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ABSTRACT:  

We provide evidence that the brain may use time division multiplexing, or interleaving of 

different signals across time, to represent multiple items in a single neural channel. We evaluated 

single unit activity in an auditory coding "bottleneck", the inferior colliculus, while monkeys 

reported the location(s) of one or two simultaneous sounds.  Using novel statistical methods to 

evaluate spiking activity on a variety of time scales, we found that on dual-sound trials, neurons 

sometimes alternated between firing rates similar to those observed for each single sound.  These 

fluctuations could occur either across or within trials and appeared coordinated across pairs of 

simultaneously recorded neurons.  Fluctuations could be predicted by the state of local field 

potentials prior to sound onset, and, in one monkey, predicted which sound the monkey would 

ultimately saccade to first.  Alternation between activity patterns corresponding to each of 

multiple items may be a general strategy employed by the brain to enhance its processing 
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capacity, suggesting a potential connection between such disparate phenomena as variable neural 

firing, neural oscillations, and limits in attentional or memory capacity.   

ONE SENTENCE SUMMARY: 

The brain may use time division multiplexing, or alternation between signals corresponding to 

different items, to enhance its processing capacity. 

 

MAIN TEXT:  

 Introduction 

 In the natural world many stimuli or events occur at the same time, evoking activity in an 

overlapping population of neurons.  When neurons are exposed to more than one stimulus to 

which they can respond, how might they preserve information about each stimulus?  In this study 

we investigated whether spike trains contain interleaved signals corresponding to each stimulus, 

akin to time-division multiplexing used in telecommunications (Figure 1), and postulated to 

occur in some form in the brain (1-8).   

 

  

 

 

Figure 1.  In telecommunications, multiple signals can be conveyed along a single transmission 

line by interleaving samples (A and B). This process greatly increases the amount of information 

that can be transmitted by a single physical resource.  In this study we investigated whether the 
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brain might employ a similar strategy, i.e. do neurons encode multiple items using spike trains 

that alternate between the firing rates corresponding to each item, at some unknown time scale?   

 

 Multiplexing is most likely to occur when there is an information-processing bottleneck.  

The coding of sound locations involves such a bottleneck.  Sound waves stemming from two 

sources sum in the world and are sampled at only two locations, i.e. at each ear.  In barn owls, 

multiple locations appear to be de-multiplexed from these signals and encoded as distinct peaks 

in auditory space maps (9-12). But in primates (including humans) and several other mammalian 

species, the neural representations themselves involve a bottleneck (13-20).  The inferior 

colliculus (IC) and other auditory structures encode sound location not in a map but in a “meter”:  

a firing rate code in which neural activity is roughly proportional to the horizontal angle of the 

sound, reaching an apex (or nadir) at 90 degrees contralateral (or ipsilateral) along the axis of the 

ears, where the binaural timing and level differences reach their maximal (or minimal) values 

(Figure 2D,F) (13-20).       

 A strict meter/firing rate code would seem unable to represent more than one sound 

location except via multiplexing.  The auditory pathway's maps for sound frequency can only 

partially ameliorate this situation.  Such maps serve to separate the coding of sounds of different 

frequencies to somewhat different neural subpopulations.  However, most natural sounds are 

spectrally rich and will activate overlapping “hills” of neural activity; even a single pure tone of 

a particular frequency can evoke activity in 40-80% of IC neurons (21).  This raises the question 

of how a population consisting of such broadly-tuned neurons can preserve information about 

combinations of sounds, even when they differ in sound frequency.  Alternating the coding of 

different sounds across time would potentially solve this problem. 

 

Results 

Monkeys can report the locations of both sounds, indicating that both are coded in brain 

 

We first tested whether monkeys can perceptually preserve information about multiple sounds 

presented simultaneously.  Monkeys performed a localization task in which they made eye 

movements to each of the sounds they heard:  one saccade on single-sound trials and two 

saccades in sequence on dual-sound trials (Figure 2A).  The sounds were separated horizontally 

by 30 degrees and consisted of band-limited noise with different center frequencies.  They were 
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thus physically distinguishable in principle, and humans can do so (22-24).  The monkeys 

learned the task successfully (example session shown in Figure 2B), and, like humans, typically 

performed better when the frequency separation between the two sounds was larger (Figure 2C, 

~72 vs. ~77% correct for frequency differences of 3.4 vs. 6.8 semitones).   

 

 

Figure 2.  Single- and dual-sound task, performance, and time-and-trial pooled neural activity.  

A. On dual-sound trials, monkeys made saccades to each of two simultaneous bandlimited noise 

sounds.  Single-sound trials were similar but only required one saccade.  B.  Trajectories of eye 

movements on two sets of dual-sound trials for an example session (dash lines:  individual 

correct trials; solid line: mean). Monkeys were permitted to look at the sounds in either order, 

but often showed stereotypical patterns based on their training history (see Behavioral task and 
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training).  C.  Performance was better for larger frequency separations and was > 70% correct 

overall. D-G.  Results of conventional analyses pooling across time and trials are inconsistent 

with summation (D-E), but are consistent with averaging (F-G). D, F.  Schematic activity 

patterns of IC neurons in response to single sounds and predicted response for dual sounds if the 

neuron sums (D) or averages (F) inputs corresponding to individual sounds   E, G.  Observed Z-

scores of activity on dual-sound trials differ from the sum (E), but correspond well to the 

average (G).  The shaded areas indicate Z score values of +/- 1.96, or 95% confidence intervals. 

This analysis was conducted on “triplets” of single- and dual-sound trials with a given set of 

locations and frequencies, pooling across intensities.  Triplets were included if the single-sound 

responses differed (light bars, two-tailed t-test, p<0.05, n=761); results were similar when 

single-sound responses were different and both excitatory (dark bars, one-tailed t-test, p<0.05, 

n=486).  See Supplementary Figure 1 for a breakdown of conditions matched for the same signal 

levels on single- and dual-sound trials vs. signal levels adjusted to equate loudness on single- 

and dual-sound trials.     

 

 

If the monkeys can report the locations of two sounds presented simultaneously, it follows that 

their brains must preserve information about both sound items.  To evaluate the neural basis of 

this, we focused on the IC because it lies comparatively early along the auditory pathway (a few 

synapses in from the periphery, and about two synapses prior to signals reaching auditory cortex) 

(25, 26) and because it is a nearly obligatory station along this pathway (27).  Thus, preservation 

of information about both sound locations in the IC would appear to be required for performance 

of this task.   

 

Time-and-trial pooled neural activity in the IC is consistent with an "average", but an average is 

inconsistent with behavior 

 

 Conventional analysis of spike data typically involves two simplifications:  spikes are 

counted within a fairly long window of time, such as a few hundred milliseconds, and activity is 

pooled across trials for statistical analysis.  If IC neurons multiplex signals related to each of the 

two sounds (arbitrarily dubbed “A” or “B” for the single-sound trials), then they might appear to 

show "averaging" responses on dual (or “AB”) trials when activity is pooled across time and 
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across trials. But they should not appear to show "summation" responses, i.e. in which the 

responses on dual-sound trials resemble the sum of the responses exhibited on single-sound trials 

involving the component sounds.  Such summation has been observed in some neural 

populations in areas such as primary visual cortex (28, 29), the hippocampus (30), or the superior 

colliculus (31) when multiple stimuli are presented.   

