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David, Stephen V., Benjamin Y. Hayden, and Jack L. Gallant.
Spectral receptive field properties explain shape selectivity in area V4.
J Neurophysiol 96: 3492–3505, 2006. First published September 20,
2006; doi:10.1152/jn.00575.2006. Neurons in cortical area V4 re-
spond selectively to complex visual patterns such as curved contours
and non-Cartesian gratings. Most previous experiments in V4 have
measured responses to small, idiosyncratic stimulus sets and no single
functional model yet accounts for all of the disparate results. We
propose that one model, the spectral receptive field (SRF), can explain
many observations of selectivity in V4. The SRF describes tuning in
terms of the orientation and spatial frequency spectrum and can, in
principle, predict the response to any visual stimulus. We estimated
SRFs for neurons in V4 of awake primates by linearized reverse
correlation of responses to a large set of natural images. We find that
V4 neurons have large orientation and spatial frequency bandwidth
and often bimodal orientation tuning. For comparison, we estimated
SRFs for neurons in primary visual cortex (V1). Consistent with
previous observations, we find that V1 neurons have narrower band-
width than that of V4. To determine whether estimated SRFs can
account for previous observations of selectivity, we used them to
predict responses to Cartesian gratings, non-Cartesian gratings, natu-
ral images, and curved contours. Based on these predictions, we find
that the majority of neurons in V1 are selective for Cartesian gratings,
whereas the majority of V4 neurons are selective for non-Cartesian
gratings or natural images. The SRF describes visual tuning properties
with a second-order nonlinear model. These results support the hy-
pothesis that a second-order model is sufficient to describe the general
mechanisms mediating shape selectivity in area V4.

I N T R O D U C T I O N

Cortical area V4 lies near the middle of a hierarchical
sequence of visual areas that mediate shape perception (Felle-
man and Van Essen 1991; Ungerleider and Mishkin 1982; Van
Essen et al. 1994). Early in this pathway, in primary visual
cortex (V1), neurons are selective for a small number of simple
stimulus features such as position, orientation, and spatial
frequency (De Valois et al. 1982a; Hubel and Wiesel 1968). At
more central stages of processing, in the inferior temporal
cortex (IT), neurons are selective for more complex patterns.
Tuning in central areas is often related to object identity and
invariant to stimulus position and size (Desimone et al. 1984;
Kobatake and Tanaka 1994). V4 plays a crucial role in trans-
forming simple physical stimulus features to the abstract form
representation in IT; damage to V4 interferes with shape
perception, color perception, and attention (De Weerd et al.
1996; Gallant et al. 2000; Merigan 1996; Merigan and Pham
1998; Schiller 1995; Schiller and Lee 1991).

Neurophysiological studies have not produced consistent
descriptions of shape coding in V4. One early experiment

reported that V4 neurons are tuned for size and invariant to
stimulus position, properties not found in more peripheral areas
(Desimone and Schein 1987). A later series of experiments
compared selectivity for Cartesian gratings and for polar and
hyperbolic (non-Cartesian) gratings in V4 (Gallant et al. 1993,
1996); V4 neurons are most selective for non-Cartesian grat-
ings containing multiple orientations. A separate study re-
ported that the optimal stimulus for single V4 neurons varied
widely, but that most cells respond strongly to stimuli contain-
ing multiple orientations (Kobatake and Tanaka 1994). A more
recent study used a parameterized set of contour features
varying in angularity, curvature, and orientation (Pasupathy
and Connor 1999, 2002). Among these stimuli, a large fraction
of V4 neurons are tuned for angled or curved contour features.

These previous studies agree that single V4 neurons are
tuned for multiple orientations and show position invariance,
but they differ in their specific conclusions about shape selec-
tivity in V4: Are V4 neurons tuned for non-Cartesian gratings,
simple objects, or curved and angled contour elements? The
most likely explanation is that, to some extent, V4 neurons are
tuned for all of these patterns. Different studies have used
different, limited stimulus sets to test specific hypotheses about
shape coding in V4, and most have not systematically com-
pared responses between classes of stimuli (but see Gallant et
al. 1996). An experiment that uses a limited stimulus set can
maximize statistical power for testing a specific hypothesis
about tuning, but the conclusions that can be drawn about
underlying mechanisms are ambiguous. The observed tuning
might actually reflect tuning along untested dimensions corre-
lated with those tested, and the observed tuning reveals nothing
about tuning along dimensions orthogonal to those tested. This
uncertainty can be resolved only with a general model whose
scope is not restricted to a limited stimulus set (Wu et al. 2006).

We hypothesized that a single functional model, the spectral
receptive field (SRF), can explain previous observations of
shape tuning in V4. The SRF accounts for second-order non-
linear response properties, describing tuning in terms of the
orientation and spatial frequency power spectrum, independent
of spatial phase (Bredfeldt and Ringach 2002; David and
Gallant 2005; Mazer et al. 2002). The power spectrum is a
basic feature of all visual stimuli; thus the scope of the SRF is
not limited to a particular stimulus set. Independence from
spatial phase introduces a nonlinearity that enables the SRF to
describe spectral tuning, even for neurons with position-invari-
ant responses.
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To determine whether the SRF provides an effective general
description of shape selectivity in V4, we recorded the re-
sponses of single V4 neurons to a large set of natural images
and estimated the SRF of each neuron using linearized reverse
correlation (David and Gallant 2005; Theunissen et al. 2001;
Wu et al. 2006). We then used the SRFs to predict how each
neuron would respond to stimuli used in the studies described
above (i.e., Cartesian and non-Cartesian gratings and curved-
contour elements). Across the entire set of V4 SRFs, we
observed a pattern of selectivity for non-Cartesian gratings and
curved contours consistent with the conclusions of experiments
using synthetic stimulus sets. Inspection of estimated SRFs
revealed mechanisms that may underlie this selectivity for
complex features. We performed a similar analysis using
primary visual cortex (V1) neurons. Neurons in V1 have
consistently simpler spectral tuning and are selective for Car-
tesian gratings rather than for the other stimulus classes.
Therefore the tuning we observe in area V4 is an emergent
property of the extrastriate cortical network.

M E T H O D S

Neurophysiological procedures and data acquisition

SUBJECTS AND PHYSIOLOGICAL PROCEDURES. Data were collected
from four adult male macaques (Macaca mulatta; two animals used in
V4 recordings and two in V1 recordings). All procedures were in
accordance with National Institutes of Health and U.S. Department of
Agriculture guidelines and were approved by University oversight
committees. Details of neurophysiological procedures were previ-
ously published (V4: Hayden and Gallant 2005; V1: Vinje and Gallant
2002). During recording, V4 and V1 neurons were identified on the
basis of both stereotaxic coordinates and receptive field properties
(e.g., size/eccentricity ratios and latencies; Gallant et al. 1996; Gattass
et al. 1988; Mazer and Gallant 2003; Vinje and Gallant 2002).

RECEPTIVE FIELD ESTIMATION. The boundaries of each classical
receptive field (CRF; specifically, the minimum response field) were
measured while each animal performed a passive fixation task. Bars,
Cartesian gratings, and non-Cartesian gratings were presented under
manual control to determine basic receptive field properties (Mazer
and Gallant 2003; Vinje and Gallant 2002). Receptive field size,
shape, and location were confirmed by reverse correlation using a
dynamic sequence of small white, black, and textured squares flashed
randomly in and around the CRF (V1: 72 Hz; V4: 10 Hz; Hayden and
Gallant 2005; Vinje and Gallant 2002). CRF diameter was defined to
be the diameter of a circle circumscribing the minimum response field.
In the few cases where manual and automated estimates disagreed, the
estimate from the automated procedure was used. V4 CRFs were
centered 3–8° from the fovea (median 5.6°) and ranged from 5 to 10°
in diameter (median 10.2°). V1 CRFs were centered 0.9–12° from the
fovea (median 2.2°) and ranged from 0.3 to 3.0° in diameter (median
0.65°).

