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SUMMARY

The mammalian neocortex is a highly interconnected
network of different types of neurons organized
into both layers and columns. Overlaid on this struc-
tural organization is a pattern of functional connec-
tivity that can be rapidly and flexibly altered during
behavior. Parvalbumin-positive (PV+) inhibitory neu-
rons, which are implicated in cortical oscillations and
can change neuronal selectivity, may play a pivotal
role in these dynamic changes. We found that opto-
genetic activation of PV+ neurons in the auditory cor-
tex enhanced feedforward functional connectivity in
the putative thalamorecipient circuit and in cortical
columnar circuits. In contrast, stimulation of PV+
neurons induced no change in connectivity between
sites in the same layers. The activity of PV+ neurons
may thus serve as a gating mechanism to enhance
feedforward, but not lateral or feedback, information
flow in cortical circuits. Functionally, it may preferen-
tially enhance the contribution of bottom-up sensory
inputs to perception.

INTRODUCTION

Neurons communicate with each other in dynamically modu-

lated circuits. Functional connectivity, a measure of interactions

between neurons in these circuits, can change gradually during

learning (McIntosh and Gonzalez-Lima, 1998) and formation of

long-term memories, or it can change rapidly, depending on

behavioral context and cognitive demands. While the mecha-

nisms underlying long-term network plasticity have been

extensively documented, those underlying rapid modulation of

functional connectivity remain largely unknown. At the network

level, functional connectivity is affected by up-down and oscilla-

tory states of the neural network (Gray et al., 1989). Cortical inhi-

bition plays a key role in this process (Cardin et al., 2009; Sohal

et al., 2009;Womelsdorf et al., 2007). Parvalbumin-positive (PV+)

interneurons, whichmake upmore than half of the inhibitory neu-

rons in the cortex (Celio, 1986), are particularly important as they
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provide strong feedforward and feedback inhibition that can syn-

chronize the cortical network (Cardin et al., 2009; Fuchs et al.,

2007; Isaacson and Scanziani, 2011; Sohal et al., 2009). Their

precise influence on cortical networks during sensory process-

ing, however, remains unclear. In particular, it is unknown how

PV+ neurons may differentially modulate responses in different

layers of the neocortex and how the anatomical organization

of the cortex affects the flow of information through these

networks.

Histological studies have shown that the cortex consists of

defined layers with vertical projections between those layers

(Lee and Winer, 2008; Linden and Schreiner, 2003; Winer and

Lee, 2007). Functional connectivity within cortical networks has

traditionally been investigated by measuring the cross-correla-

tion between the spike trains of pairs of neurons (Douglas

et al., 1989; Douglas andMartin, 1991). Still, little is known about

functional connectivity under sensory stimulation or about the

role of inhibition in the cortical network. We combine multiple

computational approaches with optogenetic activation of PV+

neurons to determine how inhibitory activity modulates network

connectivity within and across layers and columns of the cortex.

RESULTS AND DISCUSSION

We targeted expression of the light-sensitive channel channelr-

hodopsin-2 (ChR2) to PV+ neurons in the mouse auditory cortex

(Figure 1A), using a Cre-dependent adeno-associated virus

(Sohal et al., 2009). One month posttransfection, we recorded

neural responses with a 43 4 polytrode in putative L2/3 through

L4 of the primary auditory cortex (Figure 1B) while playing pure

tones to the contralateral ear and stimulating PV+ cells with

blue light (Figure 1C).

Using Ising Models to Recover Functional Connectivity
in Cortical Circuits
Functional connectivity between the recorded sites was quanti-

fied using Ising models, which have previously been used to

model neural interactions in many different systems (Ganmor

et al., 2011a, 2011b; Köster et al., 2012; Marre et al., 2009; Ohio-

rhenuan et al., 2010; Roudi et al., 2009a; Schaub and Schultz,

2012; Schneidman et al., 2006; Shlens et al., 2006, 2009; Tang

et al., 2008). The Ising model describes the coupling (a measure
.
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Figure 1. Viral Expression, Recording Set-

Up, and Responses to Pure Tone and

Optogenetic Stimulation

(A) We injected PV-Cre mice with 1 ml of a Cre-

inducible adeno-associated virus in the right

auditory cortex that resulted in transfection of the

light-sensitive ion channel ChR2 in PV+ cells.

Histology confirmed the colocalization of ChR2-

eYFP (left) to PV+ cells in the auditory cortex

(center, immunostained with Alexa 594, and right,

[see Merge]). Approximately 58% of PV+ cells

were transfected with ChR2 (white arrows indicate

examples of colocalization). Scale bars, 50 mm.

(B) Schematic depicting recording set-up. A 4 3 4

silicon polytrode was lowered orthogonally to the

cortex so that the deepest sites were located at a

depth of �500 mm. A 200-mm-diameter optic fiber

coupled to a 473 nm blue laser was positioned

parallel to the polytrode, 1–2 mm above the cortex

to provide optogenetic stimulation during 50% of

the trials.

(C) Light and sound stimulus conditions for

example trials and corresponding spike raster

plot. Input to the Ising model was a binary matrix

including the light condition at each time point (blue bars represent the time during which the light was on and PV+ cells were being stimulated), the frequency of

the pure tone stimulus that was presented at each time (represented by pink bars), and the spike data for each channel, binned at 5ms. Sound and light conditions

were randomly interleaved for each 1 s trial.
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of functional connectivity) between pairs of recording sites and