 To investigate whether responses to two sounds are more similar to the sum or the 

average of the two single-sound responses, we considered matched combinations of a particular 

pair of stimuli A and B presented alone or in combination.  The set of stimulus A alone, stimulus 

B alone, and stimuli A and B in combination is referred to as a “triplet”, a term we will use 

throughout.  Using an analysis similar to that of (31), dual-sound responses were converted to Z-

scores relative to either the sum or the average of the corresponding single-sound responses (see 

Methods).  Figure 2D-G shows that such trial-and-time-pooled responses more closely resemble 

averaging than summation:  93% of Z scores (N=761) were consistent with averaging (gray zone 

indicating +/-1.96 units of standard deviation) whereas far fewer, 55%, were consistent with 

summation.  This was true even when both sound A and sound B evoked excitatory responses 

(dark bars).  Findings were similar regardless of whether the signals delivered to the audio 

speakers were identical on dual and single-sound trials vs. when the signals were adjusted to 

equate loudness across single- vs. dual-sound trials (See Methods and Supplementary Figure 1).  

Consequently, in subsequent analyses we pooled across sound level.  

 However, such apparent averaging response patterns are inconsistent with the behavioral 

results:  if the neurons truly responded at an average firing rate, then presumably the monkeys 

should respond to dual sounds as if there were only a single sound at the midpoint of the two 

sources (Figure 2F).  Since monkeys can indicate the locations of both sounds (Figure 2B, C), 

multiplexing might provide a better explanation for so-called averaging response patterns.   

 

Within and between trial activity fluctuations consistent with multiplexing: visualization and 

statistical analyses at multiple time scales  

 

Visualization.  To determine whether neural activity fluctuates within and/or between trials, 

creating an overall averaging response but retaining information about each sound at distinct 

moments, we first sought to visualize the activity on individual trials. Figure 3 shows the activity 
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of two example neurons on dual-sound trials compared to single-sound trials.  The colored 

backgrounds illustrate the median and 25-75% quantiles of the activity on single-sound trials, in 

50 ms time bins.  Superimposed on these backgrounds is the activity on individual trials.  

Individual single-sound (A alone, B alone) trials align well with their corresponding 25-75% 

quantiles, by definition (Figure 3A-B; E-F).   But on dual-sound (AB) trials, for any given trial or 

time bin, some individual traces correspond well to one of the component sound’s 25-75% 

quantiles, and on other trials or time bins they correspond well to the 25-75% quantiles of the 

other component sound.  For the neuron in Figure 3CD, there are whole trials in which the 

activity appears to match that evoked by sound "A" alone and others in which it better 

corresponds to that evoked by sound "B" alone.  For the neuron in Figure 3G, the firing pattern 

on dual-sound trials appears to switch back and forth between the levels observed for sounds A 

and B as the trial unfolds.  In short, for these two examples, the activity on dual-sound AB trials 

does not appear to occur at a consistent value intermediate between those evoked on single-

sound A and B trials, but can fluctuate between those levels at a range of time scales. 

 

 

 

Figure 3.  Inspection of the individual trials of two IC neurons suggests that the overall 

intermediate firing rates observed on dual-sound trials may be due to alternating between firing 

rates corresponding to each component sound, fluctuating either across (A-D) or within trials 
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(E-G).  The red and blue shaded areas indicate the median and central 50% of the data on the 

single sound trials that make up the given triplet and are the same in panels A-D as well as E-G.  

The black traces superimposed on the shaded areas are the individual trials, for single sound 

and dual sound trials as indicated.  For the neuron in A-D, individual traces on dual sound trials 

were classified based on the A vs. B assignment score (see Methods) and are plotted in two 

separate panels accordingly.  For the neuron in E-G, the fluctuations occurred faster, within 

trials, and are plotted in the same panel (G) accordingly. 

 

We developed a series of statistical analyses to test for the presence of these various forms of 

alternation in firing rates.  Several unknowns must be taken into consideration when testing for 

activity fluctuations.  Specifically, the time scale, repeatability, and potential correlations across 

the neural population are uncertain.  Accordingly, we sought to make minimal assumptions about 

the time scale at which neurons might alternate between encoding each stimulus, and we 

assumed that any such switching might vary from trial to trial and/or across time within a trial.   

 

Statistical analysis of whole trial spike counts.  If neurons alternate firing rates at the time scale 

of trials, as appears to be the case for the neuron in Figure 3A-D, then the spike counts from 

dual-sound responses should resemble a mixed bag of spike counts from each of the component 

single-sound responses. We tested this hypothesis against other reasonable competing 

possibilities in a Bayesian model comparison.  For this analysis, we evaluated the subset of 

triplets whose spike counts on single sound A and B trials could be well modeled by Poisson 

distributions with statistically different mean rates λ
A
 and λ

B
 (N=363, see methods for details).   

 

The competing scenarios to describe the corresponding dual sound trials were: 

(a) Mixture:  The spike counts observed on individual trials are best described as having 

come from a weighted mixture of Poi(λ
A
)and Poi(λ

B
) (Figure 4A, purple dashed line).  

This possibility is consistent with multiplexing across trials. 

(b) Intermediate:  A single Poisson distribution best describes the spike counts, and this 

Poisson has a rate λ
AB

 that is between λ
A
 and λ

B
 (Figure 4A, pink dashed line). This 

possibility is consistent with either multiplexing at faster, sub-trial time scales or with 

true averaging/normalization. 
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(c) Outside:  Again, a single Poisson, but the rate λ
AB 

is outside the range of λ
A
 and λ

B 
(i.e is 

greater than both or less than both; Figure 4A, green dashed line).  Summation-type 

responses would be captured under this heading, as would inhibitory interactions. 

(d) Single:  A single Poisson describes the dual-sound trial spike counts, but the rate λ
AB 

is is 

equal to one of the single-sound rates λ
A
 or λ

B
 (Figure 4A, red/blue dashed lines).  A 

winner- (or loser-)-take-all pattern would fit this category.   

 

In summary, these four models capture the spectrum of possibilities at the whole-trial time scale. 

A Bayesian model comparison with default priors and intrinsic Bayes factor calculation was used 

to compute the posterior probabilities of the four models given the neural data. 
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Figure 4.  Modeling the spiking patterns on individual dual-sound whole trials.  Spike counts on 

individual dual-sound trials (0-600 or 0-1000 ms after sound onset, see Methods) were modeled 

as being drawn from either a mixture of the Poisson distributions of spike counts for the 

component single-sound trials (panels A, B, purple line or labeled bar), an intermediate Poisson 

rate (pink), or rates equal to (“single”, red and blue) or outside the range of the single-sound 

Poisson rates (“outside”, green). Shading in B indicates the confidence level of the assignment 

of an individual triplet to a winning model.  The neuron/triplet illustrated in Figure 3A-D was 
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classified as having spike counts drawn from a mixture of Poissons at the level of individual 

trials (winning probability >0.95) and the neuron/triplet illustrated in Figure 3E-G was 

classified as having spike counts drawn from an intermediate Poisson (winning probability 

>0.95).    

 

For a sizeable portion of the triplets, the spike counts on dual-sound trials were better fit by a 

mixture of the single-sound Poisson distributions than by any single Poisson distribution (Figure 

4B, bar labeled "mixture"). These conditions are potentially consistent with time division 

multiplexing at the level of individual trials; the neuron illustrated in Figure 3A-D met these 

criteria.  Of the 72 triplets in which one model had a winning probability >0.95, 50 or 69% were 

categorized this way. 