STIMULI. Stimuli were circular natural image patches cut out of
black and white photos (Corel). Images were chosen at random by an
automated algorithm that favored images with broad spatial frequency
spectra. For V4 data, the size of each image patch corresponded to the
measured CRF size. For V1 data, the size of each image patch ranged
from two to four times the CRF diameter. In both cases, the outer 10%
of each image was blended linearly into the mean-luminance gray
background.

BEHAVIORAL TASK. Neuronal activity was recorded from single V4
neurons of two animals while they performed a delayed match-to-
sample task (Hayden and Gallant 2005). Each trial was initiated when

the animal grabbed a capacitive touch bar. A fixation spot then
appeared at the center of the display. The animal was required to
acquire and maintain fixation for the duration of the trial (fixation
window radius, 0.5°). A feature cue and a spatial cue then appeared
simultaneously for 150–600 ms. The feature cue was the target for
that trial, a natural image the size of the CRF, centered at the fixation
point. The spatial cue was a small red line (�1°) superimposed on the
edge of the feature cue nearest the stream to be attended. After an
850-ms blank delay, two stimulus streams appeared simultaneously:
one in the CRF and the other in the opposite hemifield at the same
distance from the fovea, 180° away from the first. Images appeared at
a constant rate (3.5–4.5 Hz, varying across cells), and there was no
blank interval period between successive images. The target image
appeared 4–10 s after the onset of the image stream. To receive
reward animals had to release the touch bar within 1 s after the onset
of the target in the attended stream. Incorrect trials were aborted
immediately after broken fixation or early bar release. Only data from
correct trials (95%) were included in the analysis. Four attention
conditions were constructed by crossing two spatial conditions (attend
in and attend out) with two feature conditions (search for target A,
search for target B). The data presented in this report were obtained by
averaging across all four attention conditions. Responses to target
stimuli were excluded from the data because of their behavioral
relevance. This ensured that receptive field estimates reflected only
visual tuning and were not influenced by attention.

Neuronal activity was recorded from area V1 of two different
animals while they performed a fixation task (fixation duration, 5 s;
fixation window radius, 0.35°), with no explicit manipulation of
attention. While the animal fixated, a sequence of natural image
patches was presented at 60 Hz in the receptive field of an isolated
neuron. Only data from periods when fixation was successfully
maintained were included in the analysis.

Based on previous studies of V1, the difference in stimulus pre-
sentation rates for recordings in V4 (3.5–4.5 Hz) and V1 (60 Hz)
should be irrelevant for the current study. Our analysis focused on the
spectral tuning of excitatory responses. In area V1, temporal stimulus
dynamics do not affect the spectral tuning of excitatory responses
(although tuning of inhibitory responses in V1 can depend on stimulus
dynamics; see David et al. 2004).

By averaging V4 responses across attention conditions, we intended
to remove the effects of attention and to preserve only the visual
response. We assume that this averaging controls for differences in
behavior between the V4 and V1 experiments. However, we cannot
exclude the remote possibility that some of the differences in tuning
between V4 and V1 neurons that we report here might be caused by
differences in behavioral state.

DATA ACQUISITION. Behavioral control, stimulus presentation, and
data collection were performed on a Linux workstation using custom
software. For V4 data, eye movements were recorded with an infrared
eye tracker (RK-801 at 120 Hz, ISCAN, Burlington, MA; or Eyelink
II at 500 Hz, SR Research, Toronto, Canada). Eye tracker latency was
corrected during subsequent analysis (Gawne and Martin 2000). For
V1 data, eye movements were measured using a scleral search coil
(Riverbend Instruments; Judge et al. 1980).

Single-neuron responses were recorded using high-impedance ep-
oxy-coated tungsten microelectrodes (nominal impedance 10–25
M�, 125-�m diameter, 20–25° taper; FHC, New Brunswick, ME).
For V4 data, neuronal signals were acquired using an integrated
multichannel recording system (amplification, filtering, and spike
detection; MAP, Plexon, Dallas, TX). For V1 data, signals were
amplified (AM Systems, Everett, WA), band-pass filtered, and iso-
lated with a hardware window discriminator. Only clearly isolated
single units were included in the data set. Spike times were recorded
with 0.1-ms resolution and synchronized with the behavioral task and
eye recordings.
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Spectral receptive field model and estimation procedure

THE FOURIER POWER MODEL. Simple cells in peripheral visual areas
can be characterized by a linear spatial receptive field model (DeAn-
gelis et al. 1993; Jones and Palmer 1987). According to the linear
model, the response of a neuron is a weighted sum of stimulus
luminance over space and time. However, the linear model cannot be
used to characterize V4 neurons because these cells show nonlinear
position invariance and visual selectivity does not depend on the
precise position of the stimulus in the receptive field (Desimone and
Schein 1987; Gallant et al. 1996). To account for position invariance
in V4 we used a nonlinear Fourier power model. According to this
model the response of a neuron is a weighted sum of the spatial
Fourier power of the stimulus. The map of weightings is called the
spectral receptive field (SRF; David and Gallant 2005; Theunissen et
al. 2001).

A visual stimulus, s(x, y, t), can be described in terms of luminance
sampled at N � N spatial positions (x, y) and at times t � 1. . .T. The
Fourier power transform of the stimulus ŝ(�x, �y, t) is

ŝ��x,�y,t� � � �
x�1,y�1

N

ei��x��y�ts�x,y,t��2

(1)

The value of ŝ at each two-dimensional spatial frequency channel, (�x,
�y), indicates how much power is present at a particular orientation
and spatial frequency in a single stimulus frame (see Eq. 7, below, for
interpretation of spatial frequency channels).

According to the Fourier power model, the response is the inner
product of the Fourier power transform of the stimulus and the SRF
(Bredfeldt and Ringach 2002; David and Gallant 2005; Mazer et al.
2002)

r�t� � �
�x��N/2,
�y��N/2

N/2

h��x,�y�ŝ��x,�y,t� � r0 � ��t� (2)

The response r(t) is the average firing rate during time bin t. The SRF,
h(�x, �y), describes the weight that should be applied to each Fourier
power channel to produce the minimum mean-squared error estimate
of the response. The baseline r0 represents the response expected
when no stimulus is present. The residual �(t) represents observed
deviations from Fourier power model predictions (i.e., unexplained
variance). These deviations reflect both unmodeled nonlinear response
properties and neuronal noise.

The Fourier power transform linearizes the relationship between
stimulus and response. That is, the stimulus is nonlinearly transformed
so that a linear model more accurately describes the functional
relationship between the transformed stimulus and the response (Aert-
sen and Johannesma 1981; David and Gallant 2005; Wu et al. 2006).
The Fourier power model discards spatial phase but preserves infor-
mation about stimulus orientation and spatial frequency. It is therefore
related to the energy model used to describe complex cells in area V1
(Adelson and Bergen 1985). However, the Fourier power model is
more general than the energy model because it can account for
excitation and inhibition across any number of spatial frequency and
orientation channels.

Some receptive field models include an additional nonlinear output
term to account for spiking threshold and saturation (Albrecht and
Geisler 1991; David et al. 2004). A sigmoidal output nonlinearity does
lead to a modest improvement in the predictive power of the SRFs
estimated in this study (data not shown). However, fitting the output
nonlinearity has no effect on measurements of orientation and spatial-
frequency tuning. Because this study focuses on spectral tuning, the
SRFs reported here do not include an output nonlinearity.