between recording sites and external stimuli based on observed

population firing patterns and corresponding stimuli (Figures 1B

and 1C). Because all pairwise interactions are fitted simulta-

neously, Ising models are less prone to false-positive interac-

tions that are inherent to traditional correlation analysis

(Schneidman et al., 2006). For example, in a fully connected Ising

model (see Experimental Procedures), the strongest coupling to

sounds occurred in rows 3 and 4 (Figure 2A), corresponding to

the thalamorecipient layers. By contrast, traditional correlation

analysis indicated strong connectivity between sounds and sites

in all rows (Figure 2B). This false-positive connectivity between

sounds and activity in rows 1 and 2 is due to the absence of

site-to-site interactions in the correlation analysis. In a reduced

Ising model where recording sites were coupled to sound but

not to each other, which we call the independent neurons model,

positive couplings between neural activity and the sound stim-

ulus were also present in all recorded layers and did not differ

across depth (Figure 2C; p = 0.55, Kruskal-Wallis analysis of vari-

ance [ANOVA]). Furthermore, pairwise correlations were more

tightly correlated with couplings in the independent neurons

model than in the fully connected model (Figure 2D; correlations

resampled 100,000 times, with the difference in correlations sig-

nificant at bootstrapped p < 1 3 10�4). The fully connected

model showed significantly higher log-likelihood on held-out

data than the independent model (Figure 2E; p = 0.013,Wilcoxon

signed-rank test), suggesting a significant contribution of site-to-

site interactions to neuronal activity.

The Ising model can discover spatial structure within the

network despite no prior knowledge of spatial locations of the

polytrode recording sites. In the fully connected Ising model,

coupling was stronger in the vertical and horizontal directions

than in the diagonal directions (Figure 2F), presumably due to
Ne
neuronal projections within cortical columns and layers. In addi-

tion, coupling decreasedmore rapidly with vertical than with hor-

izontal distance—sites up to 375 mm apart horizontally were still

more strongly coupled than sites 300 mm away vertically (p =

4.33 10�6; Wilcoxon rank sum test). Such connectivity structure

wasmuch less prominent in the pairwise correlations (Figure 2G;

ratio of column and layer to diagonal couplings = 1.26 ± 0.03 for

correlations, 2.16 ± 0.20 for couplings; p = 0.001, Wilcoxon rank

sum test). Thus, although the model is blind to the relative loca-

tions of the recording sites, the fully connected Ising

model recovered known layer and column circuitry (Linden and

Schreiner, 2003; Mountcastle, 1957).

Optogenetic Activation of PV+ Neurons Enhances
Functional Connectivity
Using the fully connected Ising model, we analyzed how optoge-

netic activation of PV+ neurons influences functional connectiv-

ity in laminar, columnar, and thalamic input circuits of the primary

auditory cortex. In keeping with PV+ neurons providing inhibitory

input to connected pyramidal cells, we saw an overall reduction

of the Ising model bias term in ‘‘light-on’’ trials, reflecting

reduced firing rates in all rows (Figure 3A; Bonferroni-corrected

p = 0.003, p = 0.0002, p = 8.4 3 10�6, and p = 8.7 3 10�5 for

rows 1, 2, 3, and 4, respectively, Wilcoxon signed-rank tests).

Furthermore, we found that stimulating PV+ neurons led to

increases in vertical connectivity between sites within the same

vertical column (Figure 3B; Bonferroni-corrected p = 0.01 and

p = 13 10�4 for coupling between sites within the same column,

two and three rows away, respectively, Wilcoxon signed-rank

tests) but did not change horizontal connectivity within layers

(p > 0.05 for all comparisons, Wilcoxon signed-rank tests).

Coupling between neural activity and sounds increased for sites

in rows 3 and 4 during stimulation of PV+ neurons (Figures 3C
uron 80, 1066–1076, November 20, 2013 ª2013 Elsevier Inc. 1067
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Figure 2. The Ising Model Recovers Canon-

ical Cortical Structure Not Observed with

Traditional Correlation Analysis

(A) Mean sound-to-site coupling derived from one

set of polytrode recording data using the fully

connected model. When connections between

sites are taken into consideration, the strongest

couplings with sounds are seen in rows 3 and 4,

corresponding to theputative thalamic input layers.

(B) Mean sound-to-site correlation from the same

data set as in (A). Neural activity on all rows of the

polytrode was positively correlated with sound

presentation.

(C) Mean sound-to-site coupling derived from the

same data set as in (A) using the independent

neurons model. When we assume the sites are not

connected to each other, the coupling between

neural activity and sound does not change as a

function of depth (electrode row).

(D) Pairwise correlations as a function of Ising

model couplings for the fully connected model of

connectivity for all subjects and locations (left,

Spearman r = 0.61). Pairwise correlations as

a function of Ising model couplings for the inde-

pendent neurons model of connectivity for all

subjects and locations (right, Spearman r =

0.97). When connections between neurons are

considered, couplings are more distinct from

correlations.

(E) Ising model performance for the fully con-

nected model and the independent neurons

model. The fully connected model showed the

highest log-likelihood on held-out data. Data are

presented as mean ± SEM. **p < 0.01.

(F) Coupling between pairs of recording sites in the

fully connected model as a function of horizontal

and vertical distance collapsed across all loca-

tions. Laminar and columnar structure emerges

from the model in the form of strong positive

couplings for horizontal and vertical distances = 0,

compared to couplings between sites situated

diagonally (horizontal and vertical distance s 0),

which are weaker.

(G) Mean correlation between sites as a function of

horizontal and vertical distances collapsed across

all locations. The correlation falls off strongly with

vertical distance but remains more uniform across

horizontal distance.
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and 3D; Bonferroni-corrected p = 0.0003 and p = 8 3 10�13 for

the third and fourth rows, respectively, Wilcoxon signed-rank

tests). These sites were likely located in the thalamorecipient

input layers (layer 4 and deep layer 3). The increase in sound-

to-site coupling in putative thalamorecipient layers was not an

artifact of the response window selection (Figure S1 available

online). Our findings indicate that activation of PV+ neurons

results in enhanced functional connectivity, specifically in thala-

mocortical input and cortical columnar circuits.

