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SUMMARY
In sensory systems, representational features of increasing complexity emerge at successive stages of pro-
cessing. In themammalian auditory pathway, the clearest change frombrainstem to cortex is defined bywhat
is lost, not by what is gained, in that high-fidelity temporal coding becomes increasingly restricted to slower
acousticmodulation rates.1,2 Here, we explore the idea that sluggish temporal processing ismore than just an
inability for fast processing, but instead reflects an emergent specialization for encoding sound features that
unfold on very slow timescales.3,4 We performed simultaneous single unit ensemble recordings from three
hierarchical stages of auditory processing in awake mice – the inferior colliculus (IC), medial geniculate
body of the thalamus (MGB) and primary auditory cortex (A1). As expected, temporal coding of brief local in-
tervals (0.001 – 0.1 s) separating consecutive noise bursts was robust in the IC and declined across MGB and
A1. By contrast, slowly developing (�1 s period) global rhythmic patterns of inter-burst interval sequences
strongly modulated A1 spiking, were weakly captured by MGB neurons, and not at all by IC neurons. Shifts
in stimulus regularity were not represented by changes in A1 spike rates, but rather in how the spikes were
arranged in time. These findings show that low-level auditory neurons with fast timescales encode isolated
sound features but not the longer gestalt, while the extended timescales in higher-level areas can facilitate
sensitivity to slower contextual changes in the sensory environment.
RESULTS AND DISCUSSION

Our perception of music, speech and the surrounding sound-

scape all originate from patterns of vibrations in the cochlea.

To encode these high-speed vibrations, evolutionary pressures

designed an exquisite hydro/electro/mechanical force trans-

ducer, signal amplifier and frequency analyzer – the Organ of

Corti – with sensory cells that can individually encode a 1 3

1012 range of signal amplitudes at rates up to several kilohertz.

Neurons in the auditory brainstem synchronize action potential

timing to frequencymodulations in excess of 1 kHz and compute

sub-millisecond discrepancies in the timing of sound waves that

reach each ear. Each of these remarkable feats of high-speed

processing are enabled by cellular morphologies, intrinsic elec-

trical properties and synaptic architectures that are unique to

the first stages of auditory processing and are indispensable

for encoding the rapid acoustic building blocks of sound

perception.5

On the other hand, higher-order structure in music, vocal

communication, and auditory scenes are organized on inherently

slow timescales (Figure 1A, top). For example, recognizing that a
1762 Current Biology 31, 1762–1770, April 26, 2021 ª 2021 Elsevier
scratched record is repeating the same short section of a song,

or entraining the tapping of your foot to amusical rhythm, or inte-

grating across the slower structures of vocal communication that

organize the faster components (e.g., sentences or bouts of bird-

song), all require a specialized selectivity for slow timescales.

Here, we addressed whether low-level auditory neurons with

fast timescales encode brief local features of sounds but not

the longer gestalt, while the slower neural timescales in higher-

level auditory areas may support the encoding of global sound

patterns organized over longer timescales (Figure 1A, bottom).

Subcortical specialization for encoding rapid, local
intervals
To test this idea, we used three high-density probes to make

simultaneous recordings from hundreds of single units along

the IC-MGB-A1 hierarchy in awake, head-fixed mice (Figure 1B).

In response to a single 20 ms burst of frozen white noise, IC units

fire short-latency spikes in rapid succession, whereas A1 units

produced protracted spiking that persisted for tens of millisec-

onds after sound offset (Figure 1C). Neural timescales also in-

crease across hierarchies of visual cortical areas, where it is
Inc.
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Figure 1. Across the midbrain to cortex hierarchy, neural timescales expand as temporal interval decoding accuracy declines

(A) Top: acoustic features supporting the perception of speech, music and auditory scene analysis are inherently organized on a wide range of timescales.

Bottom: the typical synchronization limit for neurons at each stage of auditory processing. Each word is roughly centered on the typical synchronization limit to

amplitude modulated sound, as reviewed in1.

(B) Left: schematic of simultaneous multi-regional extracellular recordings from the IC, MGB and A1 of awake, head-fixedmice. One- or two-shanked 64-channel

probe positioning relative to a schematic of the best frequency tonotopic gradients in each structure. Right: a single sweep of 192-channel multiunit activity

across the IC, MGB, and A1 before and after presentation of a 20 ms white noise burst to the contralateral ear at 70 dB SPL.

(C) Left: spike rasters from representative single units in the IC, MGB, and A1. Gray shaded area denotes the timing of the 20 ms white noise burst. Right:

autocorrelation function for each unit with exponential fit and computed decay constant.

(legend continued on next page)
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quantified as the decay time constant (t) of an exponential fit to

the temporal spike count autocorrelation.6,7 Adapting this

approach to our data, we confirmed a progression of neural

timescales in the auditory system that approximately doubled

frommidbrain to cortex (Figure 1D).We reasoned that protracted

spiking responses at higher hierarchical stages was likely asso-

ciated with reduced temporal resolution from IC to MGB to A1.

To demonstrate this, we presented pairs of noise bursts sepa-

rated by a variable silent interval and used a spike timing-based

template matching classifier to decode the inter-burst interval

(Figures 1E and 1F). Frommidbrain to cortex, decoding accuracy

was reduced overall and restricted to a limited range of longer in-

tervals (Figure 1G), such that themedian threshold of interval de-

coding rose from 1.4 ms for IC units, to 16 ms for MGB units, and

64 ms in A1 (Figure 1H), reflecting a progressive loss of temporal

fidelity along the ascending auditory pathway that has been

documented in many previous studies (for reviews see1,2,4).

Cortical specialization for encoding slower, global
rhythms
While slow neural timescales in the cortexmay interfere with pre-

cise temporal coding, we reasoned that sluggish temporal pro-

cessing could suggest a cortical advantage over subcortical sta-

tions for encoding slowly evolving features. To test this idea, we

arranged the intervals separating consecutive noise bursts

randomly or in a pattern (i.e., a rhythm) (Figure 2A, top). With

this approach, the same set of four intervals comprised one cy-

cle, but the intervals are arranged in a regular sequence (rhyth-

mic context) or else occur in a random sequence. We created

several libraries composed of different temporal interval ar-

rangements, each set to a mean inter-burst interval of 200 ms

(with no interval shorter than 100 ms) to avoid forward suppres-

sion, as supported by the analysis above (Figure 1C, Figures 1D–

1H). Because the stimuli, the silent interval durations and the to-

tal cycle duration for random and rhythmic periods were

matched, the sole feature distinguishing random and rhythmic

contexts was regularity, which can only be encoded by inte-

grating over at least one complete cycle (0.8 s).