FITTING THE FOURIER POWER MODEL BY LINEARIZED REVERSE COR-

RELATION. We estimated SRFs by linearized reverse correlation of
neuronal responses and natural image stimuli. This procedure finds the

minimum mean-squared error, linear mapping between the Fourier
power transform of the stimulus ŝ(�x, �y, t) and the observed response
r(t) (David and Gallant 2005; Theunissen et al. 2001). According to
this solution, the SRF is the weighted average of the stimulus and
response, normalized by the inverse of the stimulus autocorrelation
function Css

h��x,�y� � �
� 	x��N/2,
� 	y��N/2

N/2 �Css
�1��x,�y,�	x�	y�

1

T
�
t�1

T

ŝ��	x,�	y,t�r�t�� (3)

The stimulus autocorrelation function measures the correlation be-
tween each pair of spectral channels in the stimulus

Css��x,�y,�	x,�	y� �
1

T
�
t�1

T

ŝ��x,�y,t�ŝ��	x,�	y,t� (4)

The autocorrelation function can be represented as a matrix with
rows corresponding to spectral channels (�x, �y) and columns corre-
sponding to channels (�	x, �	y). The inverse autocorrelation function is
equivalent to the inverse of this matrix (Theunissen et al. 2001).

Normalization by the stimulus autocorrelation in Eq. 3 removes
bias arising from the autocorrelation inherent in natural scenes (Field
1987; Zetzsche and Barth 1990). Although necessary for achieving a
minimum mean-squared error estimate of the SRF, normalization can
amplify noise at high spatial frequencies, overfitting the SRF to noise
in the estimation data. To minimize this effect, we used singular-value
decomposition (SVD) to estimate a pseudoinverse of the stimulus
autocorrelation function (Theunissen et al. 2001). The pseudoinverse
forces tuning on spectral dimensions to be zero if the stimulus
variance along that dimension is not large enough to reliably estimate
its effect on responses. This procedure requires selecting a parameter
that determines the noise threshold, which was determined simulta-
neously with the shrinkage parameter (see following text).

A shrinkage filter was used to further reduce noise in the SRF
estimate (Brillinger 1996; David and Gallant 2005). The shrinkage
filter applies a soft threshold to each SRF parameter, based on its
signal-to-noise level. Signal-to-noise was defined as the ratio of mean
to standard error and was measured using a jackknife procedure:
jackknife SRFs, hi(�x,�y), i � 1 . . . N � 20, were estimated from
subsets of the estimation data set, each excluding a different 5% of the
available samples. The mean SRF was computed by averaging over
the jackknife estimates, h�(�x,�y) � 1/N 
i�1

N hi (�x,�y), and the
standard error of each parameter was measured according to the
jackknife theorem (Efron and Tibshirani 1986)

���x,�y� � �N � 1

N
�
i�1

N

�hi��x,�y� � h���x,�y��
2 (5)

The shrinkage filter was applied to the mean SRF to produce the final
SRF estimate (Brillinger 1996)

h��x,�y� � h���x,�y���1 � �����x,�y�/h���x,�y��
2�� (6)

Applying the filter requires selecting a parameter �, that determines
the filter threshold. Optimal pseudo-inverse and shrinkage parameters
were chosen simultaneously by cross validation (David and Gallant
2005). This entire procedure (including cross validation) was com-
pleted using only the estimation data set. The validation data set (see
below) was reserved only for testing SRF prediction accuracy.

DATA PREPROCESSING. For SRF estimation, each stimulus frame
was cropped to an area equivalent to one classical receptive field
diameter. Each frame was then smoothed, downsampled to 20 � 20
pixel resolution, and multiplied by a Hanning window (ramped from
1 to 0) to reduce edge artifacts in the Fourier transform. This
downsampling procedure preserves spatial frequencies 	10 cycles
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per receptive field diameter (cyc/RF). In theory, a more accurate
model might be obtained by including higher spatial frequencies.
However, natural scenes have relatively low power at high spatial
frequencies (Field 1987), which makes it difficult to obtain data sets
large enough to characterize tuning at high frequencies. For V4 data,
the response r(t), evoked by each 3.5- to 4.5-Hz stimulus frame s(x, y,
t), was defined as the mean spike rate (spikes/s) from 50 to 250 ms
after the onset of the frame.

The stimuli used during V1 recordings had the same spatial statis-
tics as those used for V4, but they were shown much more rapidly (60
Hz). We therefore used a slightly different procedure to estimate SRFs
for V1 neurons. First, we estimated a complete spectro-temporal
receptive field (STRF) for each neuron by repeating the SRF estima-
tion procedure described above at 13 temporal delays (0–192 ms),
with the same 20 � 20 pixel/CRF downsampling as for the V4 data.
Separable spectral and temporal receptive fields were then extracted
from each STRF by SVD (David et al. 2004; Mazer et al. 2002). The
resulting SRF describes orientation and spatial frequency tuning in the
same Fourier power parameter space as that used for V4.

EXCLUSION OF NEURONS WHOSE RECEPTIVE FIELDS COULD NOT BE

CHARACTERIZED. The goal of this study was to determine whether
the SRF can account for shape selectivity in V4. Therefore we used a
cross-validation procedure to exclude neurons whose SRF failed to
provide any information about visual response properties. For each
neuron, a subset of the stimulus–response data (5%) was reserved
before SRF estimation (validation data set). The SRF, including
regularization parameters, was estimated using only the remaining
95% of the data (estimation data set). Predicted responses to stimuli in
the validation data set were then generated from the SRF using Eq. 2.
This procedure was repeated 20 times; each time a different 5% subset
of the data were reserved for validation. The 20 predicted responses
were concatenated into a single prediction of the entire response.
Prediction accuracy was quantified in terms of the correlation (Pear-
son’s r) between predicted and observed responses. Because we
strictly separated the estimation and validation data sets, measure-
ments of prediction accuracy were not biased by overfitting to noise in
the data. A neuron was included in further analyses only if its SRF
predicted the observed responses in the validation data with greater
accuracy than would be expected by chance (P � 0.05) (David et al.
2004).

Of the 103 V4 neurons in our original sample, 87 had SRFs that
significantly predicted responses in the reserved cross-validation data
set. The mean prediction correlation was 0.29 for the entire sample of
V4 neurons and 0.32 for the 87 significant cells. [Note that this
measurement was not corrected to reflect the noise ceiling on predic-
tions (David and Gallant 2005; Wu et al. 2006). Thus this value is
smaller than the theoretical maximum for the Fourier power model in
the absence of noise.] Of 56 V1 neurons in the sample, 45 had SRFs
that significantly predicted responses in the cross-validation data set.
The mean prediction correlation was 0.33 for the entire sample of V1
neurons and 0.37 for the 45 significant cells. (These figures were also
not corrected to reflect the noise ceiling.) Excluding neurons whose
SRFs did not predict with significant accuracy did not change any
trends in the data reported here, but it did slightly increase the
magnitude and significance of some effects.

The correlation coefficient indicates the portion of the response in
the validation data set explained by the Fourier power model (David
and Gallant 2005). The remaining, unexplained portion the response
results from two factors: visual tuning properties not described by the
Fourier power model and nonvisual influences on the response. The
latter category includes noise in the neuronal response and changes in
attention state. The effect of nonvisual influences is reduced by
averaging across stimulus presentations, but it is unlikely to be
removed completely.

Analysis of tuning and selectivity

ORIENTATION AND SPATIAL FREQUENCY TUNING CURVES. To fa-
cilitate visualization of neuronal tuning and selectivity, each SRF was
transformed from the Fourier power domain to an explicit represen-
tation of orientation and spatial frequency. This was accomplished by
applying a polar-to-Cartesian transformation to the SRF

H�
,�� � h�� cos 
,� sin 
� (7)

Figure 1 shows several image patches that have been transformed into
the orientation spatial frequency representation; transformed SRFs are
shown in Figs. 2–4.

Tuning curves were obtained from SRFs transformed according to
Eq. 1 by SVD (Mazer et al. 2002). Orientation and spatial frequency
tuning curves [ f (
) and g(�), respectively] were defined as the first
eigenvectors of each decomposition matrix. According to the defini-
tion of the SVD, the product of these two vectors provides the
minimum mean-squared-error estimate of the full, two-dimensional
SRF

�f�
�,g���� � arg min �

,�

�H�
,�� � f�
�g����2 (8)

In Eq. 8, the sign of the orientation and spatial frequency tuning
curves is ambiguous. We fixed the sign so that the orientation tuning
curve produced a positive inner product with the mean of the SRF
after averaging over all spatial frequencies.