Stimulation of PV+ Neurons Enhances Functional
Connectivity in the Feedforward Direction
While the Ising model uncovers altered functional connectivity

with inhibitory neuron stimulation, it is agnostic to the direction

in which these changes occur. For example, the increased
1068 Neuron 80, 1066–1076, November 20, 2013 ª2013 Elsevier Inc
coupling within cortical columns during activation of PV+

neurons could be in the feedforward, feedback, or both direc-

tions. To address this issue, we used vector autoregression

(VAR) to derive a linear model that described how activity in

one site was modulated by spikes in other sites as a function

of time delay (Figure 4A; see Experimental Procedures for

details). Unlike the Isingmodel, which describes dynamics within

a fixed time bin, this model considers how inputs from different

rows at different times affect the neural responses in a given

time. Prediction of one site’s activity using the population activity

was significantly better during the ‘‘light-on’’ than during the

‘‘light-off’’ epochs (Figure 4B; Wilcoxon signed-rank test, p =

4.0 3 10�10).

We then examined the contribution of each site to predicting

the activity of another site (i.e., the weight function in the linear
.
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Figure 3. Optogenetic Activation of PV+ Neurons Decreases Average Firing Rate while Increasing Functional Connectivity within Columns

and from Sounds to Sites Located in Putative Thalamorecipient Layers

(A) Bias term for the Ising model for each site in different rows on the polytrode, representing a proxy for the intrinsic firing rate of each site. Light stimulation

significantly reduced the bias term in all layers, indicating an overall reduction of firing rate with stimulation of PV+ neurons.

(B) Site-to-site couplings as a function of the distance between the sites. Couplings are plotted between sites one, two, and three nodes away within a column or

within a layer (see node diagrams below the x axis). Light stimulation significantly increased couplings within a column at distances two and three nodes away and

did not change couplings within a layer.

(C) Sound-to-site coupling averaged across sites in each row. During optogenetic stimulation, coupling between neural activity and sound stimulation increased

in the putative thalamorecipient layers (rows 3 and 4).

(D) Examples of sound-to-site coupling in sites recorded from three different animals, plotted as a function of tone frequency and electrode row. In all cases, there

was an increase in coupling to sounds in the putative thalamic input layers (rows 3 and 4) during light stimulation of PV+ neurons. Some locations showed

decreases in coupling to sounds in the superficial layers during light stimulation, but this effect was not consistent across the population; see (C).

*p < 0.05, **p < 0.01, and ***p < 0.001, Bonferroni corrected for multiple comparisons. Error bars and black marker in (A) through (C) depict mean ± SEM. See also

Figure S1.
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model as a measure of functional connectivity; Figures 4C and

4D). In general, neural activity was more strongly modulated by

activity of sites in the same cortical layers rather than in different

layers. However, these weights were not significantly altered

by activation of PV+ neurons (Figure 4D, diagonal subplots).

By contrast, PV+ neuron activation significantly increased the

weights for row 4 sites in predicting the activity of more superfi-

cial sites within a time window between 6 and 12 ms (Figure 4D,

far right subplots). There was also a small trend (not significant)

of increased excitatory drive from row 3 to row 4, consistent
Ne
with the primary input layer to auditory cortex arising in deep

layer 3 and propagating information to layer 4 (Smith and Popu-

lin, 2001). Furthermore, inhibitory influences from superficial row

1 on activity in row 3 were lessened with PV+ neuron stimulation

(Figure 4D, first column, third row subplot), suggesting that the

normal feedback inhibition from superficial layers is altered

when PV+ neurons inhibit those cells. The double dissociation

between the stronger baseline intralayer influences and the

light-activated increase for cross-layer influences supports our

findings from the Ising model analysis that the activation of
uron 80, 1066–1076, November 20, 2013 ª2013 Elsevier Inc. 1069
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Figure 4. PV+ Neuron Activation Increases

Functional Connectivity in the Feedforward

Direction

(A) Schematic of the VAR analysis. To model the

interaction between the activity of sites at different

depths, we fit a VAR model that predicts the

activity for each site on the polytrode based on the

activity of all other contact sites. In this schematic,

neural activity in site 1 is predicted from activity

in sites 2, 3, and 4. We fit a linear model that

describes how spikes in each site modulate

spiking in the predicted site at different time

delays. For example, spikes in the teal trace often

precede spikes in the black trace, so positive

weights are assigned to site 4 at the relevant time

delays. We then predict responses based on these

weights and apply an output nonlinearity to

improve response predictions.

(B) Prediction performance of VAR models is

significantly higher when modeling spike trains

during ‘‘light-on’’ epochs compared to ‘‘light-off’’

epochs (p < 4.0 3 10�10, Wilcoxon signed-rank

test). Prediction performance was assessed as the

correlation between the response predicted by the

VAR model and the actual response from held-out

data. We used resampling to determine which

models performed significantly better than

chance, indicated in black. Gray points show VAR

models that were excluded from further analysis.

The red dashed line is the unity line y = x.

(C) Representative VAR model weights from one

subject for sites on one shank of the polytrode.

Each plot shows how the activity in sites from rows

1–4 modulates the activity of sites 1, 5, 9, and 13,

respectively (on the leftmost shank, see Figure 1B).

Excitatory drive is shown in red; inhibitory drive is

shown in blue. Dashed lines separate channels in

different rows on the polytrode.

(D) Average VAR model weights (bi from Equa-

tion 4) collapsed across all subjects and across

contact sites in the same row show that light stimulation of PV+ cells results in stronger and longer excitatory drive from row 4 to rows 1 and 2. VARmodel weights

were significantly higher for ‘‘light-on’’ epochs (Bonferroni-corrected p value indicated by color on horizontal line, Wilcoxon signed-rank test) when predicting

rows 1–2 from activity in row 4. Row 2 also showed significantlymore suppression from the putative thalamorecipient layer before the window of strong excitation

starting at �12 ms. When predicting row 3 activity from activity in superficial row 1, we found that stimulation of PV+ neurons reduced the inhibitory influence of

row 1 on row 3, as evidenced by regression weights closer to zero. The strong increase in drive from row 4 to more superficial layers and the small regression

weights in the feedback direction shows that stimulation of PV+ neurons increases drive in the feedforward direction.