When noise burst tokens switched between rhythmic and

random sequences, we noted a clear change in the spiking pat-

terns of A1 units that were not observed in simultaneously re-

corded MGB and IC ensembles (Figure 2A, bottom). To deter-

mine whether changes in ensemble spiking patterns could be

used to decode whether individual cycles occurred in a rhythmic

or random context, we first reduced the dimensionality of the
(D) Neural timescale measurements from the IC (N/n = 5/48, mice/single units), MG

hierarchy (Kruskal-Wallis, 1.73 10�10; post hoc pairwise comparisons with Bonfe

13 10�6/0.51; MGB versus A1, 13 10�8/0.41 for p value/Cliff’s delta). Box-and-w

Whiskers, range of non-outlier values. Circles, mean.

(E) Spike rasters for three representative single units for paired noise bursts. Altern

20 ms noise bursts.

(F) Mean confusion matrices for single-trial PSTH-based classification of inter-bu

(G) Mean ± SEM probability of veridical interval classification (the upward diag

classification accuracy is significantly reduced at successive stages of the IC-MG

6 3 10�9).

(H) Decoder accuracy threshold in IC (n = 5/48, mice/single units), MGB (5/111),

10�17; post hoc pairwise comparisons with Bonferroni correction for multiple com

versus A1, 83 10�6/0.37 for p value/Cliff’s delta). Box-and-whisker plots show m

non-outlier values. Circles, mean.
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ensemble data matrix with principal components analysis. We

then used a binary support vector machine (SVM) on the prin-

cipal components projections to classify whether ensemble ac-

tivity for each cycle came from the rhythmic or random stimulus

context (Figure 2B). We observed that the changes in ensemble

spiking were sufficient to classify the change from rhythmic to

random sequences in A1, but not in MGB or IC (Figures 2C

and 2D).

To determine the features of spike patterning that most clearly

captured the difference between regular and random arrange-

ments, we quantified the responses of single units across all

100 bursts (25 cycles) within each context. Intriguingly, it was

the neural timescale itself that conveyed whether noise bursts

were arranged randomly or in a rhythm; A1 spiking decayed

more rapidly when the time intervals fell into a predictable rhythm

than when they were arranged in a random sequence. To quan-

tify neural timescale dynamics, we calculated the autocorrelation

decay time constants for single units in random and rhythmic

contexts using the same approach described above (Figures

3A and 3B). We found that neural timescales were unaffected

by random or rhythmic sequences in the IC, were slightly and

inconsistently dampened in the MGB, but were strongly and reli-

ably dampened in A1 during rhythmic patterns (Figures 3C and

3D). Presenting the intervals in rhythmic patterns had no consis-

tent effect on mean firing rate within the 100 ms response win-

dow (Figures 3E and 3F), but instead only on how the spikes

were arranged within the 100 ms response window, both in

terms of shorter decay constants and less variation in first spike

latency (Figure S1). Neural timescales were equivalently com-

pressed for regular spiking putative pyramidal neurons across

A1 layers (Figure S2), yet no effect of context was observed in

fast spiking putative parvalbumin-expressing interneurons (Fig-

ure S3). To control for the possibility that the ordinal arrangement

of random following rhythmic could account for differences in

spike patterning, we created a random-random stimulus but

found that classification was near chance throughout and no

systematic changes in neural timescales were observed

(Figure S4).

When individual cycles were composed of four intervals,

sensitivity to stimulus regularity required integration over at least

0.8 s, the duration of a single cycle. To determine if A1 neurons

could integrate over even longer stimulus timescales, we tested

the same units with random or rhythmic noise burst sequences

composed of eight and twelve intervals per cycle (which

repeated every 1.6 s and 2.4 s, respectively) (Figure 4a). Spiking
B (5/131), and A1 (4/140). Neural timescales significantly increased across the

rroni correction for multiple comparisons, IC versus MGB, 1/0.05; IC versus A1,

hisker plots showmedian values in solid gray line and 25th and 75th percentiles.

ating colors are presented for ease of visualization. Vertical gray lines = timing of

rst interval for the same IC, MGB, and A1 single units in (E).

onal from the confusion matrices in F) for all IC, MGB and A1 units. Interval

B-A1 hierarchy (mixed design ANOVA, main effect for structure, F = 20.95, p =

and A1 (4/109). Threshold increases across the hierarchy (Kruskal-Wallis, 8 3

parisons, IC versus MGB, 3.73 10�6/0.50; IC versus A1, 63 10�17/0.83; MGB

edian values in solid gray line and 25th and 75th percentiles. Whiskers, range of
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Figure 2. Accurate decoding of random or regular temporal interval arrangements observed in A1, not subcortically

(A) Top: schematic of rhythmic and random noise burst sequences. A single cycle is composed from four intervals which are joined by the gray line. The four

intervals are presented in a stereotyped order to form a rhythm, or in a randomorder during the baseline and randomperiods. Bottom: six cycles from the rhythmic

(legend continued on next page)
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decay constants in A1 were slightly reduced during rhythms

composed of eight repeating intervals and were equivalent be-

tween random and rhythmic epochs with twelve intervals per cy-

cle (Figures 4B–4E). Therefore, at least for A1 in passively

listening mice, single unit sensitivity to regularity is limited to

stimulus timescales on the order of 4–8 repeating elements or

0.8–1.6 s.