COMPARISON OF TUNING PROPERTIES. Several properties of the
orientation and spatial frequency tuning curves for each neuron were
used to compare spectral tuning across cells. Two common metrics
used to describe orientation tuning curves are the peak and bandwidth
(i.e., width at half height; Desimone and Schein 1987; De Valois et al.
1982b). We estimated the peak and bandwidth by fitting a circular
Gaussian to the orientation tuning curve obtained for each neuron
(Fisher 1993); the tuning peak and bandwidth were taken as the mean
and width at half-height of the Gaussian, respectively.

Because many V4 neurons had more than one orientation tuning
peak we also computed a bimodal tuning index. First we identified the
orientations of the two largest peaks in the orientation tuning curve, p1

and p2, where f (p1)  f (p2). Two troughs were then defined as the
orientations of the lowest points, t1 and t2, in either direction between
the peaks, where f (t1) � f (t2). The bimodal tuning index b was taken
as the ratio of the difference between the smaller peak and trough,
d2 � f (p2) � f (t2), to the difference between the larger peak and
trough, d1 � f (p1) � f (t1)

b �
d2

d1

(9)

A neuron with two orientation tuning peaks and troughs of equal size
will have a bimodal tuning index value of 1. As the relative size of one
peak grows larger, index values grow smaller. Orientation tuning
curves with only one peak have an index value of 0.

Spatial frequency peak and bandwidth were measured by fitting a
Gaussian function to the spatial frequency tuning curve on a logarith-
mic scale, g[log (�)]. Peak spatial frequency was taken as the peak of
the Gaussian fit. Spatial frequency bandwidth was taken as the width
of the Gaussian at half-height, divided by peak spatial frequency (De
Valois et al. 1982a).

SELECTIVITY FOR COMPLEX FEATURES. If the SRF accurately de-
scribes response characteristics of V4 neurons then it should predict
responses to any stimulus. Previous work showed that V4 neurons are
selective for non-Cartesian (polar and hyperbolic) gratings over Car-
tesian gratings (Gallant et al. 1996). To test the SRF model we
therefore used estimated SRFs to predict responses to both Cartesian
and non-Cartesian gratings.
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Cartesian gratings were generated according to the function (Gal-
lant et al. 1996)

sc�x,y� � L0 � C0 sin ���x cos 
 � y sin 
� � �� (10)

Each Cartesian grating was described by its orientation 
, spatial
frequency �, and spatial phase �. Mean luminance L0 and contrast C0

were normalized to match the root mean-square (RMS) contrast of the
natural image set used to fit the SRF. Cartesian gratings were gener-
ated at 12 orientations, eight spatial frequencies (1.0 to 9.0 cycles per
receptive field diameter), and four spatial phases (0, 90, 180, and
270°).

Polar gratings were generated according to the function (Gallant et
al. 1996)

sp�x,y� � L0 � C0 sin ��c�x2 � y2 � �r tan�1�y/x� � �� (11)

Each polar grating was described by its radial spatial frequency �r,
concentric spatial frequency �c, and spatial phase �. Mean luminance
L0 and contrast C0 were normalized to match the RMS contrast of the
natural image set used to fit the SRF. Polar gratings were generated at
12 radial frequencies (�5 to 6 cycles per rotation), eight concentric
frequencies (1.0 to 9.0 cycles per receptive field diameter), and four
spatial phases (0, 90, 180, and 270°).

Hyperbolic gratings were generated according to the function
(Gallant et al. 1996)

sh�x,y� � L0 � C0 sin ����x cos 
 � y sin 
��x sin 
 � y cos 
� � �� (12)

Each hyperbolic grating was described by its orientation 
, spatial

frequency �, and spatial phase �. Mean luminance L0 and contrast C0

were normalized to match the RMS contrast of the natural image set
used to fit the SRF. Hyperbolic gratings were generated at eight
orientations (0 to 80°), 12 spatial frequencies (1.0 to 7.0 cycles per
receptive field diameter), and four spatial phases (0, 90, 180, and
270°).

In addition to Cartesian and non-Cartesian gratings, we also used
the SRFs to predict responses to a large set of 20,000 natural images.
This stimulus set was generated using the same procedure as for the
neurophysiological experiments (see above). To compare expected
responses to those for gratings, each natural image patch was normal-
ized to have the same mean luminance and RMS contrast as the
gratings. (Without normalization, a large fraction of response variance
can be attributed to variability in stimulus contrast rather than spatial
patterns within the stimulus. Stimulus contrast was not normalized in
the neurophysiological experiments. For this reason, the variability of
responses in the experimental data was greater than that in the
predictions; e.g., compare Figs. 1B and 7A.)

Predicted responses were generated using the same method as in the
cross-validation procedure used for measuring the significance of
visual tuning. Test stimuli were cropped, downsampled to 20 � 20
pixels, Hanning windowed, and transformed into the Fourier power
domain according to Eq. 1. Predicted responses (spikes/s) were then
generated for each SRF according to Eq. 2.

Neurons were grouped according to the stimulus class that evoked
the strongest predicted response: Cartesian gratings, non-Cartesian
(polar and hyperbolic) gratings, or natural images. The three stimulus

FIG. 1. Responses of one V4 neuron to a set of natural
images. A: 600 different natural images were presented in the
receptive field in random order (4 Hz, 4 repeats). Response
strength was calculated by averaging firing rate 50–250 ms
after stimulus onset over the 4 repeats. Here, responses are
sorted by magnitude and vary from 0 to nearly 100 spikes/s. B:
Fourier power transform of a typical natural image, enlarged
from C. To highlight distinctive spectral features, the mean
power spectrum (averaged over the entire set of natural images)
was subtracted from the Fourier-transformed images. Without
this subtraction images would be dominated by the 1/f 2 spec-
trum typical of natural images. Red regions indicate power
greater than the mean at the corresponding orientation (hori-
zontal axis) and spatial frequency (vertical axis); blue indicates
power less than the mean. In this example, the red region
centered at 90° indicates high power at horizontal orientations.
Image has been normalized so that power ranges between �1
and 1. C: 8 natural images that evoked the strongest responses
(shaded bar at left of A) and their Fourier power spectra (2nd
row). Stimuli that evoked strong responses tend to have power
at orientations of 90 or 150°. D: 8 natural images that evoked
moderate responses (bar in middle of A) and their Fourier power
spectra. E: 8 natural images that evoked the weakest responses
(bar at right of A) and their Fourier power spectra. These stimuli
tend to have low power in most orientation and spatial fre-
quency channels.
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classes contained different numbers of exemplars. To ensure that this
difference in sampling did not bias estimates of maximum expected
response, we normalized responses according to the number of ex-
emplars in each class. The smallest stimulus set was Cartesian
gratings, containing 384 distinct patterns; the maximum Cartesian
response was defined as the expected response to the single best
Cartesian grating. The non-Cartesian grating class contained twice as
many patterns (768); the maximum non-Cartesian response was de-
fined as the average of expected responses to the two best non-
Cartesian gratings. The natural image class contained 20,000 distinct
images; the maximum natural image response was defined as the
median of expected response to the 52 best images (0.26%, equivalent
to 1/384).

CONTOUR SELECTIVITY. We also used the SRFs to generate pre-
dicted responses to a set of curved contours that were used in a
previous study of V4 (Pasupathy and Connor 1999). Contours were
composed of two oriented segments (see Fig. 10A). The length of each
segment was fixed to be one half the diameter of the classical
receptive field. Segments were joined at one end and separated by an
angle of 45, 90, 135, or 180°. The joint between segments was either
sharp or smooth. Smooth joints were generated by introducing a spline
function between the two segments to produce seven different sepa-
ration angles (the sharp and smooth 180° contours were the same).
Eight absolute orientations were used for each separation angle,
giving a total of 42 contour elements.