 

For the next largest category, the best fitting model involved a unique λ
AB

 between λ
A
 and λ

B
 

(Figure 4B, bar labeled “intermediate”). These triplets are ambiguous:  they could exhibit a true 

intermediate firing rate on the dual-sound trials, or they could simply show alternation at a time 

scale more rapid than individual trials (the neuron illustrated in Figure 3E-G was classified as 

“intermediate”). Of the 72 triplets in which one model had a winning probability >0.95, 18 or 

~25% were categorized this way.  

 

The remaining triplets were categorized as “single”, or λ
AB

 = λ
A
 or λ

B
 (a narrowly defined 

category that consequently did not produce any winning model probabilities >0.95) or “outside”, 

λ
AB

 greater or less than both λ
A
 and λ

B
. “Single” can be thought of as a winner-take-all response 

pattern.   “Outside” may be consistent with a modest degree of summation in the neural 

population, particularly as λ
AB

 was generally greater than both λ
A
 and λ

B
 in this subgroup.    
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Figure 5.  Dynamic Admixture Point Process (DAPP) model rationale, results, and relationship 

to local field potential.  A.  The DAPP model fit smoothly time-varying weights capturing the 

relative contribution of A- and B-like response distributions to each AB dual sound trial.  The 

dynamic tendencies of these curves were then used to generate projected alpha curves for 

hypothetical future draws from this distribution. The “waviness” and central tendencies were 

quantified by computing the max swing size and trial-wise mean for an individual trial draw 

from the distribution (panel A1).  Low max swing sizes indicate “flat” curves and higher values 

indicate “wavy” ones (panel A2).  Similarly, the distribution of trial-wise means could be 

bimodal (“extreme”) or unimodal (“central”)(panel A3).  B.   Fit alphas for three example 

neurons (Example 2  is the same as Figure 3E-G) and the distribution of trial-wise means and 

max swing sizes for future draws from the alpha curve generator. C.   Triplets showed different 

patterns of tags, correlated with their classification at the whole-trial analysis.  Specifically, 

triplets categorized as “Mixtures” (with a win probability > 0.95) tended to be tagged as 

“flat/extreme” (Example 1).  Triplets categorized as “Intermediates” fell in two different main 

groups, “wavy-central” (Example 2, same as Fig 3E-G) and “flat-central” (Example 3).  The 

“wavy-central” subgroup is consistent with multiplexing at the within-trial time scale.  Triplets 

with a “skewed” label were excluded from this graph; a complete listing of all the tag 

combinations is presented in Supplementary Table 1.  See Supplementary Figures 2 and 3 for 

additional analyses.   D.  Average local field potentials also showed different patterns across the 

whole trial “mixture” vs “intermediate” classification, with the “intermediate” group tending to 

show greater power at a range of oscillatory frequencies. The third graph shows a thresholded 

(p<0.05) depiction of whether these differences were statistically significant according to a two-

tailed t-test for each time point and frequency combination.   

 

Statistical analysis of within-trial spike counts: We next turned to the question of whether firing 

patterns fluctuated or remained stable across time within a trial. In particular, might triplets 

categorized as “intermediate” in the whole trial analysis show evidence of fluctuating activity on 

a faster time scale? 

 

This is a more challenging statistical question, and required development of a novel statistical 

approach. We focused on the same triplets selected above, and analyzed single trial spike counts 
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in 50 ms time bins (see Methods).  For each triplet, individual single sound trials were assumed 

to be independent realizations from nonhomogeneous Poisson process with unknown time-

dependent firing rates (      for sound A and       for sound B.  To assess how individual time-

varying dual sound responses related to single sound responses, each trial from the dual sound 

condition was assumed to be a realization of a Poisson process but with its own firing rate 

function     , modeled as an unknown weighted average of the two single sound firing rate 

functions                  (      )     . The weight function     , unique to each 

dual sound trial, quantified the potentially time varying relative contribution of sound A on that 

trial at time t, while        quantified the complementary contribution of sound B (Figure 

5A).  A value of         would indicate that the corresponding dual trial’s response at time t 

closely matched the response distribution at time t of single sound A trials, and a value of 0 

would indicate it matched that of single sound B trials.   An   function realizing values strictly 

between 0 and 1 would indicate some contribution from either sound at all times. An   centering 

around a value close to 0.5 would indicate comparable aggregate contributions from both sounds, 

whereas one centering close to 0 or 1 would indicate dominance of one sound over the other 

(Figure 5A, trial-wise mean alphas). A wavy shape of the function would indicate the relative 

contributions of the two sounds changed across time at a sub-trial timescale (Figure 5A, max 

swing sizes).  

 

That we allowed each dual sound trial to have its own temporal pattern is a real novelty of our 

modeling approach. For each      function we assumed its dynamic pattern was given by a 

transformed Gaussian process governed by three parameters that directly controlled the 

function’s long-term centering, and the frequency and amplitude with which the function 

fluctuated around its long-term centering. These sets of three parameters, one set for each trial, 

were assumed to arise from a shared but unknown probability distribution – a dynamic pattern 

generator that was a property of the triplet and could be used to describe its properties. All      

functions were then estimated together, jointly with the dynamic pattern generator, within a 

Bayesian inference framework.  

 

For each triplet, we summarized its dynamic pattern generator by quantifying three features: (1) 

waviness, (2) centrality, and (3) symmetry (Figure 5A). Quantification was done by repeatedly 
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simulating      functions for hypothetical new trials and summarizing the sampled functions 

along the three dimensions (Figure 5A-C). The waviness metric was computed as the odds of 

obtaining an      function exhibiting a swing of at least 50% between its peak and trough: 

      
                         

                         
  

where P denotes the sampling proportion of the simulated   draws. Centrality was computed as 

the odds of obtaining an      function with its long-term average  ̅  ∫         
 

 
 being closer 

to the mid-way mark of 50% than the extremes: 

     
    ̅             

   ̅              
. 

Skewness was computed as the maximum of A-skew and B-skew, where A-skew was computed 

as the odds of obtaining an      function with long-term average closer to 1 than 0, and B-skew 

being its reverse: 

       {
   ̅     

   ̅     
 
   ̅     

   ̅     
}. 

 

The three quantified features were then thresholded to generate a 3-way classification of all 

triplets. Along waviness, a triplet was categorized as “wavy”, “flat” or “ambiguous” according to 

whether       ,        , or,            , respectively Along centrality, the categories 

were “central”, “extreme”, or, “ambiguous” according to whether        ,        , or, 

            , respectively.  Along skewness, the categories were “skewed”, “symmetric” or 

“ambiguous” according to whether     ,     , or,       , respectively. Supplementary 

Table 1 and Supplementary Figures 2 and 3 give the results of this 3-way classification, cross 

tabulated with the classification done under the whole trial spike count analysis.  

 

The DAPP tags confirmed and extended the results of the whole-trial analysis.  Triplets 

categorized as “intermediate” in the whole trial analysis showed a different distribution of tags as 

compared to those categorized as “mixtures”.  “Mixture” triplets tended to be classified as 

showing “flat” single sound contributions, centering around “extreme” rather than “central” 

values of long-term average contribution (Figure 5C), and the distribution of the long-term 

averages were either symmetric or unlabeled with regard to symmetry (Supplementary Table 1).  

In contrast, “intermediate” triplets showed a combination of two types of labelling patterns 
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relevant to our hypothesis.  Some showed flat firing at a central (and symmetric) intermediate 

value, indicating stable firing at roughly the average of the responses evoked by each sound 

separately.  Such a firing pattern is consistent with some form of normalization occurring in this 

subpopulation.  However, there were also triplets that showed wavy, i.e. fluctuating response 

patterns symmetric around a central value.  This type of response pattern suggests that under 

some circumstances, neurons can “switch” relatively rapidly between a response pattern 

consistent with one stimulus vs the other on dual stimulus trials. 