Data are presented as mean regression weight across all sites and subjects ± SEM. See also Figure S2.
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PV+ neurons specifically increases intracolumn functional con-

nectivity. The increased contribution of activity in row 4 to firing

in superficial rows during light stimulation further suggests that

the enhanced functional connectivity is in the feedforward

direction.

Qualitatively similar results were also observedwhen fitting the

data in a generalized linear model (GLM) with an exponential

nonlinearity (see Pillow et al., 2008), although predictive perfor-

mance of the GLM as assessed by correlation was worse than

the VAR model for both ‘‘light-off’’ and ‘‘light-on’’ conditions

(p < 0.0001, Wilcoxon signed-rank tests; see Supplemental

Experimental Procedures; Figure S2). These results, together

with the increased sound-to-site coupling in the feedforward

thalamocortical circuit, suggest that activation of auditory

cortical PV+ neurons may facilitate bottom-up information flow

in the feedforward direction.
1070 Neuron 80, 1066–1076, November 20, 2013 ª2013 Elsevier Inc
Activation of PV+ Neurons Increases Detection
Signal-to-Noise Ratio in Single Recording Sites
Previous studies have shown that optogenetic activation of PV+

neurons enhances stimulus feature selectivity and increases the

signal-to-noise ratio (SNR) in cortical neurons (Atallah et al.,

2012; Lee et al., 2012; Sohal et al., 2009; Wilson et al., 2012).

In our study, light activation of PV+ neurons induced strong

suppression of spontaneous firing and weak reduction of

tone-evoked responses (mean percent suppression ± SEM =

31.77% ± 0.03% for spontaneous activity and 18.57% ±

0.03% for evoked activity; see Figures 5A and 5B for examples

of peristimulus time histograms and receptive fields). This led

to an increase in the detection SNR (mean detection SNR ±

SEM = 6.13 ± 0.73 for ‘‘light-on’’ versus 3.17 ± 0.21 for ‘‘light-

off’’ trials, p = 0.005 Wilcoxon signed-rank test, Figure 5C).

In addition, PV+ neuron stimulation significantly narrowed
.
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Figure 5. PV+ Neuron Activation Strongly Suppresses Spontaneous

Activity, Weakly Suppresses Sound-Evoked Activity, and Improves

Detection SNR of Responses

(A) Example peristimulus time histogram ofmultiunit activity. Trials with no light

stimulation (left) showed strong responses to pure tones played at 0.5 s (red

arrow). When blue light was used to stimulate PV+ neurons between 0.25 and

0.75 s (right), responses to sound were still observed, but the overall evoked

response was reduced. Spontaneous activity was reduced throughout the

duration of the light stimulus.

(B) Example receptive fields during ‘‘light-off’’ (left) and ‘‘light-on’’ (right) trials

separately for the same site in (A). Each pixel in the plot represents the average

number of spikes evoked by a stimulus at a particular frequency and intensity

level. The reduction in spontaneous rate is evident in the decreased back-

ground spikes outside of the V-shaped receptive field.

(C) Detection SNR (measured as a [number evoked � number of spontaneous

spikes]/[number of spontaneous spikes]) during ‘‘light-off’’ (gray) and ‘‘light-

on’’ (blue) trials. Optogenetic activation of PV+ neurons results in a significant

increase in the SNR compared to the no-stimulation condition. Data are pre-

sented as mean SNR ± SEM.

(D) Receptive field bandwidths 20 dB above threshold (left) and receptive field

thresholds (right) for receptive fields calculated from ‘‘light-off’’ (no stimulation

of PV+ neurons) and light-on (stimulation of PV+ neurons) trials separately.

Lines are colored according to whether a reduction (blue), an increase (red), or

no change (black) in bandwidth was observed. We observed a significant

reduction in receptive field bandwidths during PV+ neuron stimulation (p <

0.001, Wilcoxon signed-rank test) with no change in threshold. This indicates

that stimulating PV+ neurons increases stimulus selectivity by narrowing the

range of stimuli to which a site responds.

*p < 0.05, **p < 0.01, and ***p < 0.001, Bonferroni-corrected Wilcoxon signed-

rank tests. See also Figure S3.
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Ne
receptive field bandwidths (p < 0.001, Wilcoxon signed-rank

test) without changing response thresholds at the characteristic

frequency (p = 0.79, Wilcoxon signed-rank test, Figure 5D). In

sham-injected control mice not expressing ChR2, light stimula-

tion did not cause any significant change in response properties

(Figure S3).

Reductions in Spontaneous Activity Alone Do Not
Account for Functional Connectivity Changes
To test the possibility that reduced spontaneous activity and

increased detection SNR (Figures 5A–5C) caused the observed

increases in site-to-site coupling (Figure 3B), we randomly

removed 20%–80% of spikes recorded in ‘‘light-off’’ trials to

mimic the effects of stimulation of PV+ neurons with light and

reconducted the Ising model analysis (see Experimental

Procedures). The mean site-to-site coupling strength was not

increased by the random reduction of spontaneous and evoked

spikes (Figure 6A) but rather was reduced in sites one node away

within the same column (p < 0.001 for all comparisons, Bonfer-

roni-corrected Wilcoxon signed-rank tests). No changes to be-

tween-site coupling two and three sites away within the column

were seen (Bonferroni-corrected p > 0.05, Wilcoxon signed-rank

tests), even with reductions in activity that were far larger than

the suppression caused by PV+ neuron stimulation (�32% sup-

pression on average). There was also no change in sound-to-site

coupling with these manipulations (Figure 6B). Finally, to deter-

mine if the altered site-to-site coupling strength was due to

changes in evoked activity, we removed sound-evoked spikes

and reconducted the analysis with only the (unaltered) sponta-

neous activity. The coupling strength was still higher during

activation of the PV+ neurons (Figure 6C; Bonferroni-corrected

p = 0.002 and p = 0.0002 for sites 2 and 3 away within a column,

respectively, Wilcoxon signed-rank tests). These results indicate

that the enhanced coupling by PV+ neuron activation was not

due to the increased detection SNR or reduced baseline activity.

