entry 
event. P-values shown are the result of a sign test over units.  
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Figure ED3​: Coding of outcome value and chosen value at the time of port entry. Each panel 
shows CPD for the outcome-value and the choice-value-difference regressor, each computed in a 
one-second window (five 200ms time bins) centered on a different port entry event for 
single-unit (green) and multi-unit (red) clusters. P-values shown are the result of a sign test over 
units.  
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Figure ED4:​ Timecourse of population CPD for the six predictors in our model (see also ​Fig. 
2ef​), considering only single-unit clusters (above) or considering only multi-unit clusters (below) 
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Figure ED5:​ Fraction of units significantly encoding each predictor in each 200ms time bin. 
Units were deemed significant in a bin for a predictor if they earned a coefficient of partial 
determination larger than that of 99% of permuted datasets for that predictor in that bin. This plot 
includes both single- and multi-unit clusters. 
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Figure ED6:​ Correlations among predictors in the model 
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Figure ED7:​ Effects of optogenetic inhibition on the model-free index and on the main effect of 
past choices. No significant differences were found between inhibition and sham inhibition on 
either of these measures (rank sum tests, all p > 0.5). 
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Figure ED8:​ Duration of inhibition associated with outcome-period, choice-period, or 
both-periods conditions.  
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