 

Consistent with this statistical evidence for activity fluctuations at the subtrial timescale in the 

“intermediate” category, we also found that the local field potential (LFP) at such sites showed 

greater oscillatory activity. Figure 5D shows the average LFP power spectrum for dual trials of 

triplets categorized as “mixtures” vs. those categorized as “intermediates” and their statistical 

comparison (lower panel, two-tailed t-test between the LFP power spectrum of dual trials 

classified as Intermediate and that of dual trials classified as mixtures, for each time point and 

frequency combination). The LFP for intermediate sites showed higher energy across a range of 

frequencies, including frequencies well above the 20 Hz (50 ms) frequency range that we were 

able to evaluate at the spike-count single unit level 

 

Coordination of fluctuations across the neural population:  within and between trials and 

relation to behavior 

 

We next considered the question of whether and how activity fluctuations are coordinated across 

the neural population, in two ways: (1) by evaluating activity correlations across time within 

trials between pairs of simultaneously recorded neurons, and (2) by evaluating whether the state 

of the local field potential prior to sound onset predicts between-trial fluctuations in activity (e.g. 

32, 33).      

 

Neural pairs and within trial correlations: To evaluate correlations in within-trial switching 

patterns, we evaluated the neuron-to-neuron correlation between how “A-like” vs. how “B-like” 

the responses were on a time bin by time bin basis on individual trials, in a total of 91 pairs of 

triplet conditions from 34 pairs of neurons recorded simultaneously (from among the 363 triplets 
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used for the previous analyses).  For each 50 ms bin of a dual-sound trial in a given triplet, we 

assigned a probability score between 0 and 1 that the spike count in the bin was drawn from the 

Poisson distribution with rate equaling the bin’s sound A rate, and the complementary 

probability to the same being drawn from the Poisson distribution with rate equaling the bin’s 

sound B rate (Figure 6A; see Methods:  A vs. B assignment scores).  We normalized these 

probabilities by converting them to Z-scores within a given time bin but across trials, to 

minimize the contribution of shared correlations due to stimulus responsiveness or changes in 

motivational state across time (34).  We then calculated the neuron-to-neuron correlation 

coefficients between the normalized assignment scores across the set of time bins within each 

trial, i.e. one correlation coefficient value estimated per trial. This analysis is conceptually 

similar to conventional cross-correlation analysis of spike trains in neural pairs, but does not 

focus on precise timing of spikes or the relative latency between them (35, 36).    

 

Generally, the observed correlations were positive, indicating that the activity was coordinated 

within the neural population.   Figure 6 illustrates analysis of the dual-sound trials for a particular 

triplet in an example pair of neurons (A), and the distribution of the mean neuron-to-neuron 

correlations in the population for all the triplets’ dual-sound conditions (B).    The distribution of 

mean correlation coefficients was skewed positive (t-test, p = 6.8 X 10
-6

).  Similar results were 

obtained when the raw spike counts were analyzed rather than the assignment scores 

(Supplementary Figure 4).  This was the case even though we included triplets that were not 

categorized as showing “wavy” behavior in the DAPP analysis.   It may be that coordinated 

activity fluctuations occur in more neurons than those that met our statistical criteria.   
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Figure 6.  Within-trial fluctuations are correlated between pairs of neurons and whole-trail 

fluctuations can be predicted by the state of the local field potential at sound onset.  A.  Pairs of 

neurons recorded simultaneously tended to show positive correlations with each other. Raster 

plots of two neurons recorded simultaneously; trials shown are for a particular set of dual-sound 

conditions.  The spike count in a given 50 ms time bin, trial, and member of the neuron pair for a 

given set of dual-sound conditions was evaluated to determine if it was more similar to the spikes 

evoked during that bin on the corresponding sound “A” alone or “B” alone trials (blue box).  

These A vs. B assignment probabilities were then converted to a Z-score based on the mean and 

standard deviation of the assignment probabilities in that time bin on the other trials that 

involved the same stimulus conditions (red box).  A correlation coefficient between the set of Z 

score values for a given trial between the pair of simultaneously recorded neurons was then 
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calculated (green box).  B.  Across the population (N=91 conditions in the 34 pairs of neurons; 

triplets were included if their single sound response distributions were well-separated Poissons), 

the distribution of mean correlation coefficients tended to be positive (t-test comparing the mean 

correlation coefficients to zero; p = 6.8 X 10
-6

).    C.  The state of the local field potential prior 

to sound onset is predictive of whole-trial fluctuations in spiking activity.  (Average of the LFP 

during dual-sound trials from 274 triplets at 87 sites; triplets were included if the single sound 

distributions of spike counts were well-separated Poissons). For this analysis, the single 

contralateral sound was dubbed “A” and the single ipsilateral “B”.  The LFP on each dual-

sound trial was assigned to A-like or B-like categories based on the spike count of the 

corresponding single unit data during 0-600 ms after sound onset (see Methods:  A vs. B 

assignment. N=1902 contra-like trials and N=1618 ipsi-like trials).   

 

Local Field Potentials and between-trial fluctuations:  To determine whether the state of the local 

field potential prior to sound onset predicts between-trial fluctuations in activity, we analyzed the 

LFP data recorded simultaneously with single unit spiking data. We combined data across 

triplets, creating two “bags” of trials based on whether the whole-trial spike count on a given 

dual-sound trial more closely resembled the responses evoked by sound A alone (where A is the 

contralateral sound) or sound B alone (see Methods: A vs. B assignment scores). Figure 6C 

shows the average LFP for the two groups of dual-sound trials. We quantified differences 

between these two groups with a t-test in the 600ms windows before and after sound onset (each 

trial contributed one mean LFP value in each time window). As expected, the LFP signals 

statistically differed after sound onset in these two trial groupings (red vs. blue traces, time 

period 0-600 ms, p-val = 1.0474 X 10
-05

). But the LFP signals also differed prior to sound onset 

(p-val =  0.0064), suggesting that the state of activity in the local network surrounding an 

individual neuron at the time of sound onset is predictive of whether the neuron “encodes” the 

contra-lateral or the ipsi-lateral sound on that particular trial.  

 Relationship to behavior.  If fluctuations in neural activity are coordinated across the 

population, and if one particular stimulus dominates the representation at any given instant, it 

follows that there should be a relationship between trial-by-trial variability in neural activity and 

behavior.  Accordingly, we investigated whether the activity on individual trials predicted 

whether the monkey would look first to sound “A” or sound “B” on that trial.  As noted in the 
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Methods, we trained the monkeys on sequential sounds first and this training strategy tended to 

promote performing the task in a stereotyped sequence.  Partway through neural data collection, 

we provided monkey Y with additional training on the non-sequential task, after which that 

monkey began displaying less stereotypical behavior and sometimes saccaded first to A and 

sometimes first to B for a given AB dual sound combination (see Figure 7A for example).  We 

then analyzed recording sessions after this training (N=73 triplets) and we found that at both the 

whole trial and sub-trial time scales, the activity of individual neurons was predictive of what 

saccade sequence the monkey would choose on that particular trial.  Specifically, the average 

dual sound AB assignment score for a given triplet was computed separately for trials in which 

the first saccade was toward A vs. toward B.  The average scores statistically differed between 

the two groups of dual-sound trials (t-test, pval = 5 x 10^-9, Figure 7B) and in the expected 

direction, with more A-like scores occurring on trials in which the monkey looked at A first.  