SIGNFICANCE TESTING. Unless otherwise specifically mentioned,
we used a jackknifed t-test to verify the statistical significance of our

findings (Efron and Tibshirani 1986). In many cases, a traditional
t-test is sufficient to determine whether two mean values are signifi-
cantly different. However, this test assumes that individual measure-
ments follow a Gaussian distribution, and estimates of SE will be
biased if the distributions are not Gaussian. The jackknifed t-test uses
a bootstrapping procedure that avoids potential bias from non-Gaus-
sian distributions in measurements of SE.

One situation in which a non-Gaussian distribution can be partic-
ularly problematic is when the sampled values lie near a hard bound-
ary. We encountered this problem when testing the significance of the
bimodal tuning index. If each jackknife estimate of the tuning index
is generated independently, the distribution used to compute the SE
will be biased toward positive values. This bias leads to artifactually
small estimates of SE and can cause some neurons to appear to have
significant bimodal tuning when they do not. To avoid this problem,
we fixed the position of the peaks (p1 and p2) and troughs (t1 and t2)
according to the orientation tuning curve averaged across jackknife
estimates. Index values measured from the individual jackknifed
tuning curves could then fluctuate below zero, leading to unbiased SE
estimates.

R E S U L T S

Diversity of spectral tuning properties among V4 neurons

We characterized the spectral tuning properties of 103 V4
neurons in two animals while they performed a delayed match-
to-sample task. The stimuli were sequences of natural image
patches selected at random from a large image database (see
examples in Fig. 1) and flashed in the receptive field at a rate
of 3.5–4.5 Hz.

Figure 1A shows the responses of one V4 neuron to 600
distinct natural images, sorted by response magnitude. The
visual response is defined as the firing rate 50–250 ms after
stimulus onset (averaged over four presentations). For this
neuron, responses range from 0 to nearly 100 spikes/s. The
eight natural images that evoke the strongest responses are
shown in the top row of Fig. 1C. Most of these images contain
contours with either horizontal or oblique orientations (90–
150°). The images that evoke average or weak responses (Fig.
1, D and E, respectively) have little in common with each
other, although the least-preferred stimuli tend to have very
low contrast.

This neuron responds most strongly to images with salient
horizontal or oblique contours, but the precise spatial position
of the contour does not appear to be important (Fig. 1C, top
row). This is consistent with previous studies reporting that the
responses of V4 neurons are often position and phase invariant
(Desimone and Schein 1987; Gallant et al. 1996). Therefore the
patterns that evoke large responses from this neuron might be
clearer if we discard information about the precise spatial
position of image features while preserving information about
orientation and spatial frequency. One efficient way to do this
is to compute the Fourier power spectrum of each image patch,
as illustrated in Fig. 1B. After transformation into the Fourier
power domain, each stimulus channel indicates the relative
energy at a single orientation and spatial frequency in the
original image, regardless of spatial position or phase. The
Fourier power spectra of the effective images for this neuron
have consistent peaks at orientations between 90 and 150° (Fig.
1C, bottom row).

It is often difficult to determine the response characteristics
of a neuron by simply examining effective and ineffective

FIG. 2. Spectral receptive field (SRF) of a V4 neuron with bimodal orien-
tation tuning. A: SRF describes selectivity in terms of a joint orientation–
spatial frequency tuning surface. Red regions indicate orientations (horizontal
axis) and spatial frequencies (vertical axis) correlated with increased responses
(i.e., positive gain); blue indicates stimulus channels correlated with decreased
responses. Contours mark 1 SD above zero after smoothing. This neuron is
excited by patterns with horizontal orientation (90°) over a broad range of
spatial frequencies and with oblique orientation (150°) at lower spatial fre-
quencies. Stimulus power at low spatial frequencies (1 cycle/RF) tends to
decrease responses. SRF was normalized so that gain ranges between �1 and
1. B: an orientation tuning curve is derived by singular value decomposition of
the SRF. This measures marginal tuning of the SRF in A, collapsed along the
spatial frequency axis (Mazer et al. 2002). Each point shows the relative
excitatory or inhibitory contribution of stimuli at the respective orientation,
collapsed across spatial frequency. Peak orientation tuning is 129° and orien-
tation bandwidth is 73° (measured by fitting a circular Gaussian function). This
neuron has 2 orientation tuning peaks (90 and 150°). Relative magnitude of the
peaks is quantified by the bimodal tuning index, computed from the ratio of the
height of the smaller peak (d2) to the larger peak (d1). Bimodal tuning index for
this neuron is 0.23. C: a spatial frequency tuning curve is derived by the same
singular value decomposition, effectively collapsing the SRF in A along the
orientation axis. Peak spatial frequency tuning for this neuron is 2.5 cycles/RF
and spatial frequency bandwidth is 1.1 octaves.
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image patches. A better way to summarize the response prop-
erties of a single cell is to estimate the stimulus–response
mapping function (Wu et al. 2006). We used linearized reverse
correlation to estimate the spectral receptive field (SRF), a
function that describes the mapping from the Fourier power
transformation of the stimulus to the neural response (David
and Gallant 2005; Theunissen et al. 2001). The SRF describes
concisely which orientations and spatial frequencies tend to
evoke responses. Figure 2A gives the SRF computed for the
data in Fig. 1. Spectral domains shown in red indicate orien-
tations and spatial frequencies that evoke strong responses (i.e.,
excitatory spectral channels); blue domains indicate orienta-
tions and spatial frequencies that suppress responses (i.e.,
inhibitory spectral channels). Consistent with the data in Fig. 1,
the SRF reveals that this neuron is excited both by horizontal
orientations and by oblique orientations near 150°. Further-
more, the SRF reveals that this neuron is sensitive to a higher
and broader range of spatial frequencies at 90 than at 150°.

To visualize spectral tuning properties more clearly we
extracted orientation and spatial frequency tuning curves from
the SRF (Fig. 2, B and C, respectively; see Mazer et al. 2002).
We measured three properties of orientation tuning: orientation
peak, bandwidth, and bimodal tuning. The orientation tuning
peak of the neuron illustrated in Fig. 2 is 129° and its orien-
tation bandwidth is 73°. This neuron (and many others in our
sample) has two distinct peaks in its orientation tuning curve.
To measure bimodal orientation tuning we used a bimodal
tuning index (Eq. 8); index values near 1.0 indicate that the
secondary peak has the same height (measured between the
shorter peak and shallower trough) to the primary peak and
values near 0 indicate just a single peak in the orientation
tuning curve. For this neuron the bimodal tuning index is 0.23,
indicating that the secondary peak is 23% of the height of the
primary peak. We also measured two properties of spatial-
frequency tuning: peak and bandwidth. For this neuron peak
spatial frequency tuning is 2.5 cycles per receptive field diam-
eter (cyc/RF; or 0.31 cycles per degree, cyc/deg) and band-
width is 1.1 octaves.

Some V4 neurons have simpler spectral tuning properties.
Figure 3 shows the SRF of one V4 neuron whose orientation
tuning profile resembles that typically encountered in area V1
(De Valois et al. 1982b). The orientation tuning of this neuron
is unimodal (bimodal tuning index, 0.01), its orientation peak
is 143°, and its orientation bandwidth is 29°. However, the
same is not true for spatial frequency tuning. This neuron has
a spatial frequency bandwidth of 1.7 octaves, substantially
higher than that typically reported for V1 (De Valois et al.
1982a).

Comparison of V4 and V1 spectral tuning

We compared the tuning properties of our sample of V4
neurons to those of 45 neurons in primary visual cortex (V1),
where spectral tuning properties are better understood (David
et al. 2004). Neurons in V1 generally have much narrower and
simpler spectral tuning than V4 neurons. One V1 SRF is shown
in Fig. 4. The orientation tuning peak is 97°, orientation
bandwidth is 29°, and tuning is nearly unimodal (bimodal
tuning index, 0.02). The spatial frequency tuning peak is 2.5
cyc/RF and the spatial frequency bandwidth is 0.9 octaves.