Spike rate adaptation versus spike timescale dynamics
We observed that the decay constants for sound-evoked spiking

increased from the midbrain to cortex, and that the cortical time-

scale was itself shaped by slower changes in stimulus context,

such that rhythmic, predictable sequences featured more

orderly first spike latencies andmore strongly dampened spiking

decay. There is a long history of studying cortical adaptation to

stimulus history in the auditory system, most notably with para-

digms related to stimulus-specific adaptation (SSA), in which

sound-evoked firing rates are modulated according to the prob-

ability of stimulus presentation.8–10 Like the protocol we used

here, SSA is characterized by contrasting the neural response

to an identical stimulus that differs only according to global

context. While SSA has historically been studied with tones of

varying frequency, recent work has also relied on silent gaps in

broadband stimuli, demonstrating that it cannot be explained

solely as adaptation in narrowly tuned frequency channels.11

As the name implies, SSA is fundamentally a spike rate adapta-

tion process dominated by synaptic fatigue for standard inputs,

whereas synaptic inputs elicited by improbable deviant inputs

remain unadapted, or even potentiated through as yet undefined

recurrent or descending circuit mechanisms.12–14

The protocol we introduce here was inspired by changes in

cortical activity and perceptual awareness of complex repeating

acoustic patterns in human subjects.15,16 While our approach is

conceptually similar to prior work on SSA or contrast gain control

in animal models, the methodological approach and neurophysi-

ological results differ in several key respects.17 First, with the pro-

tocol described here, there are no low- or high-probability stimuli.

All stimuli were identical frozen noise bursts separated by a single

set of intervals used in both random and regular contexts. The

only explicit feature that distinguished random from regular con-

texts was whether the sequence of inter-burst intervals repeated

across cycles or were randomly arranged from one cycle to the

next. Second, sensitivity to regularity in our paradigm required

integration over periods lasting at least one cycle length (0.8 s),

whereas high- and low-probability stimulus statistics that drive

SSA or contrast gain control can generally be encoded on shorter

timescales (but see9,18,19). Third, while SSA,20–22 contrast gain
and random epochs are presented with the single unit spike rasters from 68 simul

timing of individual noise bursts. See also supplemental audio files presenting exam

audio excerpts of random and rhythmic interval sequences.

(B) Top: evoked response over a 100 ms period beginning at stimulus onset for th

bursts in each stimulus context (4 bursts per cycle, 25 cycles per epoch). Bottom

within the rhythmic and random contexts.

(C) An SVM was used to classify the ensemble spiking for each cycle to random o

MGB, and A1 recordings. Solid line represents sigmoidal fit of the cycle-by-cycl

(D) Decoder output for ensembles in IC (N = 5,mice), MGB (N = 6), and A1 (N = 5). G

Thick line with shading, mean ± SEM. Classification accuracy increases along the

classification over cycles: IC [F = 0.5, p = 0.99], MGB [F = 0.69, p = 0.93], A1 [F = 18

MGB [F = 1.55, p = 0.01], A1, [F = 21.28, p = 0]).
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control,23–25 or other neural signatures of stimulus context

changes26 are robustly expressed in the A1, they are also clearly

represented the IC and MGB. The context sensitivity we report

here is completely absent in our sample of IC units and is weakly

expressed in MGB neurons. Fourth, and perhaps most impor-

tantly, SSA, contrast gain control and other forms of context-

dependent adaptation are based on changes in spike rate,

whereas our findings demonstrate that random or rhythmic ar-

rangements of temporal intervals canbedecoded fromA1 spiking

(Figure 2D)without any change inmean spike rate (Figures 3E and

3F). Instead, stimulus context was represented solely by changes

in how sound-evoked spikes were arranged in time.

Neural circuit mechanisms that may modulate spiking
timescales, but not overall rate
When not presented in a regular pattern, sound-evoked A1

spiking persisted for approximately 20 ms (Figures 1D and 3C),

with first spike latencies that vary on the order of 10 ms (Fig-

ure S1). It is interesting that cortical spiking timescales are sen-

sitive to a stimulus feature that is approximately 403 slower than

the timescale itself (800 ms versus 20 ms), which suggests that

A1 regular-spiking unit timescale dynamics are likely the product

of other local or long-range circuits that respond more directly to

the change in predictable stimulus timing.27 Prior work has

shown that the temporal decay of sensory-evoked spikes can

be regulated by recurrent local circuits and inter-regional feed-

back loops.6,7,28–31 Cortical GABAergic neurons that express so-

matostatin or neuron-derived neurotrophic factor are clear can-

didates to dampen principal neuron spiking timing because they

target the distal dendrites of A1 pyramidal neurons to regulate

network excitability and recurrent excitation, but are also sensi-

tive to slowly changing internal state variables.32–37 On the other

hand, a subset of thalamic units also showed strong modulation

of neural timescales and reduced firing rates during rhythmic

contexts. These effects hint at an additional (or alternative) circuit

mediated through corticothalamic feedback, which could

dampen feedforward thalamocortical synaptic inputs via inhibi-

tion from the thalamic reticular nucleus.28,38

Relevance to predictive sensory processing and
perception
Whether studied in humans, birds, non-human primates or other

species – including mice39 – fundamental elements of vocal

communication are captured in the time domain. In humans, pri-

mates and songbirds, emergent processing of slowly developing

temporal patterns have been identified in the auditory cortex and

other higher-order brain regions.16,40–44 Within the auditory
taneously recorded units in the IC, MGB, and A1. Vertical gray bars denote the

ples of regular and rhythmic stimulus sequences. Refer to Audio S1 and S2 for

e top three principal components in each region averaged across all 100 noise

: amplitude of the first principal component’s response for each of 25 cycles

r rhythmic contexts, as shown from an example mouse with simultaneous IC,

e decoding.

ray lines indicate themean random cycle shuffled control from each recording.

IC-MGB-A1 hierarchy (two-way repeated-measures ANOVAs, main effect for

.81, p = 0]; interaction term for classification3 condition, IC [F = 1.23, p = 0.15],
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Figure 3. A top-down representation of global temporal patterns via spike timing dynamics, not spike rate

(A) Representative spike rasters from IC,MGB, and A1 units for 100 noise bursts presented in random and rhythmic sequences. Gray shading = 20ms noise burst.

(B) Post-stimulus firing rate histograms and autocorrelation functions for the example units in (A). See also Figure S1 for quantification of first spike latency

variability during random and rhythmic epochs.

(C) Neural timescale measurements from sound-evoked spiking during random and rhythmic epochs in IC (N/n = 5/50, mice/single units), MGB (6/154), and A1 (5/

164). Inset: mean ± SEM neural timescale from each region. Asterisk denotes statistical significance with a paired t test (p < 0.05 and Cohen’s d > 0.5); (IC, 0.7/

0.05; MGB, 0.00009/0.33; A1, 3 3 10�14/0.65 for p value/Cohen’s d). See also Figure S2 for spike timescale changes across layers and Figure S3 for spike

timescale changes between regular- and fast-spiking units.