This relationship was also present when looking at finer, 50 ms bin time scales (Figure 7C).   

  

 

Figure 7. The target of the first saccade on dual sound trials is predicted by the spike count 

before that saccade.  (A) Eye trajectories during dual-sound trials to the same pair of single 

sounds (one triplet). The traces are color-coded based on which of the two sounds the monkey 

looked at first in the response sequence.  For clarity, all traces are aligned on a common starting 
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position despite some variation in fixation accuracy.  (B) The average assignment score of trials 

in which the monkey looked at sound A first is more A-like than that of trials in which the 

monkey looked at sound B first.  C.  This relationship between assignment score and first 

saccade target was also evident at the scale of 50 ms bins (green = positive correlation; * 

indicate p<0.05 for t-test of assignment score on A-first vs. B-first trials).  

 

    

DISCUSSION 

Our results show that the activity patterns of IC neurons fluctuate, and that these 

fluctuations may be consistent with encoding of multiple items in the same processing channels 

(i.e. the set of neural spike trains occurring in the IC).   The time scale of these fluctuations 

ranges from the level of individual trials down to at least 50 ms bins within a trial.  The 

fluctuations are positively correlated across pairs of neurons (at least, those recorded within the 

IC on a given side of the brain), are reflective of the state of local field potentials at the time of 

sound onset, and are predictive of the behavioral response to follow.   

There are several limitations to the present statistical approach.  First, the analyses could 

only be conducted on a subset of the data, requiring a good fit of a Poisson distribution to the 

single-sound trials and adequate separation of the responses on those trials.  For the moment, it is 

unknown whether any of the excluded data exhibit meaningful response fluctuations.  In 

principle, the modeling approach can be extended to other types of response distributions which 

should reduce the amount of data that is excluded.  Second, the range of time scales at which 

fluctuations occur is unknown.  Fluctuations that occur faster than the 50 ms bin time scale used 

for the DAPP model would likely have been (erroneously) categorized as flat-central.   Third, 

our statistical approach based on the DAPP model involves a categorization step that summarizes 

the dominant features of a triplet. If a neuron sometimes behaves as a “flat-extreme” type and 

sometimes as an “wavy-central” type for a given triplet of conditions, it would likely be 

categorized as ambiguous. In other words, even though the DAPP model can pick up composite 

response patterns, the results we present ignore the existence of any such patterns. 

The observed fluctuations have broad implications because they provide a novel account 

linking a number of other well-known aspects of brain function under a common explanation.  

First, it is widely recognized that neural firing patterns are highly variable.  This variability is 
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often thought to reflect some fundamental inability of neurons to code information accurately.  

Here, we suggest that some of this variability may actually reflect interleaved periods of 

potentially quite accurate coding of different items.  What else individual neurons may 

commonly be coding for in experiments involving presentation of only one stimulus at a time is 

not known, but possibilities include stimuli not deliberately presented by the experimenter, 

memories of previous stimuli, or mental imagery as suggested by the theory of embodied 

cognition (37).  In the present study, we were able to demonstrate signal in these fluctuations by 

virtue of statistical tests comparing each of the trial types in A-B-AB triplets, but it may be the 

case that fluctuations were occurring in the single stimulus trials as well.  We could not test this 

because our analysis required having as benchmarks the response distributions corresponding to 

the potentially encoded items.   

Second, as a concept, multiplexing provides insight into why limitations in certain types 

of cognition exist.  Working memory capacity is limited; attention filters stimuli to allow in 

depth processing of a selected set of items.  These limitations may stem from using the same 

population of neurons for each attended or remembered item.  If this is the case, then the puzzle 

becomes why these limits are often greater than one.  Multiplexing suggests that cycling between 

different items across time allows evading what might otherwise be a one-item limit (2).  Here, 

we investigated only two time scales, 50 ms and whole trials.  Future work will be needed to 

more fully explore the time scales on which this occurs and to tie the resulting information on 

duty cycle to perceptual capacity.  

Third, brain oscillations are ubiquitous, have been linked specifically to attentional and 

memory processes (33, e.g. 38, see also 39), and have been suggested as indicating multiplexing 

(2-8). Oscillations indicate that neural activity fluctuates, although they capture only the portion 

of such fluctuation that is coordinated across the underlying neural population and is regular in 

time.   It remains to be determined to what degree oscillations in field potentials reflect the 

activity of neural circuits that control such temporal coordination in other neural populations vs. 

the activity of the neural circuits subject to the effects of such coordination.  In a highly 

interconnected system such as the brain, both are likely to occur.  

In the case of our particular experimental paradigm, several additional questions arise.  

How do signals related to different items come to be multiplexed?  Are they later de-

multiplexed? If so, how?   
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To some degree, sounds are multiplexed in the world.  That is, the sound waves from 

multiple sources sum in the world and are never purely distinct from one another.  The air 

pressure waves arriving at each ear reflect the combined contribution of all sound sources.  

However, if the IC’s neural fluctuations were driven by the sound signals arriving at the ears, 

then individual neurons should always respond the same way on every trial, and they do not.     

Instead, it seems likely that the externally-multiplexed sound waves interact with neural circuit 

states at the time that the incoming signal arrives to govern how individual neurons respond on a 

moment by moment basis. 

Where and how signals may be de-multiplexed critically depends on the nature of the 

representation to which a de-multiplexed output could be written.  In barn owls, which have 

maps of auditory space, the coding bottleneck intrinsic to meter/rate coding does not occur, and 

two sounds produce two separate active populations  (9-12).  Such distinct peaks suggest that the 

multiplexed-in-the-air signals have been de-multiplexed and segregated into two hills of activity.    

In primates and several other mammals, neural representations of space employ meters 

(rate codes) rather than maps throughout the pathway from sound input to eye movement output, 

as far as we currently know  (13-20, 40).  This is the case even at the level of the superior 

colliculus (41), which has a well-deserved reputation for mapping when activity is evoked by 

non-auditory stimuli (42, 43).   

Given that different types of codes exist in different species, and given that coding format 

is not known in all the circumstances in which multiplexing might apply (e.g. attention, working 

memory), we developed two different models to illustrate a range of different de-multiplexing 

possibilities (Figure 8) based on the nature of the recipient representation.  In the first (Figure 

8A), a multiplexed signal in a meter is converted into two hills of activity in a map, using a basic 

architecture involving graded thresholds and inhibitory interneurons suggested previously (44).  

Adding an integration mechanism such as local positive feedback loops would then serve to latch 

activity “on” at the appropriate locations in the map, producing a more sustained firing pattern.  

No clock signal is necessary for this model.   

In the second model (Figure 8B), there are multiple output channels, each capable of 

encoding one item.  An oscillating circuit that knows about the timing of the input gates signals 

to each output channel at the appropriate moments.  As in the first model, a local positive 

feedback mechanism acts to sustain the activity during the gaps in the input.  This model thus 
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retains the efficient coding format of a meter but requires a controlling signal with knowledge of 

when to latch input flow through to each output channel.  In our data, it is possible that within-

trial fluctuating units lie at the input stage of such a circuit, and that between-trial fluctuating 

units actually lie at the output stage.  A given unit might be allocated to either the “A” or the “B” 

pools based on state of the network (as detected by the LFP measurements) on different trials.    

 

 

Figure 8.  Two possible mechanisms for de-multiplexing a fluctuating signal.  A clock signal that 

knows about coding transitions is not necessarily needed if signals are read out into a map, but 

is required if signals are retained in a meter or rate-coded format.   