Across our sample of 103 V4 neurons, 87 (84%) had
significant spectral tuning, and only this subset was used for
comparison. Neurons without significant tuning either gave
visual responses that could not be described by the Fourier
power model or gave responses dominated by noise or other
nonvisual inputs (see METHODS for selection criteria). Excluding
these neurons increased the significance of some effects across
the population but did not affect any trends.

Figure 5 compares orientation tuning properties in V4 and
V1. The orientation bandwidth of V4 neurons varies widely
and the median is 74.4° (Fig. 5A). A few V4 neurons (6%,
5/87) do not have measurable orientation tuning and instead
respond equally to all orientations (white bar in Fig. 5A). In
contrast, the median bandwidth across the sample of V1
neurons is just 43.7° (Fig. 5B), significantly lower than that in
V4 (P � 0.01, Fig. 5C). Only a small number (5/45) of V1
neurons have orientation bandwidths 90°. These values are
comparable to those reported in previous studies of V4 (Desi-
mone and Schein 1987) and V1 (De Valois et al. 1982b;
Ringach et al. 2002) that used sinusoidal gratings.

As noted above (see Fig. 2), many V4 neurons in our sample
have bimodal orientation tuning. Across the sample, the me-
dian bimodal tuning index for V4 neurons is 0.09 (Fig. 5D). Of
these neurons, 28% (24/87) have a bimodal tuning index
significantly greater than zero (P � 0.05; black bars in Fig.
5D). In contrast, the median bimodal tuning index in V1 is only
0.01 and only 11% (5/45) of V1 neurons have significant
bimodal tuning (P � 0.05; Fig. 5E). The median bimodal
tuning index for V1 neurons is significantly lower than that for
V4 (P � 0.01; Fig. 5F).

Figure 6 compares spatial frequency tuning properties of V4
and V1 neurons. The median peak spatial frequency in V4 and
V1 is not significantly different when measured in cycles per
receptive field (cyc/RF), although they are likely to differ when
measured in cycles per degree (see following text). The median
is 2.6 cyc/RF in V4 (Fig. 6A) and 2.5 cyc/RF in V1 (Fig. 6B;
P  0.25, see Fig. 6C). Despite being similar to V1 on average,
peak spatial frequency tuning varies more widely in V4, from
�1 cyc/RF to over 6 cyc/RF. In contrast, the tuning of most V1

FIG. 3. SRF for a V4 neuron with narrow orientation tuning. Axes are as in
Fig. 2. A: this neuron is excited by a relatively narrow range of orientations but
a broad range of spatial frequencies. B: orientation tuning curve (peak, 143°)
has narrow bandwidth (29°) and nearly unimodal tuning (bimodal tuning
index, 0.01). C: spatial frequency tuning curve has a peak at 3.1 cycles/RF and
a bandwidth of 1.7 octaves.

3498 S. V. DAVID, B. Y. HAYDEN, AND J. L. GALLANT

J Neurophysiol • VOL 96 • DECEMBER 2006 • www.jn.org

 on M
arch 13, 2007 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


neurons falls between 2.0 and 3.5 cyc/RF. These spatial fre-
quency tuning properties are similar to those reported in
previous studies of V4 (Desimone and Schein 1987) and V1
(De Valois et al. 1982a) that used sinusoidal gratings.

We also observed substantial differences in spatial fre-
quency bandwidth between V4 and V1 neurons. The median
spatial frequency bandwidth in V4 is 1.2 octaves (Fig. 6D),
which is significantly greater than the median of 0.9 octaves in
V1 (Fig. 6E; P � 0.01, see Fig. 6F). In fact, nearly half of the
V4 neurons in our sample (41/87, 47%) have spatial frequency
tuning curves that extend outside the range of our analysis,
compared with only about one fifth of V1 neurons (10/45,
22%; white bars in Fig. 6; SRFs were estimated over 1–10
cyc/RF). For neurons whose spatial frequency tuning extends
beyond the tested range, bandwidth could be substantially
broader than measured. Because these neurons are more com-
mon in V4, the true difference in bandwidth between areas is
likely to be even larger than our data suggest.

In this report spatial frequency tuning was measured in
cycles per receptive field rather than cycles per degree. Be-
cause the spatial extent of receptive fields is much larger in V4
than in V1 (Gattass et al. 1988), the median peak spatial
frequency data suggest that the V4 neurons in our sample have
a substantially lower peak spatial frequency than the V1
neurons when measured in cycles per degree. However, V4 and
V1 neurons were sampled at different eccentricities with dif-
ferent cortical magnification factors, so a direct comparison is
not possible. In any case, the possibility that V4 neurons may
have lower peak spatial frequency tuning does not imply that
high spatial frequency information is absent from their re-
sponses. Instead, high spatial frequency information appears to
be integrated into the responses of neurons with large band-
width that spans both high and low spatial frequencies. The
increased bandwidth of V4 neurons enables a representation of
visual features that integrates over a wide range of spatial
frequencies, rather than the band-limited representation in V1.

Spectral tuning properties and feature selectivity

Previous studies of shape representation in V4 characterized
neuronal tuning using restricted stimulus sets such as non-

Cartesian polar and hyperbolic gratings (Gallant et al. 1993,
1996), curved contours (Pasupathy and Connor 1999), and
combinations of simple shape elements (Kobatake and Tanaka
1994). Because each of these studies probed a different part of
shape parameter space it is difficult to draw any general
conclusions from them about shape representation in V4. The
SRF may provide a solution to this problem. Any visual
stimulus can be described in terms of its orientation and spatial
frequency spectrum, and responses to different spatial patterns
can be interpreted in terms of the SRF.

To test the generality of SRFs, we used the SRF estimated
for each V4 neuron in our sample to predict responses to both

FIG. 4. SRF for a V1 neuron. Axes are as in Fig. 2. A: this neuron has
simple spectral tuning and narrow orientation and spatial frequency bandwidth.
B: orientation tuning curve (peak, 97°) has narrow bandwidth (29°) and is
nearly unimodal (bimodal tuning index, 0.02). C: spatial frequency tuning
curve has a peak at 2.5 cycles/RF and a bandwidth of just 0.9 octaves.

FIG. 5. Comparison of V4 and V1 orientation tuning properties. A: histo-
gram of orientation bandwidth for 87 V4 neurons with significant visual tuning
(median 74.4°). White bar at right denotes neurons that respond equally well
to all orientations and are not orientation tuned. Numbered gray arrows
indicate the values of examples shown in Figs. 2, 3, and 7. B: histogram of
orientation bandwidth for 45 V1 neurons (median 43.7°). Gray arrow indicates
the value of the example in Fig. 4. C: comparison of median orientation
bandwidth between V4 and V1 neurons (error bars computed by jackknifing).
Median for V4 neurons is significantly higher than that for V1 (P � 0.01). D:
histogram of bimodal tuning index for V4 neurons (median 0.09). Black bars
indicate neurons with index values significantly greater than zero (P � 0.05,
jackknifed t-test). E: histogram of bimodal tuning index for V1 neurons
(median 0.01). F: comparison of median bimodal orientation tuning between
V4 and V1 neurons. Median bimodal tuning index is significantly greater in V4
than in V1 (P � 0.01).
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natural images and to synthetic stimuli that had been used in
previous studies. We tested a stimulus set that was much larger
than could be used in any actual physiology experiment. This
consisted of 384 Cartesian gratings, 786 non-Cartesian (polar
and hyperbolic) gratings, 20,000 random natural images, and
56 curved contour features. Selectivity for natural images and
non-Cartesian gratings is described in this section; results
obtained with curved contour features are presented in the
following section.