Rather, it reflects the state of the circuit connectivity and is inde-

pendent of sensory stimulation and responses.

Possible Mechanisms for the Enhancement of
Functional Connectivity by PV+ Neurons
In this study, we quantified functional connectivity in the auditory

cortex with coupling from the Ising model and the weight func-

tion from vector autoregression. Both measures elucidate how

the activity of a neuron or the presentation of a sound stimulus

drives the firing of a target neuron. The specific mechanisms un-

derlying the modulation of functional connectivity by PV+ neu-

rons were not investigated in the present study but could involve

the modulation of synaptic connections and changes in global

network states. For example, synaptic efficacy can be rapidly

altered by the prior synaptic activity (Zucker and Regehr,

2002), which is likely influenced by the activity of PV+ neurons.

Alternatively, by synchronizing network activity (Cardin et al.,

2009; Sohal et al., 2009), PV+ neurons could set target neurons

in a more excitable state when the projection neuron fires, thus

enhancing their functional connectivity. The effects on column

rather than layer connections may be related to anisotropic pro-

jection patterns of PV+ neurons (Packer and Yuste, 2011),

whereby PV+ neurons preferentially inhibit pyramidal neurons
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Figure 6. Effect ofManipulation of Spontaneous and EvokedActivity

on Ising Model Couplings

(A) Random reduction of spikes in all layers during ‘‘light-off’’ trials does not

increase site-to-site couplings in the Ising model as did PV+ neuron stimula-

tion. Instead, significant reductions in site-to-site couplings are seen in both

column and layer couplings one node away for several levels of firing rate

reduction (20%, 50%, or 80% reduction).
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located in the same vertical columns over distances 200 mm and

greater.

Potential Limitations
While both the Ising model and the VAR models allow us to

analyze the relative changes to within- versus between-layer

connectivity with PV+ neuron stimulation, some caution should

be taken when interpreting these functional connections in terms

of synaptic interactions. With extracellular recordings, it is not

possible to reconstruct the synaptic connections between re-

corded (or stimulated) neurons. Coupling between neurons

should be considered as a functional description rather than an

anatomical one. For example, researchers have found that

coupling weights in the Ising model do not necessarily corre-

spond to synaptic connections in the network (Roudi et al.,

2009b). The strength of the Ising model lies in its ability to distin-

guish direct from indirect interactions; for example, in finding

direct stimulus input to rows 3 and 4, representing the thalamor-

ecipient layer. However, the symmetric nature of Ising model

couplings means that directed interactions, such as combined

excitatory/inhibitory influences (cell A excites cell B, but B in-

hibits A), cannot be uncovered. The VAR model addresses

some of these caveats, since it can quantify directional interac-

tions between recording sites and describe how neuronal firing

is affected in different time periods. Our model shows that strong

feedforward drive is enhanced by stimulation of PV+ neurons,

whereas feedback from superficial to putative thalamic input

layers is not affected.

Implications for Sensory Perception
Specific enhancement of feedforward connectivity has impor-

tant implications in processing sensory information. Sensory

perception is derived from both bottom-up sensory inputs and

top-down stimulus expectations (Kording and Wolpert, 2004;

Stocker and Simoncelli, 2006). Previous theoretical work indi-

cates that sensory cortical neurons could integrate multiple

sources of information by linear summation of population re-

sponses activated by each source. To achieve optimal integra-

tion under this scheme, however, the weight placed on each

information source must be dynamically adjusted according to

the quality of the information and task demands (Ma et al.,

2006). It is interesting that the firing rate of fast-spiking

neurons—likely, PV+ neurons (Kawaguchi and Kubota, 1998;

Toledo-Rodriguez et al., 2004)—appears to increase with

demand of attention to external stimuli (Chen et al., 2008; Mitch-

ell et al., 2007). Our results show that activation of PV+ neurons

preferentially emphasizes bottom-up sensory information by

increasing feedforward connectivity without changing theweight

on top-down information presumably supplied through lateral

or feedback connections. Thus, PV+ neurons may play an

important role in optimal integration of sensory information
(B) Random reduction of spikes in all layers does not alter sound-to-site

couplings.

(C) Removing sound-evoked periods from the spike trains does not change the

effect of stimulation of PV+ neurons on site-to-site couplings, highlighting the

importance of network connectivity over stimulus input.

Data are presented as mean ± SEM.

.
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with top-down expectations in sensory perception. These results

could inform future work on mechanisms of sensory pathologies

in patients with autism and schizophrenia, both of which are

associated with PV+ neuron dysfunction (Gandal et al., 2012;

Gonzalez-Burgos and Lewis, 2012).

EXPERIMENTAL PROCEDURES

Subjects

The University of California, Berkeley (UC Berkeley), Animal Care and Use

Committee approved all procedures. Subjects included 11 adult PV-Cre

mice (strain B6;129P2-Pvalbtm1(cre)Arbr/J; Jackson Laboratory), aged

approximately postnatal day 100 (�P100) at the time of recordings. Eight

mice received an injection in the right auditory cortex at �P60 with 1 ml of a

Cre-dependent adeno-associated viral vector carrying a double-floxed

inverted copy of the light-sensitive cation channel channelrhodopsin-2

[pAAV-EF1a-DIO-hChR2(H134R)-EYFP-WPRE-pA; 8 3 1012 viral particles

per milliliter, University of North Carolina Vector Core] using a glass micropi-

pette (Drummond Wiretrol, 10 ml) attached to a Quintessential Stereotaxic

Injector (Stoelting) and procedures described elsewhere (Cardin et al., 2010).