(D) Histogram of neural timescale asymmetry index ([random – rhythm] / [random + rhythm]), where values < 0 indicatemore dampened responses during random

intervals and values >0 indicate more dampened responses during rhythmic intervals. Arrows denote sample means. Neural timescales are significantly reduced

during rhythmic epochs in A1, slightly reduced in the MGB, but not affected in the IC (one-sample t test against a population mean of 0; IC, 0.27/0.08; MGB,

0.00002/0.33; A1, 8 3 10�13/0.59 for p value/Cohen’s d). See also Figure S4 for a characterization of a control experiments in which the stimulus remained

random for all 50 post-baseline cycles.

(E) Sound-evoked firing measured from random and rhythmic epochs. Inset: mean ± SEM spike rate from each region. NS, not significant. Asterisk denotes

statistical significance with a paired t test (p < 0.05 and Cohen’s d > 0.5); (IC, 0.68/�0.06; MGB, 1 3 10�5/0.36; A1, 0.47/�0.06 for p value/Cohen’s d).

(F) Firing rate asymmetry during random and rhythmic stimulus epochs. Plotting conventions match D. Mean firing rates are only weakly modulated by stimulus

context in all brain areas (one-sample t test against a population mean of 0; IC, 0.6/0.07; MGB, 1 3 10�5/0.36; A1, 0.97/0.00, for p value/Cohen’s d).
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Figure 4. Dampened A1 neural timescales occur with short repeating rhythms, not with longer rhythms

(A) Sequences of baseline-rhythm-random interval arrangements where individual cycles are composed of 4, 8, or 12 noise burst intervals. Refer to Audio S3 and

S4 for audio excerpts of rhythmic interval sequences comprised of eight and twelve intervals per cycle.

(B) Spike rasters from representative A1 single units recorded with sequences of varying cycle size. Random and rhythmic epochs present 100, 200, or 300

epochs (25 cycles per epoch 3 4/8/12 noise burst intervals per cycle).

(C) Post-stimulus firing rate histograms and autocorrelation functions for the example units in (B).

(D) Neural timescale measurements from the random and rhythmic epochs are presented for 164 single units, each recorded with a cycle size of 4,8, and 12 noise

burst intervals. Inset: mean ± SEM neural timescale for each cycle length. NS, not significant. Asterisk denotes statistical significance with a paired t test (p < 0.05

and Cohen’s d > 0.5); (4 intervals, 3 3 10�14/0.65; 8 intervals, 0.003/0.23; 12 intervals, 0.03/0.17 for p value/Cohen’s d).

(E) Histogram of neural timescale asymmetry index ([random – rhythm] / [random + rhythm]), where values <0 indicate more dampened responses during random

intervals and values >0 indicate more dampened responses during rhythmic intervals. Arrows denote sample means. Neural timescales are significantly reduced

when noise bursts form rhythms than during random arrangements with cycle sizes of 4, but not 8 or 12 (one-sample t test against a population mean of 0, 4

intervals, 2 3 10�12/0.59; 8 intervals, 0.002/0.24; 12 intervals, 0.31/0.08, for p value/Cohen’s d).
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cortex, the time constants that regulate temporal integration of

speech and auditory regularity increases across core to

higher-order fields.45–47 In our study, neural timescales in A1

did not integrate over longer, more complex rhythmic sequences

that repeated less frequently (Figure 4). In future work, it would

be important to test whether even more protracted spiking time-

scales and more integrative processing of slower developing

regularities are encoded in candidate higher-order areas of the

mouse auditory cortex, such as the dorsal-posterior and

ventral-posterior fields, particularly when mice are behaviorally

engaged in active listening tasks.48 Our findings show that – at

least from the perspective of first spike latency jitter and spike

decay time constants – the cortex becomes more like the thal-

amus when sound features are regular and predictable. This

may reflect a physiological transition in the cortex from a ‘‘delib-

erative’’ mode when sound features are unpredictable, typified

by strong inter- and intra-columnar recurrent activity, to a

‘‘pass through’’ mode when environmental stimuli match internal

predictive models.15,49,50
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10. P�erez-González, D., and Malmierca, M.S. (2014). Adaptation in the audi-

tory system: an overview. Front. Integr. Neurosci. 8.

11. Awwad, B., Jankowski, M.M., and Nelken, I. (2020). Synaptic recruitment

enhances gap termination responses in auditory cortex. Cereb. Cortex 30,

4465–4480.

12. Solomon, S.G., and Kohn, A. (2014). Moving sensory adaptation beyond

suppressive effects in single neurons. Curr. Biol. 24, R1012–R1022.

13. Whitmire, C.J., and Stanley, G.B. (2016). Rapid sensory adaptation redux:

a circuit perspective. Neuron 92, 298–315.

14. Polterovich, A., Jankowski, M.M., and Nelken, I. (2018). Deviance sensi-

tivity in the auditory cortex of freely moving rats. PloS one 13, p.e0197678.

15. Heilbron, M., and Chait, M. (2018). Great expectations: is there evidence

for predictive coding in auditory cortex? Neuroscience 389, 54–73.

16. Barascud, N., Pearce, M.T., Griffiths, T.D., Friston, K.J., and Chait, M.

(2016). Brain responses in humans reveal ideal observer-like sensitivity

to complex acoustic patterns. Proc. Natl. Acad. Sci. USA 113, E616–E625.

17. Robinson, B.L., and McAlpine, D. (2009). Gain control mechanisms in the

auditory pathway. Curr. Opin. Neurobiol. 19, 402–407.

18. Yaron, A., Hershenhoren, I., and Nelken, I. (2012). Sensitivity to complex

statistical regularities in rat auditory cortex. Neuron 76, 603–615.
Current Biology 31, 1762–1770, April 26, 2021 1769

https://doi.org/10.1016/j.cub.2021.01.076
https://doi.org/10.1016/j.cub.2021.01.076
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref1
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref1
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref2
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref2
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref2
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref3
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref3
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref3
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref4
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref4
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref5
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref5
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref5
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref6
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref6
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref6
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref7
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref7
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref7
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref7
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref8
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref8
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref8
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref8
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref9
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref9
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref9
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref10
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref10
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref10
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref11
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref11
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref11
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref12
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref12
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref13
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref13
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref14
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref14
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref15
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref15
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref16
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref16
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref16
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref17
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref17
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref18
http://refhub.elsevier.com/S0960-9822(21)00141-X/sref18


ll
Report
19. Rubin, J., Ulanovsky, N., Nelken, I., and Tishby, N. (2016). The represen-

tation of prediction error in auditory cortex. PLoS Comput. Biol. 12,

e1005058.