Predictions for a representative V4 neuron are shown in Fig.
7. This neuron has very broad orientation tuning (bandwidth
151°; SRF shown in Fig. 7A) and is band-pass for spatial
frequency (peak, 3.1 cyc/RF; bandwidth 1.6 octaves). In the
experimental data, the average response of this neuron was 24

spikes/s. Based on its spectral tuning, this neuron is predicted
to respond most strongly to non-Cartesian gratings (best re-
sponse 35 spikes/s; Fig. 7B). This response is slightly, but not
significantly, greater than the best predicted response to natural
images (34 spikes/s) and significantly greater than the best
predicted response to Cartesian gratings (27 spikes/s, P �
0.05). (Best predicted responses are normalized for stimulus
class size; see METHODS.) The members of each stimulus class
predicted to evoke the five strongest and five weakest re-
sponses are shown in Fig. 7, C–E. Stimuli whose spectral
power is matched to the excitatory domain of the SRF should
evoke the strongest responses (bottom row of each panel). The
orientation and spatial frequency of the best Cartesian gratings
are aligned to the peak excitatory region of the SRF (Fig. 7C),
but their orientation bandwidths are much narrower than the
SRF bandwidth. The most effective non-Cartesian gratings
(Fig. 7D) and natural images (Fig. 7E) have broad orientation
bandwidth that more closely matches the excitatory domain of
the SRF.

Responses predicted for a different V4 neuron are shown in
Fig. 8 (SRF repeated from Fig. 2). In the experimental data, the
average response of this neuron was 26 spikes/s. This neuron is
predicted to give a significantly stronger response to natural
images (best response 50 spikes/s; Fig. 8B) than to either
non-Cartesian gratings (46 spikes/s, P � 0.05) or Cartesian
gratings (38 spikes/s, P � 0.05). The stimulus predicted to
evoke the strongest response from each class is shown in Fig.
8, C–E. As in the previous example, the spectral energy of the
best Cartesian grating is aligned to the excitatory region of the
SRF, but the narrow bandwidth does not match the broad,
bimodal orientation tuning of the SRF (Fig. 8C). The most
effective non-Cartesian, hyperbolic grating has a power spec-
trum that matches the SRF more closely but spans a much
wider range of orientations than the excitatory domain of the
SRF (Fig. 8D). The most effective natural image has a power
spectrum that matches the bimodal structure of the excitatory
SRF even more closely and so should evoke the largest
response (Fig. 8E).

We classified each neuron according to the stimulus class
predicted to evoke the strongest response and compared the
fraction of neurons preferring each stimulus class (Fig. 9A).
Cartesian gratings are predicted to be the most effective stimuli
for only one quarter of the V4 neurons (21/87, 24%). For only
four of these neurons, the best response to Cartesian gratings is
significantly greater than that to either other stimulus class
(P � 0.05). In contrast, non-Cartesian gratings should evoke
the largest response from almost half of the V4 neurons (38/87,
44%; 13 significantly greater than either other class, P � 0.05).
Natural images should evoke the largest response from the rest
(28/87, 32%; one significant, P � 0.05). We evaluated other
measures of selectivity (the difference between maximum and
minimum response; sparseness of responses; Vinje and Gallant
2000) and found similar results (data not shown).

We used the same procedure to evaluate shape selectivity in
our sample of 45 V1 neurons (Fig. 9A). In this case, we
observed a much different pattern of selectivity. Cartesian
gratings are predicted to be the most effective stimuli for the
majority of V1 neurons (27/45, 60%). For 18 of these neurons,
the predicted best response to Cartesian gratings is significantly
greater than that to either other stimulus class (P � 0.05).
Non-Cartesian gratings and natural images should each evoke

FIG. 6. Comparison of V4 and V1 spatial frequency tuning properties. A:
histogram of peak spatial frequency tuning for 87 V4 neurons (median 2.6
cycles per receptive field diameter; cyc/RF). White bars indicate neurons (41,
47%) with spatial frequency tuning that extends above or below the range of
spatial frequencies tested. Numbered gray arrows indicate the values of
examples shown in Figs. 2, 3, and 7. B: histogram of peak spatial frequency
tuning for 45 V1 neurons (median 2.5 cyc/RF). Gray arrow indicates the value
of the example in Fig. 4. C: comparison of peak spatial frequency tuning
between V4 and V1 neurons. Medians are not significantly different (P 
0.25). D: histogram of spatial frequency bandwidth for V4 neurons (median 1.2
octaves; shading as in A). E: histogram of spatial frequency bandwidth for V1
neurons (median 0.9 octaves). F: comparison of spatial frequency bandwidth
between V4 and V1 neurons. Median bandwidth is significantly higher in V4
than in V1 (P � 0.01).

3500 S. V. DAVID, B. Y. HAYDEN, AND J. L. GALLANT

J Neurophysiol • VOL 96 • DECEMBER 2006 • www.jn.org

 on M
arch 13, 2007 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


the largest response from only a minority of V1 neurons
(non-Cartesian: 7/45, 16%, two significantly greater than either
other class, P � 0.05; natural images, 11/45, 24%, three
significant, P � 0.05). The distribution of preferred stimulus
class predicted across the sample of V1 neurons is significantly
different from the distribution across V4 neurons (P � 0.01,
jackknifed Hotelling’s t-test).

Our analysis of shape selectivity demonstrates that differ-
ences in spectral tuning properties between V4 and V1 neurons
are sufficient to explain the selectivity for complex patterns
observed only in V4 neurons. To determine which aspects of
spectral tuning might influence stimulus selectivity, we com-
pared the tuning properties of V4 neurons classified according
to the predicted best stimulus. The orientation bandwidth of
neurons in the non-Cartesian class (median 129°) is signifi-
cantly broader than that of cells in the Cartesian and natural
image classes (Cartesian median bandwidth: 39°; natural im-
age bandwidth: 55°; P � 0.01; Fig. 9B). In contrast, the
bimodal tuning index is higher for the neurons in the natural
image class (median 0.14) than for those in the Cartesian and
non-Cartesian classes (median non-Cartesian index: 0.08; Car-
tesian index: 0.05; P � 0.01; Fig. 9C). There are no significant
differences in peak spatial frequency tuning between the three
classes of neuron (Fig. 9D). However, spatial frequency band-
width is significantly greater for neurons in the natural image
class (median 1.8 octaves) than that for those in the other two
classes (median Cartesian bandwidth: 0.98 octaves; non-Car-
tesian bandwidth: 1.2 octaves; P � 0.05; Fig. 9E). Thus the
selectivity for non-Cartesian gratings and natural images ob-
served in V4 (Gallant et al. 1993; Kobatake and Tanaka 1994)
can be explained by broad tuning bandwidth and complex
orientation tuning profiles, properties that appear in V4 SRFs
but not V1 SRFs.

The selectivity analysis presented thus far is based on
simulations in which stimuli were centered in the receptive
field. In V4, visual selectivity is invariant to changes in
stimulus position on the order of one-half receptive field
diameter (Gallant et al. 1996). The Fourier power model is
invariant to small changes in position and thus should explain
this invariance. However, if the spectral structure of a stimulus
varies across space, selectivity could be affected by large
spatial offsets. To address this issue we repeated the compar-
ison of selectivity for V4 neurons with an expanded stimulus
set. In the expanded set, stimuli of all three classes were
positioned either in the receptive field center or offset by
one-half receptive field diameter (horizontally, vertically, and
diagonally). The pattern of selectivity within the expanded
stimulus set (neurons preferring Cartesian gratings: 13/87,
15%; non-Cartesian gratings: 44/87, 51%; natural images:
30/87, 34%) is not significantly different from the distribution
for the original set, in which stimuli appeared only in the
receptive field center (P  0.5, jackknifed Hotelling’s t-test).
Thus the pattern of selectivity predicted by the Fourier power
model does not depend on the position of the stimulus in the
receptive field.

Selectivity for curved-contour features in V4

One previous study of shape selectivity in area V4 used
stimuli constructed by joining two oriented line segments in a
sharp corner or curve (Pasupathy and Connor 1999). That
study reported that many V4 neurons are selective for the angle
separating the contour components and for the sharpness of the
corner. To determine whether V4 SRFs can account for selec-
tivity for these curvature features we used estimated SRFs to
predict responses to the same contour configurations (Fig.
10A).