To control for the effect of light stimulation or heating of the cortex in general,

we injected three mice with saline using the same protocol. A small burr hole

(0.7 mm in diameter) was made over the right auditory cortex (1.75 mm rostral

to lambda on the temporal ridge; Franklin and Paxinos, 2008), and virus (or

saline) was delivered through a small durotomy. Each injection was performed

in two stages, with 0.5 ml of virus injected at a depth of 500 mm and the remain-

ing 0.5 ml injected at 250 mm, at a rate of 0.1 ml/s. Recordings were obtained

after an infection period of approximately 1 month to ensure adequate expres-

sion of ChR2 throughout the auditory cortex, which was confirmed using

green fluorescent protein (GFP) fluorescence goggles (BLS Ltd.).

Immunohistochemistry

Mice were perfused transcardially with cold 0.01 M PBS (pH = 7.4) followed by

4% paraformaldehyde (PFA) in 0.01 M PBS. Brains were postfixed in 4% PFA

for 12 hr and then cryoprotected in 30% sucrose for 18 hr. Free-floating sec-

tions (50 mm) were cut using a cryostat (Leica CM3050). Every other section

was incubated with blocking solution (10% normal goat serum in 0.01 M

PBS with 0.1% Triton X-100) for 45 min at room temperature (20�C) and
then incubated in primary antibody (PV 25 rabbit anti-parvalbumin, Swant,

1:4,000 dilution) at 4�C overnight. The next day, slices were incubated in sec-

ondary antibody (Alexa 594 goat anti-rabbit immunoglobulin G, Invitrogen,

1:200 dilution) for 1.5 hr at room temperature. Sections were mounted on

gelatin-subbed glass slides with Fluoromount-G (Southern Biotech) and cov-

erslipped. Adjacent sections not stained for PV were washed in 0.01 M PBS,

mounted on slides and left to dry for 48 hr. They were then Nissl stained

with 0.5% cresyl (w/v) for identification of individual cortical layers.

Quantification of Virus Expression

We scored the spread of the virus by hand by analyzing each 50 mm coronal

section for the presence of enhanced yellow fluorescent protein (eYFP) fluo-

rescence using a Zeiss LSM 780 34-channel AxioExaminer fixed stage upright

confocal microscope (UC Berkeley Molecular Imaging Center). Colocalization

of ChR2-eYFP to PV+ cells was analyzed by acquiring confocal images and

identifying cells from each fluorescence channel by hand using ImageJ’s cell

counter plug-in.

Electrophysiological Recording and Stimuli

The right auditory cortex was mapped for each mouse under anesthesia using

a cocktail of ketamine (100 mg/kg) and xylazine (10 mg/kg) and procedures

described previously (Han et al., 2007). Following deflection of the temporal

muscle, exposure of the auditory cortex, and removal of the dura mater, we

performed a coarse mapping with tungsten electrodes (FHC) to determine

the location of primary auditory cortex based on rostrocaudal tonotopy and

short spike latencies. We then recorded extracellular multiunit neural activity

in putative layer 2/3 through layer 4 of the right primary auditory cortex (Franklin

and Paxinos, 2008; Oviedo et al., 2010) using a 4 3 4 silicone polytrode
Ne
(NeuroNexus A434-3mm-100-125-177). Fourteen of 16 channels showed

normal impedance measurements and were included in the analysis. A total

of 350 multiunit sites (294 from ChR2-transfected animals, 56 from saline-in-

jected controls) were used in our analyses. The polytrode was oriented parallel

to the tonotopic axis and lowered orthogonally to the cortex so that the deepest

contact sites were at a depth of approximately 500 mm from the pial surface

(Figure 1A). The extracellular signal was obtained using a TDT amplifier con-

nected to TDT RX5 hardware (Tucker Davis Technologies), using a sampling

rate of 25 kHz. Spike times were calculated by thresholding the extracellular

signal at 1.5 times the SD of the SNR and bandpass filtering between 300

and 3,000 Hz, and they were logged using custom software running on a Win-

dows XP computer. Sound stimuli were presented to the contralateral ear

through an electrostatic cannulated speaker (EC1, Tucker Davis Technologies)

controlled by TDT RX6 hardware and calibrated to ensure less than 3% spec-

tral distortion and a flat output (<3 dB deviation) from 4 to 75 kHz (Brüel and

Kjær microphone, preamplifier, and conditioning amplifier, with SigCal32 soft-

ware). Sound stimuli were pure tones generated using MATLAB (25 ms length

with 5 ms squared-cosine ramp, sampling rate, 156.25 kHz) played from 4 kHz

to 75 kHz in 0.2 octave steps, for a total of 22 frequencies. Sounds were pre-

sented at six different loudness levels (20–70 dBSPL, 10 dB spacing) in a pseu-

dorandom order with a 1 Hz repetition rate, and each frequency-intensity pair

was repeated three times. For the 50 dB level, stimuli were presented an addi-

tional 12 times to obtain higher resolution data at this intermediate level. For

each 1 s trial, a tone pip would play at 500 ms into the trial. For half of the trials,

we stimulated ChR2-transfected PV+ neurons using a 500 ms pulse of 473 nm

blue laser light (Shanghai Laser and Optics Century Co., model BL473T3)

coupled to a 200 mm optic fiber (ThorLabs, BFL37-200) beginning at 250 ms

into the trial and controlled by a transistor-transistor logic (TTL) pulse delivered

by the RX5 hardware. This stimulation protocol results in the continuous

spiking of the PV+ neurons throughout the duration of the light pulse (Zhao

et al., 2011). The laser output was calibrated using a power meter (ThorLabs,

PM100D with sensor S120C and neutral density filter NE03A-A) to deliver light

at an intensity of 1.2 mW, or �40 mW/mm2. This light intensity was chosen as

the minimal light level that induced silencing of cortical activity throughout the

light stimulation period. Photoelectric light artifacts (sharp transients locked to

the onset of the light stimulus) were removed by excluding time points imme-

diately surrounding the light onset (Cardin et al., 2010). Classical receptive

fieldswere calculated for ‘‘light-on’’ and ‘‘light-off’’ trials separately by counting

the number of spikes elicited by each frequency-intensity pair in a window

defined by the peak of the poststimulus time histogram. Receptive field thresh-

olds were defined as the minimum sound intensity required to evoke a

response (the intensity at the tip of the V-shaped receptive field). The receptive

field bandwidths were calculated as the width of the frequency response in

octaves 20 dB above the intensity threshold. Detection SNR was defined as

(number of evoked spikes� number of spontaneous spikes)/(number of spon-

taneous spikes) for ‘‘light-on’’ and ‘‘light-off’’ epochs separately.