20. Parras, G.G., Nieto-Diego, J., Carbajal, G.V., Vald�es-Baizabal, C., Escera,

C., and Malmierca, M.S. (2017). Neurons along the auditory pathway

exhibit a hierarchical organization of prediction error. Nat. Commun. 8,

2148.

21. Ayala, Y.A., and Malmierca, M.S. (2013). Stimulus-specific adaptation and

deviance detection in the inferior colliculus. Front. Neural Circuits 6, 89.

22. Anderson, L.A., Christianson, G.B., and Linden, J.F. (2009). Stimulus-spe-

cific adaptation occurs in the auditory thalamus. J. Neurosci. 29, 7359–

7363.

23. Dean, I., Harper, N.S., and McAlpine, D. (2005). Neural population coding

of sound level adapts to stimulus statistics. Nat. Neurosci. 8, 1684–1689.

24. Lohse, M., Bajo, V.M., King, A.J., and Willmore, B.D.B. (2020). Neural cir-

cuits underlying auditory contrast gain control and their perceptual impli-

cations. Nat. Commun. 11, 324.

25. Kvale, M.N., and Schreiner, C.E. (2004). Short-term adaptation of auditory

receptive fields to dynamic stimuli. J. Neurophysiol. 91, 604–612.

26. Cai, R., Richardson, B.D., and Caspary, D.M. (2016). Responses to pre-

dictable versus random temporally complex stimuli from single units in

auditory thalamus: impact of aging and anesthesia. J. Neurosci. 36,

10696–10706.

27. Cannon, J.J., and Patel, A.D. (2021). How beat perception co-opts motor

neurophysiology. Trends Cogn. Sci. 25, 137–150.

28. Reinhold, K., Lien, A.D., and Scanziani, M. (2015). Distinct recurrent versus

afferent dynamics in cortical visual processing. Nat. Neurosci. 18, 1789–

1797.

29. Runyan, C.A., Piasini, E., Panzeri, S., and Harvey, C.D. (2017). Distinct

timescales of population coding across cortex. Nature 548, 92–96.

30. Hart, E., and Huk, A.C. (2020). Recurrent circuit dynamics underlie persis-

tent activity in the macaque frontoparietal network. eLife 9, 1–22.

31. Gao, R., van den Brink, R., Pfeffer, T., and Voytek, B. (2020). Neuronal

timescales are functionally dynamic and shaped by corticalmicroarchitec-

ture. Elife 9, p.e61277.

32. Kato, H.K., Gillet, S.N., and Isaacson, J.S. (2015). Flexible sensory repre-

sentations in auditory cortex driven by behavioral relevance. Neuron 88,

1027–1039.

33. Abs, E., Poorthuis, R.B., Apelblat, D., Muhammad, K., Pardi, M.B., Enke,

L., Kushinsky, D., Pu, D.L., Eizinger, M.F., Conzelmann, K.K., et al.

(2018). Learning-related plasticity in dendrite-targeting layer 1 interneu-

rons. Neuron 100, 684–699.e6.

34. Kato, H.K., Asinof, S.K., and Isaacson, J.S. (2017). Network-level control

of frequency tuning in auditory cortex. Neuron 95, 412–423.e4.

35. Park, Y., and Geffen, M.N. (2020). A circuit model of auditory cortex. PLoS

Comput. Biol. 16, e1008016.

36. Natan, R.G., Briguglio, J.J., Mwilambwe-Tshilobo, L., Jones, S.I.,

Aizenberg, M., Goldberg, E.M., and Geffen, M.N. (2015).
1770 Current Biology 31, 1762–1770, April 26, 2021
Complementary control of sensory adaptation by two types of cortical in-

terneurons. eLife 4, 4.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Sorted spikes Current study Mendeley Data: https://doi.org/10.

17632/v7tpm6gsvp.1

Experimental Models: Organisms/Strains

Mouse; C57BL/6J The Jackson Laboratory Cat# JAX: 000664; RRID:

IMSR_JAX:000664

Software and Algorithms

LabVIEW National Instruments https://www.ni.com/en-us/shop/

labview.html

Kilosort GitHub https://github.com/MouseLand/

Kilosort

MATLAB MathWorks https://www.mathworks.com/

products/matlab.html

Synapse Tucker-Davis Technologies http://www.tdt.com/component/

synapse-software/

Other

PXI National Instruments PXI-4461

Free-field speaker Parts Express 275-010

Silicon recording probes Cambridge NeuroTech H2, H3

Neurodigitizer and preamplifier Tucker-Davis Technologies PZ5

Data processer and real-time controller Tucker-Davis Technologies RZ2

Data streamer Tucker-Davis Technologies RS4

ZIF-Clip headstage components Tucker-Davis Technologies ZC64, Z-ROD64, ZCA-NN64
RESOURCE AVAILABILITY

Lead Contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Daniel Polley (daniel_polley@meei.

harvard.edu).

Materials Availability
This study did not generate new reagents.

Data and Code Availability
Original data have been deposited to Mendeley Data: https://doi.org/10.17632/v7tpm6gsvp.1.

The analysis codes used in the study are available on GitHub: https://github.com/Meenakshi-Asokan/Asokan_et_al_2021_

CurrentBiology.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used adult male and female C57BL6 mice aged 6-8 weeks at the time of recording. All procedures were approved by the Mas-

sachusetts Eye and Ear Infirmary Animal Care and Use Committee and followed the guidelines established by the National Institute of

Health for the care and use of laboratory animals.