  

An important unresolved question posed by our study is whether multiplexing may be a general 

mechanism that is commonly at play to enhance the total processing power of the brain.  Indeed, 

we have recently extended these findings to a visual face processing area (45)    The statistical 

tools developed here can be applied to any “triplet” data.  Additional studies with both single 

stimulus conditions, to define the distributions of signals, and dual stimulus conditions, to 

evaluate fluctuations between membership in those distributions, will be important for 

delineating the extent of this phenomenon.  Digging under the hood of the time-and-trial pooled 

activity to look at activity patterns on a moment by moment basis will be essential to advancing 

our understanding of how the brain operates dynamically to maximize its processing power.  
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SUPPLEMENTARY MATERIALS: 
 

MATERIALS AND METHODS 

General procedures 

All procedures conformed to the guidelines of the National Institutes of Health (NIH Pub. 

No. 86-23, Revised 1985) and were approved by the Institutional Animal Care and Use 

Committee of Duke University. Two adult rhesus monkeys (Macaca mulatta) participated 

(monkey P, and monkey Y, both female). Under general anesthesia and in sterile surgery we first 

implanted a head post holder to restrain the head and a scleral search coil to track eye 

movements (Robinson 1963; Judge et al. 1980). After recovery with suitable analgesics and 

veterinary care, we trained the monkeys in the experimental task. In a second surgery, we 

implanted a recording cylinder (2 cm diameter) over the right (monkey Y) or left (monkey Y, P) 

IC respectively. We determined the location of the cylinder with stereotactic coordinates and 

verified it with MRI scans at the Duke Center for Advanced Magnetic Resonance Development 

(e.g. 21).   

 

Behavioral task and training 

Events of task and performance criteria 

The monkeys performed a single- or dual-sound localization task (Figure 2A) by making 

saccades toward one or two simultaneously-presented auditory targets with one or two saccades 

as appropriate. All sound targets were located in front of the monkey at eye level; the horizontal 

location, frequency and intensity were varied pseudorandomly as described below (Recording 

Procedures). Each trial began with 600-700ms of fixation of a visual stimulus (light emitting-

diode, LED, located straight ahead and 10-14° below the speakers). During fixation we presented 
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one sound (single-sound trials) or two simultaneous sounds (dual-sound trials). After a fixation 

time of either 600-800 (Data Set I, some of Data Set II) or 1000-1100 (remainder of Data Set II), 

the fixation light was extinguished and the monkey was required to make a single saccade on 

single-sound trials or a sequence of two saccades (in either order) on dual-sound trials. Trials 

were considered correct if each saccade was directed within 10-17.5 degrees horizontally and 20-

40 degrees vertically of a target (due to vertical inaccuracies in localizing non-visual targets in 

primates, 46) and if the gaze was maintained on the final target for 100 – 200 ms. On correct 

trials monkeys were rewarded with juice drops. 

 

Training 

Training was accomplished in three stages. We initially trained the monkeys to report the 

location of single visual targets by saccading to them. We then introduced single auditory targets. 

As these were novel and unexpected in the silent experimental booth monkeys readily saccaded 

to them (47). To help the monkeys calibrate their auditory saccades, a visual feedback was added 

on trials where the auditory saccade was not initiated correctly within 700 ms. The feedback was 

presented only at the most peripheral target locations (+/- 24 degree) and only for a few initial 

days of training. Finally, we trained monkey to localize dual-sound targets. Initially we presented 

the two sounds sequentially in a specific order, then we gradually reduced the temporal gap 

between them until the sounds were simultaneous. 

 In the final version of the task, monkeys were allowed to look at the targets in either 

order, as noted above.  However, due to the initial training with sequential sounds, they retained 

stereotyped patterns of saccades in which they tended to look first to whichever sound location 

had been presented first during the sequential and partial overlap stages of training.  Monkey P 

was trained with more central target locations (e.g. -6 or 6 degree targets) initially occurring first 

and more peripheral targets (e.g. -24 or 24 degree targets) occurring second, and monkey Y was 

trained with sounds initially occurring in the opposite sequence.  Midway through neural data 

collection, we provided additional training to monkey Y to encourage free choice of which sound 

to look at first.  This allowed us to investigate the relationship between each behavioral response 

and the neural representation at that moment. 

 

Recording procedure and strategy  
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General procedure 

Recordings were made with one or two tungsten electrodes (FHC, impedance between 1 

and 3 MΩ at 1 kHz). Each electrode was lodged in a stainless-steel guide tube (manually 

advanced through the dura) and controlled independently with an oil hydraulic pulse 

micropositioner (Narishige International USA, Inc. and NAN INSTRUMENTS LTD, Israel). 

First, we localized the IC (and isolated single neurons) while the monkey listened passively to 

sounds of different frequencies. We then collected single unit spiking activity and local field 

potential while the monkey performed the single- and dual-sound localization tasks. We used a 

Multichannel Acquisition Processor (MAP system, Plexon Inc., Dallas, TX) and Sort Client 

software. The single unit spiking activity was filtered between 150 Hz and 8 kHz and sampled at 

20 kHz, while the LFP signal was filtered between 0.7 and 300 Hz and sampled at either 20kHz 

or 1kHz (see Local Field Potential). Data were collected as long as the neurons were well 

isolated and the monkey performed the tasks  

Neural signals were recorded primarily from two functionally-defined subregions of the 

IC, the low frequency area and the tonotopic area (21).  Neurons in the low frequency tuned area 

generally respond best to low frequencies and there is little heterogeneity in tuning, whereas 

neurons recorded in the tonotopic area had best frequencies that could be either low or high 

depending on the position of the recording electrode. 

 

Data Sets and Auditory Stimuli:  Locations, Frequencies, and Levels  

The spiking activity of 166 single neurons was recorded, in two datasets involving the 

same task but differing in which sound levels and frequencies were included.  A total of 68 of 

these neurons were recorded as pairs from separate electrodes positioned in the IC on the same 

side of the brain at a minimum spatial separation of 2 mm.  Local field potentials (LFP) were 

also recorded from 87 of these recording sites.   

In both datasets, the sounds consisted of bandpass noise with a bandwidth of +/- 200 Hz.  

On dual-sound trials, the sounds were delivered from pairs of locations (24 degrees and -6 

degrees), and (-24 and +6 degrees) i.e. 30 degrees apart.    The two sounds differed in frequency, 

with one of the two sounds having a 742 Hz center frequency and the other differing by at least 

0.285 octaves or multiples of this distance. Single-sound trials involved the same set of locations 

and frequencies as on dual-sound trials, but with only a single sound presented at a time.    All 
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sounds were “frozen” within an individual session; that is, all trials with a given set of auditory 

parameters involved the same time series signal delivered to the relevant speaker. 

In data set I (N=98 neurons), the sounds presented on dual-sound trials were 742 Hz and 

a sound from the set (500, 609, 903, 1100 Hz); these frequencies were ±0.285 octave or ± 0.57 

octaves above or below 742 Hz, or ±3.4 and 6.8 semitones.  Combining two sounds will produce 

a combination that is louder than either component.  Sound levels were therefore calibrated to 

provide two sets of conditions:  dual sounds for which the component sounds involve the same 

signals to the audio speakers as on single-sound trials, producing a louder dual sound, and dual 

sounds for which the level of the component sounds was reduced so that the overall loudness 

was the same on dual as on single trials.   The levels used for the components were 51 and 55 

dB, producing sound levels of minimum 55 or maximum 60 dB on dual-sound trials.  The same-

signal comparison involved using the 55 dB component levels, singly and on dual-sound trials.  