Ising Model Fitting

Binary matrices of the sound stimulus condition and spiking data for ‘‘light-off’’

and ‘‘light-on’’ trials were separately used as input to the model. Spiking activ-

ity from each of the contact sites on the polytrode was binned into 5 ms time

epochs so that, for each bin, if a spike occurred during those 5 ms, the value

was set to 1, and if no spikes occurred, the value was set to 0. The bin duration

of 5 ms was chosen according to the average cross-correlation between all

pairs of recording sites, which showed that the mean cross-correlation was

approximately three times the SD of the baseline correlation at 5 ms. The

sound stimulus matrix consisted of values for 22 frequency bins for each of

t time points, with values of 1 when a stimulus at a given frequency was present

and 0 when the stimulus was absent. Since cortical responses to sound occur

with a delay relative to stimulus onset, we set the sound matrix to 1 for a win-

dow starting at 15 ms after the onset of the sound and ending at 50 ms after

sound onset, corresponding to when the cross-correlation between the sound

stimulus onset and neural spiking responses reached approximately three

times the SD of the baseline cross-correlation. Fitting separate sound-to-site

couplings for each time delay relative to the stimulus onset (from 0 to

100 ms after sound onset, see Supplemental Experimental Procedures) did

not change our result (Figure S1). Only responses to the three highest decibel
uron 80, 1066–1076, November 20, 2013 ª2013 Elsevier Inc. 1073
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levels were used in themodel (50, 60, and 70 dB). For each polytrode site, trials

were randomized, the full data matrix was split into ten equal chunks, and each

model was estimated by holding out one of the data chunks, training on the

remaining 90% of the data, and repeating this process ten times for each

possible training and validation set. This method, called 10-fold cross-valida-

tion (Kohavi, 1995), was used to ensure an accurate estimate of the log-likeli-

hood that is more robust to noise in the data.

The stimulus-conditioned Ising model is defined as follows:

pðxjs;J;WÞ= 1

Zðs;J;WÞ exp
�
xTJx+ xTWs

�
; (Equation 1)

where x˛f0; 1gN is the binary spike pattern for each time point, N is the

number of recording sites, J˛RN3N is the site-to-site coupling matrix,

W˛RN3M is the sound-to-site coupling matrix, M is the number of stimulus

dimensions (in this case, sound frequencies presented), and s˛f0; 1gM is

the stimulus input vector. A positive coupling value Jij > 0 indicates that sites

xi and xj tend to be active simultaneously, while a coupling Jij < 0 indicates

that when a spike occurs at site xi, xj will be more likely to remain silent and

vice versa. Similarly, a positive sound-to-site coupling value Wij indicates

that spiking in xi tends to increase during presentation of stimulus sj, while a

negative sound-to-site coupling value of Wij indicates that spiking in xi is sup-

pressed during presentation of sj. Both site-to-site and sound-to-site cou-

plings are unitless (much like linear regression weights, for example), with

the magnitude of coupling indicating the strength of the relationship between

their firing patterns. We were interested in the effect of the light stimulus con-

dition on coupling, so separate coupling matrices J andWwere trained for the

‘‘light-off’’ and ‘‘light-on’’ trials.

To estimate the couplings, we usedminimumprobability flow learning (MPF)

(Schaub and Schultz, 2012; Sohl-Dickstein et al., 2011a, 2011b) tominimize an

L1 regularized version of the MPF objective function,

KðJ; WÞ= 1

T

X
fx; sg

X
x0˛NðxÞ

exp

�
1

2
½Eðxjs; J; WÞ � Eðx0js; J; WÞ�

�

+ lðkWk1 + kJk1Þ
(Equation 2)

where the sum over {x, s} indicates a sum over all training observations,

the neighborhoodN (x) includes all states which differ from x by a single bitflip,

and the single state in which all bits are flipped, Eðxjs; J;WÞ= � xTJx� xTWs

is the energy function of the Ising model, l is the regularization strength,

and T indicates the total number of training samples (in 5-ms binned time

points).

The L1 regularization term lðkJk1 + kWk1Þ was included to prevent overfit-

ting to training data. Lambda (l) was chosen by cross-validation from ten

values logarithmically spaced between 10�7 and 10�2. Cross-validation was

performed by holding out 20% of the training data, training the model using

the remaining 80%, repeating this five times, and choosing the l with the

best average log-likelihood across all light conditions and all sites. The choice

of l had little effect on the log-likelihoods of the model fit for ‘‘light-off’’ trials,

but there was improvement for the ‘‘light-on’’ models at intermediate l values.

Thus, we chose to use the same value of l regardless of light condition.

Lambda (l) was set to 5.9 3 10�5.