METHOD DETAILS

Stimulus design
Auditory stimuli were frozen broadband noise bursts (20 ms duration, 5 ms raised cosine onset/offset ramps, 70 dB SPL, 1-64 kHz

bandwidth). Stimuli were generated with a 24-bit digital-to-analog converter (National Instruments model PXI-4461) and presented
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via a free-field speaker (Parts Express 275-010) placed approximately 10 cm from the left (contralateral) ear canal. Free-field stimuli

were calibrated using a wide-band free-field microphone (PCB Electronics, 378C01).

Noise bursts were presented in pairs (1-512 ms silent inter burst intervals, incremented in octave steps, 25 repetitions each,

1 s inter-trial interval) or in longer sequences with durations set to 48, 96 or 144 s for 4, 8 and 12 intervals per cycle, respec-

tively. All sequences used the same range of inter-pulse intervals (100 – 300 ms in 20 ms increments). We then pseudo randomly

selected a set of intervals for a cycle to have a mean value of 200 ms. For the random sequence, we concatenated 25 cycles,

where the same set of intervals were randomly ordered for each cycle. The rhythmic pattern was generated similarly, except

that the order of intervals selected for the first cycle was repeated for the next 24 cycles. A complete sequence began with

a baseline period consisting of at least 10 cycles of random interval arrangements followed by 25 cycles of the repeating

rhythm, which was followed by 25 cycles of randomly ordered intervals. We generated multiple sequences of the baseline-

rhythmic-random arrangement for each cycle duration, each based on a different pseudorandom selection of intervals. We

also tested a control stimulus in which random temporal interval arrangement was used throughout (Figure S4). To reduce

the influence of memory or habituation, we only used the first sequence per mouse for each of the three cycle durations.

This paradigm ensures that the explicit auditory inputs (i.e., the noise burst itself and the particular set of silent intervals sepa-

rating the noise bursts) are matched throughout the sequence, and that repetition is the sole feature distinguishing the rhythmic

epoch from the baseline and random epochs. Refer to Audio S1, Audio S2, Audio S3, and Audio S4 for excerpts of random and

rhythmic interval arrangements of varying cycle lengths.

Surgical preparation
We first anesthetized the mice with isoflurane in oxygen (5% for induction, 1.5% for maintenance), and used a homeothermic blanket

system (FHC) to maintain their body temperature at 36.5�C. After administering Lidocaine subcutaneously to numb the surgical area,

we removed the scalp and the periosteum overlying the dorsal surface of the skull. To create a better adhesive surface, we prepared

the skull with etchant (C&B metabond) and 70% ethanol before affixing a custom titanium head plate (iMaterialise) using dental

cement (C&B metabond). We also created a small burr hole over the left occipital cortex to implant a ground wire (AgCl). We admin-

istered Buprenex (0.05 mg/kg) and meloxicam (0.1 mg/kg) at the conclusion of the surgery. Mice were individually housed following

surgery and were given at least 48 h to acclimate to the head plate before the recording.

On the day of the recording, we again anesthetized the mice with isoflurane in oxygen and made three very small (�13 1-1.5 mm)

craniotomies over the right hemisphere using a scalpel. The IC craniotomy was made just lateral to the midline and just caudal to the

lambdoid suture, taking the utmost care to avoid the sinuses running underneath. The MGB craniotomy was made 1.5 mm rostral to

the lambdoid suture and 2-3 mm lateral to midline. To expose A1, we first retracted the temporalis muscle and then made a crani-

otomy centered on the temporal suture line approximately 1.5 mm rostral to the lambdoid suture. Finally, we built a well around each

craniotomy with UV-cured cement (Flow-It ALC Flowable Composite) and filled them with lubricating ointment (Paralube Vet Oint-

ment), to keep the brain moist over the entire recording session. As the mice recover from anesthesia, we head-fixed them by

attaching their head plate to a rigid clampwhile their body rested on a cradle inside a dimly lit single-wall sound attenuating recording

chamber (Acoustic Systems). We waited for at least 30 min before starting the recording.

Simultaneous multi-regional recordings
We used three linear 64-channel silicon probes (Cambridge Neurotech), including a single shank (H3 probe, 20 mm spacing) elec-

trode for recording from IC, and a dual shank (H2 probe, 25 mm spacing between contacts within a shank, and 200 mm spacing be-

tween shanks) electrode for recording from MGB and A1, and inserted each using a micromanipulator (Narishige) and a hydraulic

microdrive (FHC). The IC recording probe was inserted slightly off the dorsal to ventral axis to capture the tonotopic gradient of

the central nucleus. We inserted the MGB electrode perpendicular to the brain surface with the tip of the probe resting 3.5 -

4 mm below the surface and the two shanks oriented medio-laterally. We started at the lateral edge of the craniotomy and then re-

tracted and reinserted the probe at progressivelymoremedial positions until we had broadband noise-evoked spiking activity inmost

channels of both shanks, and in so doing, we were assured of recording from the lateral bank of the MGB, which contains the ventral

subdivision and, depending on the caudal-rostral coordinates, might also contain recording sites in the dorsal subdivision and supra-

geniculate nucleus. Finally, we inserted the A1 probe perpendicular to the brain surface until the tip of the probe was approximately

1.2 mm below the brain surface, resting just above the white matter, with the two shanks oriented rostro-caudally. After all three

probes were inserted, we let the brain settle for at least 15 min before the recordings began.

The laminar position of the A1 recording probes was estimated online by measuring the current source density (CSD) evoked by

single broadband noise bursts (50 ms duration, 4 ms onset/offset cosine ramps, 1 s inter-stimulus interval). We also measured fre-

quency response areas using pure tone stimuli (50 ms duration, 4 ms onset/offset cosine ramps, 0.5 s inter-stimulus interval, 4 - 45

kHz with 0.1 octave steps, 0 – 70 dB SPL with 5 dB steps, 2 repetitions of each stimulus, pseudo-randomized). We ensured record-

ings were made from A1 based on the best frequency gradient along the rostro-caudal axis and the tonotopic reversal toward the

rostral edge of the craniotomy.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data acquisition and online analysis
Raw neural signals were digitized at 32-bit, 24.4 kHz and stored in binary format (PZ5 Neurodigitizer, RZ2 BioAmp Processor, RS4