The same-loudness comparison involved using the 55 dB levels on single-sound trials and the 51 

dB levels for the components of dual-sound trials.  Calibrations were performed using a 

microphone (Bruel and Kjaer 2237 sound level meter) placed at the position normally occupied 

by the animal’s head.   

  Because results did not differ substantively when comparisons were made between 

same-signal and same-loudness conditions (Figure 2 vs. Supplementary Figure 1), we pooled 

across sound levels for subsequent analyses, and we dispensed with the multiple sound levels for 

data set II (monkey Y only, N=68 neurons), using either 50 or 55 dB levels for all components.  

We also incorporated additional sound frequencies, [1340 1632 1988 Hz], to improve the odds 

that responses to each of the component sounds differed significantly.  Again, one of the two 

sounds on dual-sound trials was 742 Hz; the other sound frequency was either from the original 

list of [500 609 903 1100] or from the new frequencies.  Most of the neurons in this data set were 

tested with [500 742 1632].      

    

Cell Inclusion/Exclusion criteria and trial counts 

 The N=166 neurons (N=98 from Data Set I and N=68 from Data Set II) included for 

analysis were drawn from a larger set of 325 neurons.  Neurons were excluded from analysis if 

the neuron proved unresponsive to sound (Student’s t-test, spike counts during the 600 ms after 

sound onset compared to the same period immediately prior to sound onset, one-tailed, p>0.05), 
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or if there were too few correct trials (mininum of five correct trials for each of the components 

[A, B, and AB trials] that formed a given “triplet” of conditions or if there were technical 

problems during data collection (e.g. problems with random interleaving of conditions or with 

computer crashes).  The average number of correct trials for a given set of stimulus conditions in 

the included dataset (N=166) was 10.5 trials.  The total number of included triplets was 1484.   

 

Data Analysis 

 

All analyses concerned correctly performed trials.   

 

Analysis of activity pooled across time and/or trials:  Summation and Averaging  

To evaluate IC activity using conventional analysis methods that pool across time and/or 

across trials, we counted action potentials during two standard time periods. The baseline period 

(Base) was the 600ms period before target onset, and the sensory-related target period (Resp) 

was the 600ms period after target onset (i.e. ending before, or at the time of, the offset of the 

fixation light.  Figure 2A).   

 

Summation/Averaging Indices:  We quantified the activity on dual-sound trials in 

comparison to the sum and the average of the activity on single-sound trials, expressed in units 

of standard deviation (Z-scores), similar to a method used by (31).  Specifically, we calculated,  

 

PredictedSumA,B, = mean(RespA) + mean(RespB) - mean(BaseA,B)    (1) 

 

and 

 

PredictedAvgA,B, = (mean(RespA) + mean(RespB))/2      (2) 

 

where RespA and RespB were the number of spikes of a given neuron for a given set of single-

sound conditions A and B (location, frequency, and intensity) that matched the component 

sounds of the dual-sound trials being evaluated. As the “response” may actually include a 

contribution from spontaneous baseline activity, we subtracted the mean of the baseline activity 

for the single sounds (BaseA,B).  Without this subtraction, the predicted sum would be artificially 
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high because two “copies” of baseline activity are included under the guise of the response 

activity.   

 The Z scores for the dual-sound trials were computed by subtracting these predicted 

values from the mean of the dual-sound trials (mean(RespAB)) and dividing by the mean of the 

standard deviations of the responses on single-sound trials:   

        
    (      )                

        (     )    (     ) 
       (3) 

 

and 

 

        
    (      )                

        (     )    (     ) 
       (4) 

 

If the dual response was within +/- 1.96 of the predicted sum or predicted average, we could say 

the actual dual response was within the 95% confidence intervals for addition or averaging of 

two single responses, respectively.  

 

Analyses of fluctuations in neural firing across and within-trials, and inclusion criteria 

  

Our statistical tests for fluctuations in neural firing were conducted on triplets, or 

related sets of single and dual-sound trials (A, B, AB trials).  To evaluate whether neural 

activity fluctuates across trials in a fashion consistent with switching between firing 

patterns representing the component sounds, we evaluated the Poisson characteristics of 

the spike trains on matching dual and single-sound trials (triplets: AB, A and B). Spike 

train data from each trial was summarized by the total spike count between 0-600ms or 0-

1000 ms from sound onset (i.e. whatever the minimum duration of the overlap between 

fixation and sound presentation was for that recorded neuron, see section Events of 

Task). We modeled the distribution of spike counts in response to single sounds A and B 

as Poisson distributions with unknown rates    , denoted        , and      , denoted 

       . Four hypotheses were considered for the distribution of sound AB spike counts:  

1. a mixture distribution                          with an unknown 

mixing weight   (“mixture”)  
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2. a single          with some    in between    and    (“intermediate”)  

3. a single          where     is either larger or smaller than both    and    

(“outside”)  

4. a single          where     exactly equals one of    and    (“single”) 

 

Relative plausibility of these competing hypotheses was assessed by computing their 

posterior probabilities with equal prior weights (1/4) assigned to the models, and with 

default Jeffreys’ prior (48) on model specific Poisson rate parameters, and a uniform 

prior on the mixing weight parameter  . Posterior model probabilities were calculated by 

computation of relevant intrinsic Bayes factors (49).  

Triplets were excluded if either of the following applied: 1) the Poisson assumption on A 

and B trial counts was not supported by data; or 2)    and   were not well separated.  To 

test the Poisson assumption on single-sound trials A and B of a given triplet, we used an 

approximate chi-square goodness of fit test with Monte Carlo p-value calculation. For 

each sound type, we estimated the Poisson rate by averaging counts across trials.  Equal 

probability bins were constructed from the quantiles of this estimated Poisson 

distribution, with number of bins determined by expected count of 5 trials in each bin or 

at least 3 bins -- whichever resulted in more bins. A lack-of-fit statistic was calculated by 

summing across all bins the ratio of the square of the difference between observed and 

expected bin counts to the expected bin count. Ten thousand Monte Carlo samples of 

Poisson counts, with sample size given by the observed number of trials, were generated 

from the estimated Poisson distribution and the lack-of-fit statistic was calculated from 

each one of these samples. P-value was calculated as the proportion of these Monte Carlo 

samples with lack-of-fit statistic larger than the statistic value from the observed data. 

Poisson assumption was considered invalid if the resulting Monte Carlo p-value < 0.1. 

 

For triplets with valid Poisson assumption on sound A and B spike counts, we tested for 

substantial separation between    and   , by calculating the intrinsic Bayes factor of the 

model       against       with the non-informative Jeffreys’ prior on the   

parameters:   ,    or their common value. The triplet was considered well separated in 

its single sounds if the logarithm of the intrinsic Bayes factor equaled 3 or more, which is 
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the same as saying the posterior probability of       exceeded 95% when a-priori the 

two models were given 50-50 chance. 

 

Dynamic Admixture Point Process Model 

 

To evaluate whether neural activity fluctuates within trials, we developed a novel analysis 

method we call a Dynamic Admixture Point Process model (DAPP) which characterized the 

dynamics of spike trains on dual sound trials as an admixture of those occurring on single sound 

trials.     The analysis is carried out by binning time into moderately small time intervals. Given a 

predetermined bin-width w = T/C for some integer C, we divide the response period into 

contiguous time intervals I1 = [0;w); I2 = [w; 2w)… IC = [(C-1)w,Cw) and reduce each trial to a 

C-dimensional vector of bin counts (X
e
j1,…,X

e
jC) for e   {A;B;AB} and j = 1,…, ne. 