Following selection of the regularization parameter, we fit the model using all

of the training data, and the model log-likelihood, conditioned on the stimulus,

was tested on the held out validation set. This was repeated ten times for

different validation sets, using the same regularization parameter. Coupling

matrices shown in the figures are taken from the cross-validation iteration

with the highest conditional likelihood on the validation set. We evaluated

model likelihoods on held-out data,

log L=
1

T

X
fx;sg

log pðxjs;J;WÞ (Equation 3)

The normalization constant Z(s, J, W) required in the calculation of p(x j s; J,W)

(Equation 1) was computed by exhaustive summation over all 214 possible

spiking states.
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To test the effect of lowered baseline activity on Ising model couplings, we

removed 20%, 50%, and 80% of spikes in all rows. Spikes were removed at

random for each channel separately and included both spontaneous and

evoked data. We then reran the Ising model for the new manipulated spike

data using cross-validation as before and tested performance on a held-out

set that had been manipulated similarly (20%–80% spikes removed).

To test the effect of evoked activity, we removed all time points between 15

and 50 ms after sound stimulus onset for each trial and fixed sound couplings

to zero while training the model.

VAR Modeling

To investigate the directionality of functional connections in the auditory cor-

tex, we used VARmodels (Lütkepohl, 2005), which are linearmodels that relate

multiple, dependent time series, such as spike trains, by a sum of linear

weights. Such models allow us to predict the spiking activity of each site in

the polytrode as a function of the previous spiking activity at all other sites.

We fit models of the form:

bxiðtÞ= xi +
XN
j = 1

XT
t = 1

biðt; jÞxjðt � tÞ (Equation 4)

where bxiðtÞ is the estimated response at recording site i at time t, xi is the base-

line firing rate of that site, bi is a matrix of linear weights for the N simulta-

neously recorded sites over each of T time delays, and xjðt � tÞ is the response
at recording site j at a given time in the past, ðt � tÞ. T is the total number of time

delays included in the analysis, and N is the total number of simultaneously re-

corded sites. We used delays up to 40 ms for each set of 14 simultaneously

recorded sites. Those familiar with spectrotemporal receptive field (STRF)

estimation will recognize this model as being essentially identical to a STRF

(Aertsen and Johannesma, 1981; Theunissen et al., 2001; Wu et al., 2006),

with the difference being that neural activity is predicted from other activity

in the network rather than by a parameterization of the external stimulus.

To solve for the VAR weights, we used ridge regression, which is less prone

to overfitting than ordinary least-squares. Ridge regression, also known as

L2-penalized or Tikhonov regularization, minimizes the mean squared error

between the actual and estimated response while constraining the L2 norm

of the regression weights. The strength of the L2 penalty is determined by

the ridge parameter, lR0, where larger values of l result in greater shrinkage

of the weights (Asari and Zador, 2009; Machens et al., 2002; Wu et al., 2006). In

ridge regression, we minimize the following error function:

EðbiÞ= kxiðtÞ � bxiðtÞk22 + lkbik22 (Equation 5)

where xiðtÞ is the true response of site i at time t and the estimated responsebxðtÞ is given by Equation 4. We estimated VAR weights using 80% of the

data as a training set. Of the remaining 20%of the data, half was used for fitting

the ridge parameter (10%) and half was used as a validation set to assess

model performance (10%). The same recordings used in the Ising model

were used in these analyses. Input to the model consisted of the binary spike

trains binned at 2 ms for each of the channels on the polytrode. Separate

models were fit for ‘‘light-on’’ and ‘‘light-off’’ trials. To find the optimal ridge

parameter, we tested ten logarithmically spaced ridge parameters between

10�2 and 105 and then selected the value that resulted in the highest average

correlation on the (ridge) test set across all sites on the polytrode and both

‘‘light-on’’ and ‘‘light-off’’ models. The same ridge parameter was used for

both ‘‘light-on’’ and ‘‘light-off’’ models.

Since a neuron’s output is strictly positive andmay scale nonlinearly with the

input stimulus, we added an output nonlinearity to the model fitting (Wu et al.,

2006). This nonlinearity does not change the weights of the model but rather

rescales the response predicted by the linear model to more accurately match

the true response. We fit the nonlinearity as a univariate cubic spline that mini-

mized themean squared error between the actual and predicted responses on

the training data. For both ‘‘light-on’’ and ‘‘light-off’’ models, adding the output

nonlinearity significantly increased the predictive performance of the model

(p = 4.63 10�10 and p = 4.43 10�16 for ‘‘light-off’’ and ‘‘light-on,’’ respectively,

Wilcoxon signed-rank test), though these increases were quite small (0.6% ±

0.1% increase for ‘‘light off,’’ and 1.5% ± 0.1% increase for ‘‘light on’’). The
.



Neuron

PV+ Neurons Gate Cortical Information Flow
increase in correlation was significantly higher for ‘‘light on’’ over ‘‘light off’’ (p =

6.4 3 10�13, Wilcoxon rank sum test), which is likely due to the overall lower

firing rate during ‘‘light-on’’ trials.

VAR model validation was performed by calculating the correlation coeffi-

cient between the response predicted by the model and the actual response

on the held-out validation set. Significance of the correlation between pre-

dicted and actual responses was determined using resampling. The predicted

response was randomly reshuffled 100,000 times, and the correlation between

the shuffled prediction and actual response was computed. Reshuffling was

done using 526 ms (263 time bin) segments to preserve local temporal statis-

tics (this length was chosen to limit accidental alignment of the 1,000 ms stim-

ulation protocol across shuffled samples). The p value of the model prediction

was then computed as the fraction of the 100,000 shuffled correlations that

were higher than the actual correlation.

Statistical Tests

To test differences in coupling, we used Wilcoxon rank sum tests (for

comparing independent groups) or Wilcoxon signed-rank tests (for comparing

paired groups) and corrected for multiple comparisons using Bonferroni

correction. Parametric tests were not used because it was determined that

the data being compared were not Gaussian distributed (Lilliefors test).

Resampling techniques were used to obtain confidence intervals on correla-

tion coefficients. Spearman rank correlations were used to test relationships

between monotonically but not linearly related data, such as correlations

and couplings in Figure 2D. Values are reported as mean ± SEM unless other-

wise stated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at http://dx.doi.
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