Data Streamer; Tucker-Davis Technologies). To eliminate artifacts, electrical signals were notch filtered at 60 Hz, the common mode

signal (channel-averaged trace) was subtracted from the raw signals from all channels, independently for each probe. Signals were

then band-pass filtered (300-3000 Hz, second-order Butterworth filters), from which multiunit activity was extracted as negative de-

flections in the electrical trace with an amplitude exceeding 4 standard deviations of the baseline hash. To extract local field poten-

tials, signals were down-sampled to 1000 Hz and spatially smoothed along the channels with a triangle filter (5-point Hanning win-

dow). The CSD was calculated as the second spatial derivative of the local field potential signal. The noise-evoked columnar CSD

patterns were used to determine the laminar location of A1 recording sites: A brief current sink first occurs approximately 10 ms after

noise onset, which was used to determine the lower border of L4, and other layers were defined relative to the location of L4 (Fig-

ure S3) as described previously.38

Single units sorting
We used Kilosort251 to sort spikes into single unit clusters. We concatenated all data files from a given recording session so that the

same unit could be tracked over the full course of the experiment (�90min). We ensured our units were well isolated clusters and had

refractory period violations for less than 5% of the total spikes (inter-spike interval < 1.5 ms for IC and < 2 ms for MGB and A1). Once

isolated, cortical single units were classified as putative excitatory regular spiking versus putative inhibitory fast spiking and assigned

to a layer based on the CSD analysis. For the regular versus fast spike waveform classification, the trough to peak interval of themean

spike waveform formed a bimodal distribution, which was used to subdivide neurons with intervals exceeding 0.6 ms as regular

spiking, while neurons with intervals shorter than 0.6 ms were fast spiking (Figure S4A). To be included for analysis, the peak firing

rate in the post-stimulus response period (0 – 50 ms) to isolated noise bursts had to be3 1.5 standard deviations above the sponta-

neous firing rate.

Spike timing-based template matching classifier
To classify the interval separating paired pulses, we used a decoder that works by creating a set of templates based on trial-averaged

neural responses to stimuli from all trials except one, and then assigning the raw spiking response in the remaining trial to the stimulus

with the ‘closest’ template in the Euclidean distance sense. Hence, it’s a template matching, minimum Euclidean distance classifier

that is based on first-order statistics.52 A matrix with R3 S rows and B columns was constructed, where R is the number of stimulus

repeats (R = 25), S is the number of stimuli (S = 20), B is the number of bins that contain spikes (B = 1000; 1 ms bins were used). Let vij

represent the spike count in ith row and jth column of the matrix, where i goes from 1 to SR and j goes from 1 to B. Templates for each

stimuluswere defined as ts = ½ts1;.;tsB�, where the jth element is calculated as tsj = 1
R

P
i˛s

vij. For each trial vi = ½vi;1;.;vi;B�, the Euclidean

distance between that trial and each stimulus template ts was defined as ds
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB
j =1

ðvij � tsj Þ2
s

. Using these distances, the spike train

was classified as being generated by the stimulus class represented by the closest template, resulting in an outcome vector of ci =

½c1;.;cSR� where ci = argminðds
i Þ, and each element ci indicated to which stimulus the ith trial is assigned. Decoder threshold was

calculated as the shortest interval after which classifier accuracy is always above chance.

Ensemble decoding analysis using dimensionality reduction and a support vector machine classifier
We decoded whether individual cycles occurred in rhythmic or random epochs based on ensemble spike trains. From the simulta-

neously recorded ensemble of neurons within each region, we reduced dimensionality using principal component analysis. We

considered a 100mswindow following each noise burst with 1ms bin size, averaged the neural response across every 4 noise bursts

within each cycle, and then smoothed using a 5msGaussian filter. The smoothing is to be able to capture the shared variance across

neuronswhile discarding the stochastic fluctuations particular to individual neurons.We then fed the responses from the top principal

components that capture 75% the variance in the data to a SVM with a linear kernel. We trained and cross-validated the classifier

using 10-fold cross-validation which was iterated 100 times with a different random split for each iteration. The decoder output is

further parameterized by fitting a sigmoidal function to be able to infer the decoder accuracy within each context and the time it takes

for the change in context to be decoded. As a control, we performed the same analysis after shuffling the ordering of cycles and we

repeat this process for each recording in all three brain regions. The SVM training and cross validation was performed in MATLAB

using functions ‘cvpartition’, ‘fitcsvm’ and ‘predict’.

Neural timescales
We defined the neural timescale ðtÞ for each unit as the decay time constant of an exponential fit to the temporal autocorrelation

function. We first compute the post-stimulus time histogram (PSTH) as the trial averaged neural response to the frozen noise burst

in a 100 ms window. We then compute the autocorrelation of the PSTH for various time lags, and fit a decaying exponential to this

autocorrelation function as fðtÞ = ae�bt, where we fixed a= 1 since the autocorrelation at time lag 0 is always 1. The decay constant
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was extracted from the fit as t = 1
b, the time it takes for the autocorrelation exponential fit to decrease by a factor of e. For units where

the single-exponential fit explains less than 75% of the total variance in the data, we use a double-exponential fit fðtÞ= ae�bt + ce�dt

and estimate t as the weighted sum of the two time constants, t =
að1bÞ+ cð1dÞ

a+c consistent with prior work.6 All fits were verified by eye.

Modulation indices
Modulation indices are computed as

prandom � prhythm

prandom + prhythm
where p is a parameter such as neural timescale, mean firing rate, or first-spike

jitter.

Statistical Analysis
All statistical analysis was performed with MATLAB (Mathworks). Non-parametric statistical tests were used in select cases where

data samples did not meet the assumptions of parametric statistical tests. The Lilliefors test was used to check for normality of the

data. Statistical significance was determined as the conjunction of separable variances between samples (i.e., p value) and the

magnitude of the difference between samples (i.e., effect size). Effect sizes were estimated with Cohen’s d for normally distributed

data and with Cliff’s delta for samples that did not conform to a normal distribution. Both p value and effect size changed in clear and

predictable ways between hierarchical stages of processing. To the extent that assigning a threshold for statistical significance is

useful, we chose the combination of a p value less than 0.05 and a Cohen’s d greater than 0.5 (or Cliff’s delta >0.3), which are tradi-

tionally assigned to medium-sized effects or greater. Multiple post hoc comparisons were corrected using Bonferroni correction.
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Figure S1: Variability in sound-evoked first spike latency is reduced during rhythmic epochs in A1, but 
is not changed subcortically, related to Figure 3. 