Mathematically, X
e
jC = N

e
j(Ic). We typically use w = 25 or 50 (with time measured in ms and T = 

600 or 1000). 

 

Our model for the bin counts is the following. Below we denote by   
  the mid-point (c – 1/2)w of 

sub-interval Ic. 

 

1.     
     (       

  ),   {   }   {     } ,   {      }.  We assume both       and 

     are smooth functions over t   [0, T]. 

 

2.    
              

   ,  where   (t) =             
     {       } 

     with 

   [   ]        being unknown smooth functions. 

 

We model               , where                is the sigmoid function, and, each 

       is a (smooth) Gaussian process with  {     }    ,    {     }    , and, 

   {          
  }      {              

 }. The three parameters            respectively 

encode the long-term average value, the total swing magnitude and the waviness of the       

curve. While the temporal imprint carried by each    is allowed to be distinct, we enforce the 

dual trials to share dynamic patterns by assuming (        )          , are drawn from a 
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common, unknown probability distribution P, which we call a dynamic pattern generator and 

view as a characteristic of the triplet to be estimated from the data. 

 

To facilitate estimation of P, we assume it decomposes as         , where     is an 

unknown distribution on              generating        , and,    is an unknown 

distribution on       generating   . To simplify computation, we restrict    to take only a 

finitely many positive values, representative of the waviness range we are interested in (in our 

analyses, we took these representative values to be {75, 125, 200, 300, 500}, all in ms). This 

restricts    to be a finite dimensional probability vector.  

 

We perform an approximate Bayesian estimation of model parameters. Note that only        and 

       are informed by the single sound trial data. All other model parameters are informed only 

by the dual sound trial data conditionally on the knowledge of       and       To take 

advantage of this, we first smooth each set of single sound trial data to construct a conditional 

gamma prior for the corresponding      
     {   }        , where the gamma 

distribution’s mean and standard deviation are matched with the estimate and standard error of 

     
  . A formal Bayesian estimation is then carried out on all model parameters jointly by (a) 

using only the dual sound trial data, (b) utilizing the conditional gamma priors on       and 

     , and,  (c) assuming a Dirichlet process prior (50) on     and an ordinary Dirichlet prior on 

  . This final step involves a Markov chain Monte Carlo computation whose details will be 

reported in a separate paper. 

 

A vs. B assignment scores:  individual neurons, pairs of neurons, local field potential, and 

behavioral prediction 

 

A vs. B assignment scores were computed for several analyses (the example shown in 

Figure 3A-D; pairs of recorded neurons; the relationship between spiking activity and local field 

potential; and the relationship between saccade sequences and spiking activity).  For each triplet,  

every dual-sound trial received an “A-like” score and a “B-like” score, either for the entire 

response window (600-1000 ms after sound onset) or for 50 ms time bins. The scores were 
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computed as the posterior probability that the spike count in each dual-sound trial was drawn 

from the Poisson distribution of single-sound spike counts,  

For the pairs analysis, the A vs. B assignment scores were computed within each 50 ms 

time bin independently for each pair of neurons recorded simultaneously.   The scores were 

normalized across trials by subtracting the mean score and dividing by the standard deviation of 

scores for that bin (a Z-score in units of standard deviation).  Only conditions for which both 

recorded neurons exhibited reasonably different responses to the “A” vs. the “B” sound and for 

which there were at least 5 correct trials for A, B, and AB trials were included (t-test, p < 0.05).  

A total of 206 conditions were included in this analysis.     

 

Local field potential analysis  

We analyzed the local field potential from 87 sites in both monkeys (30 sites from 

monkey P’s left IC, 31 sites from monkey Y’s right IC and 26 sites from monkey Y’s left IC). 

The LFP acquisition was either recorded in discrete temporal epochs encompassing behavioral 

trials (roughly 1.2 to 2 seconds long) and at a sampling rate of 20 kHz (Dataset I, part of Dataset 

II), or as a continuous LFP signal during each session, at a sampling rate of 20 kHz or 1kHz (rest 

of Dataset II). We standardized the LFP signals by trimming the continuous LFP into single trial 

intervals and down-sampling all signals to 1 kHz. The MAP system filters LFP signals  between 

0.7 and 300 Hz; no additional filtering was applied.  For each site we subtracted the overall mean 

LFP value calculated over the entire session, to remove any DC shifts, and we excluded trials 

that exceeded 500mV. For each triplet, we assigned individual dual-sound trials to two groups 

based on the total spike count in a 600 ms response window (see Methods:  A vs. B assignment 

scores). The average LFP was then compared across the two groups in two 600 ms windows 

before and after sound onset (baseline and response periods). The results reported here refer to 

these mean-normalized LFP signals. We obtained similar results when the amplitude of each 

trial’s LFP was scaled as a proportion of the maximum response within the session.   

 

  

 

SUPPLEMENTARY FIGURES AND TABLES 
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Supplementary Figure 1.  Same analysis as figure 2, but comparing dual-sound trials to single-

sound trials that used the same signal sent to the speakers (left column), or for which the signal 

was amplified on single-sound trials to match the dual sounds in loudness (middle and right 

columns).  The results are essentially identical to each other.  Accordingly, the remainder of the 

analyses in the paper ignored sound intensity as a factor.   

 

 

 Intermediate Mixture Outside Single Total 

Wavy-central-symmetric 13 (5) 2   15 (5) 

Wavy-central 1    1 

Wavy-symmetric 4 2   6 

Flat-central-symmetric 7 (3)    7 (3) 

Flat-central 2 (1) 1   3 (1) 

Flat-extreme-skewed 8 (1) 12 (3) 19 (4) 46 85 (8) 

Flat-extreme-symmetric 2 22 (19)  4 28 (19) 

Flat-extreme 3 31 (13) 1 16 51 (13) 
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Flat-skewed 4 (2)    4 (2) 

Flat-symmetric 6 11 (4)  4 21 (4) 

Flat 13 (2) 1  2 16 (2) 

Extreme-symmetric 1 4 (4)  1 6 (4) 

Extreme  3 (2)  1 4 (2) 

Central-symmetric 9 (2) 1  2 12 (2) 

Symmetric 36 (1) 42 (5)  14 92 (6) 

Skewed 1 (1)    1 (1) 

Ambiguous 5 2  3 10 

Total 115 (18) 134 (50)  20 (4) 93 362 (72) 

 

Supplementary Table 1.  Complete listing of “tags” applied in the DAPP analysis.  The numbers 

in parentheses are for triplets that produced a winning model in the whole trial analysis with a 

probablility > 95%. The total is 362, since for one “single” triplet, the DAPP analysis failed to 

compute the necessary metrics.   
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Supplementary Figure 2.  Hierarchical depiction of the DAPP tags, considering first flat vs. 

wavy, then central vs. extreme, then symmetric vs. skewed, as a function of whole trial model 

classification.  As in Supplementary Table 1, numbers in parentheses are for triplets that 

produced a winning model in the whole trial analysis with a probability > 95% and the total 

included here is 362.  For clarity, labels “0(0)” are not shown. 
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Supplementary Figure 3.  Relationship between DAPP tags and whole-trial Poisson 

classification, for different levels of winning probability for the whole-trial analysis.  Panel C is 

identical to Figure 5C in the main text.  
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Supplementary Figure 4.  Same analysis as in Figure 6B, but using spike counts in each bin 

instead of A vs. B assignment scores.   
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