A) Spike rasters from representative single units in the IC, MGB and A1 for 100 noise bursts presented in the 

random or rhythmic epochs (25 cycles × 4 bursts per cycle). Gray shaded area denotes the timing of the 20ms 

white noise burst. 

B) Histogram of first spike latencies for each noise burst from the units shown in a. For each unit, the first spike 

latency jitter (FSJ) was calculated as one standard deviation of the first spike latency distribution. 

C) FSJ measurements from the random and rhythmic epochs are presented for each single unit from the IC, 

MGB, and A1. Inset: Mean ± SEM of the neural timescale from the same sample. NS = not significant. Asterisk 

denotes statistical significance with a paired t-test (p < 0.05 and Cohen’s d > 0.5); (IC, 0.21/0.18; MGB, 

0.001/0.27; A1, 3 x 10-12/0.59 for p-value/Cohen’s d). 

D) Histogram of the FSJ asymmetry index ([random – rhythm] / [random + rhythm]), where values < 0 indicate 

less jitter responses during random intervals and values > 0 indicate less jitter during rhythmic intervals. 

Arrows denote sample means. Dashed gray line indicates equivalent FSJ during random and rhythmic epochs. 

FSJ is significantly reduced during rhythmic noise burst arrangements in A1, but not MGB or IC (one-sample t-

test against a population mean of 0, IC, 0.15/0.2; MGB, 0.001/0.26; A1, 8 x 10-14/0.64 for p-value/Cohen’s d). 

 



 

 
 

Figure S2: Equivalent dampening of neural timescales during rhythmic interval arrangements across 
cortical layers, related to Figure 3. 

A) Extracellular recordings were made from layer 4, 5 and 6 of A1 with a dual shank silicon probe with 32 

channels on each shank. The current source density (CSD) was measured from each shank to assign each 

isolated single unit to a layer. White arrow in CSD trace identifies the early current sink in layer 4 that was used 

to assign units to layers.  

B) Neural timescale measurements from the random and rhythmic epochs are presented for each single unit 

from layer 4 (n = 32), layer 5 (n = 85) and layer 6 (n = 38). Inset: Mean ± SEM of the neural timescale from the 

same sample. Asterisk denotes statistical significance with a paired t-test (p < 0.05 and Cohen’s d > 0.5); 

(layer 4, 0.002/0.6; layer 5, 4 x 10-7/0.6; layer 6, 6 x 10-5/0.74 for p-value/Cohen’s d). 

C) Histogram of neural timescale asymmetry index ([random – rhythm] / [random + rhythm]), where values < 0 

indicate more dampened responses during random intervals and values > 0 indicate more dampened 

responses during rhythmic intervals. Arrows denote sample means. Dashed gray line indicated equivalent 

neural timescales during random and rhythmic epochs. Neural timescales are significantly reduced when noise 

bursts form rhythms than during random arrangements in all layers (one-sample t-test against a population 

mean of 0, layer 4, 0.003/0.57; layer 5, 5 x 10-6/0.53; layer 6, 2 x 10-4/0.67 for p-value/Cohen’s d). 



 
 

Figure S3: Neural timescales are dampened during rhythmic interval arrangements for regular spiking 
units, not fast spiking units, related to Figure 3. 

A) Isolated A1 single units were classified as fast spiking (FS) or regular spiking (RS) (trough-to-peak delay < 

0.6 ms or > 0.6 ms, respectively). Waveforms reflect mean ± SEM FS and RS waveforms. Scale bar = 1ms. 

B) Neural timescale measurements from the random and rhythmic epochs are presented for each single RS (n 

= 120) and FS (n = 44) unit. Inset: Mean ± SEM of the neural timescale from the same sample. NS = not 

significant and the asterisk denotes statistical significance with a paired t-test (p < 0.05 and Cohen’s d > 0.5); 

(RS, 3 x 10-15/0.83; FS, 0.12/0.24 for p-value/Cohen’s d). 

C) Histogram of neural timescale asymmetry index ([random – rhythm] / [random + rhythm]), where values < 0 

indicate more dampened responses during random intervals and values > 0 indicate more dampened 

responses during rhythmic intervals. Arrows denote sample means. Dashed gray line indicated equivalent 

neural timescales during random and rhythmic epochs. Neural timescales are significantly reduced when noise 

bursts form rhythms than during random arrangements in RS units, but not FS units (one-sample t-test against 

a population mean of 0, RS, 1 x 10-13/0.76; FS, 0.24/0.17, for p-value/Cohen’s d). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Figure S4: No change in A1 spiking timescales or decoder output when random interval arrangements 
are used throughout, related to Figure 3. 

A) Neural timescale measurements from the two random epochs are presented for 96 single units, each 

recorded with a cycle size of 4 burst intervals. Inset: Mean ± SEM of the neural timescale from the same 

sample. NS = not significant (0.9/-0.01  for p-value/Cohen’s d). 

B) Histogram of neural timescale asymmetry index. Arrows denote sample means. Dashed gray line indicated 

equivalent neural timescales during random and rhythmic epochs. Neural timescales are not modulated (one-

sample t-test against a population mean of 0, 0.45/0.01 for p-value/Cohen’s d). 

C) Decoder output (Mean ± SEM indicated by the thicker line with shaded error bar) for ensembles in A1 (4 

mice; repeated measures ANOVA, F = 0.75, p = 0.87 for main effect for cycle number and F = 1.94, p = 0.001 

for cycle number x trial type interaction term) 

 


	CURBIO17251_proof_v31i8.pdf
	Inverted central auditory hierarchies for encoding local intervals and global temporal patterns
	Results and discussion
	Subcortical specialization for encoding rapid, local intervals
	Cortical specialization for encoding slower, global rhythms
	Spike rate adaptation versus spike timescale dynamics
	Neural circuit mechanisms that may modulate spiking timescales, but not overall rate
	Relevance to predictive sensory processing and perception

	Supplemental Information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Experimental Model and Subject Details
	Method Details
	Stimulus design
	Surgical preparation
	Simultaneous multi-regional recordings

	Quantification and Statistical Analysis
	Data acquisition and online analysis
	Single units sorting
	Spike timing-based template matching classifier
	Ensemble decoding analysis using dimensionality reduction and a support vector machine classifier
	Neural timescales
	Modulation indices
	Statistical Analysis