FIG. 7. Selectivity for Cartesian gratings, non-Carte-
sian gratings, and natural images of a single V4 neuron. A:
SRF for this neuron indicates broad tuning for orientation
(bandwidth 151°) and band-pass tuning for spatial fre-
quency (peak, 3.1 cyc/RF; bandwidth 1.6 octaves). B:
predicted responses to large sets of Cartesian gratings,
non-Cartesian gratings, and natural images are shown
sorted from strongest to weakest. Responses are predicted
to be strongest for non-Cartesian gratings (NC; best re-
sponse 35 spikes/s), nearly as strong for natural images
(Nat; best response 34 spikes/s), but significantly weaker
for Cartesian gratings (C; best response 27 spikes/s, P �
0.05). C: 5 Cartesian gratings predicted to give the stron-
gest responses (left) and 5 predicted to give the weakest
responses (right). Below each image is its Fourier power
transform. Spectral energy of the preferred Cartesian grat-
ings is aligned to the excitatory component of the SRF and
nonpreferred gratings have power aligned to the high-
frequency inhibitory component of the SRF. D: 5 most-
and least-preferred non-Cartesian gratings. Strongest pre-
dicted responses are to polar and hyperbolic gratings with
spectral structure similar to the SRF. E: 5 most- and
least-preferred natural images. Preferred natural images
tend to have localized, round structures also with spectra
similar to the SRF.
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We classified neurons according to which of the seven
distinct separation angles and corner shapes are predicted to
evoke the strongest response, disregarding absolute orientation.
Selectivity varied widely across V4 neurons (neurons prefer-
ring 45° separation: 18/87, 21%; 90°: 27/87, 31%; 135°: 7/87,
7%; 180°: 33/87, 38%). Responses predicted for corner shape
were equally diverse (neurons preferring sharp corners: 30/87,
34%; smooth corners: 30/87, 34%; straight contours: 27/87,
31%). The wide variability of preferred stimuli, including the

FIG. 9. Comparison of selectivity for Cartesian gratings, non-Cartesian
gratings, and natural images in V4 and V1 neurons. A: fraction of V4 and
V1 neurons selective for each stimulus class. Neurons were categorized
according to the class of the stimulus for which their SRF was predicted to
give the strongest response. Only 21/87 V4 neurons (24%) are selective for
Cartesian gratings, whereas 38 V4 neurons (44%) are selective for non-
Cartesian gratings and 28 (32%) are selective for natural images (bars at
left). In contrast, the majority of V1 neurons (30/45, 67%) are selective for
Cartesian gratings, whereas only 8 neurons (18%) are selective for non-
Cartesian gratings and 7 neurons (16%) are selective for natural images
(bars at right). Patterns of selectivity observed in V4 and V1 are signifi-
cantly different (P � 0.01, jackknifed Hotelling’s t-test). B: median
orientation bandwidth of V4 neurons selective for each stimulus class.
Neurons selective for non-Cartesian gratings have significantly greater
bandwidth than neurons selective for either other class (P � 0.01). C:
median bimodal tuning index of V4 neurons selective for each stimulus
class. Neurons selective for natural images have significantly greater
bandwidth than neurons selective for either other class (P � 0.05). D:
median peak spatial frequency tuning of V4 neurons selective for each
stimulus class. There are no significant differences between classes. E:
median spatial frequency bandwidth of V4 neurons selective for each
stimulus class. Neurons selective for natural images have significantly
greater bandwidth than neurons selective for the other classes (P � 0.01).

FIG. 8. Selectivity for Cartesian gratings, non-Cartesian gratings, and
natural images for a V4 neuron with bimodal orientation tuning. A: SRF is
repeated from Fig. 2 for reference. B: predicted responses to each stimulus
class, sorted as in Fig. 7B. Strongest response is predicted for natural
images (Nat; best response 50 spikes/s), significantly greater than for
non-Cartesian gratings (NC; best response 46 spikes/s, P � 0.05), and
Cartesian gratings (C; best response 38 spikes/s, P � 0.05). C: preferred
Cartesian grating (Fourier power transform at right) has orientation and
spatial frequency matched to the peak of the SRF. D: preferred non-
Cartesian grating is a hyperbolic grating with spectral energy that overlaps
and extends beyond the excitatory region of the SRF. E: preferred natural
image is a curved pattern with strong similarity between its spectral
structure and the excitatory tuning of the SRF.
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bias toward a 180° separation angle, matches the previous
neurophysiological observations in V4 (Pasupathy and Connor
1999).

We used the same procedure to evaluate contour selectivity
in our sample of 45 V1 neurons. In this case, we observed a
much simpler pattern than that for V4 neurons. Most V1
neurons are predicted to respond maximally to straight con-
tours (20/45, 44%) or contours with a smooth corner and 135°
separation angle (12/45, 27%).

To determine which aspects of spectral tuning could influ-
ence curvature selectivity, we compared the tuning properties
of V4 neurons in each preferred contour class. We found a
strong negative correlation between orientation bandwidth and
the angle of the contour predicted to evoke the largest re-
sponse: neurons predicted to prefer narrow separation angles
(independent of corner shape) tend to have broad orientation
bandwidth and vice versa (r � 0.41, P � 0.001; see Fig. 10B).
Thus SRF orientation bandwidth can account for V4 selectivity
for the separation angle of curved contours.

Our analysis of grating selectivity (see above) suggests that
unimodal or bimodal orientation tuning in the SRF might also
influence predicted stimulus selectivity. The median bimodal
tuning index for the subset of V4 neurons predicted to respond
most strongly to contours with sharp corners is 0.15, whereas
the index is only 0.05 for those neurons predicted to respond
best to contours with rounded corners. This difference is
significant (P � 0.01; see Fig. 10C). Thus bimodal orientation

tuning in the SRF can account for selectivity for curved versus
sharp contours.

D I S C U S S I O N

This study tested the hypothesis that selectivity for complex
visual features in area V4 neurons can be explained by their
second-order spectral tuning properties. Spectral receptive
fields (SRFs) estimated from neuronal responses to natural
scenes predict most observations of shape selectivity in V4 that
have been reported in studies using simpler parametric stimuli
(Desimone and Schein 1987; Gallant et al. 1993; Kobatake and
Tanaka 1994; Pasupathy and Connor 1999). SRFs can explain
why non-Cartesian polar and hyperbolic gratings evoke larger
responses than Cartesian gratings in V4 (Gallant et al. 1996).
They can also explain important aspects of responses to curved
contours (Pasupathy and Connor 1999). This selectivity is not
simply implicit to the Fourier power model or the linearized
reverse correlation algorithm; SRFs estimated for V1 neurons
do not predict the same pattern of stimulus selectivity.

Shape selectivity predicted by V4 SRFs reflects the influence
of specialized orientation and spatial frequency tuning proper-
ties that are not found in V1. These specializations include both
increased orientation and spatial frequency tuning bandwidth
and bimodal orientation tuning. The SRF profiles observed in
V4 suggest that shape selectivity in this area is constructed by
pooling of specific orientation and spatial frequency channels
from more peripheral stages of visual processing. Although
other mechanisms are likely to contribute to shape selectivity,
the observed pooling of spectral channels alone is sufficient to
explain the selectivity for complex patterns in V4.

Spectral receptive fields provide a general model of
visual processing

The Fourier power model embodied in the SRF uses a
second-order nonlinearity to describe spectral tuning properties
and, at the same time, to account for phase- and position
invariance (David and Gallant 2005; Freiwald et al. 2004).
Despite its relatively simple analytical form, the Fourier power
model can account for many previous observations of shape
selectivity in area V4. It may seem surprising that such a
simple model can describe such a wide range of observations,
but very little quantitative data yet exist to either support or
refute such simple models for V4 (Pollen et al. 2002; Wu et al.
2006).

Although the Fourier power model explains many aspects of
shape selectivity in V4, it is not as comprehensive as models
for more peripheral areas, such as V1 (Carandini et al. 1997;
Daugman 1980; Jones and Palmer 1987). Several response
properties previously reported in extrastriate cortex are not
well described by second-order nonlinearities. These include
tuning to the relative position of features in space (Gallant et al.
1996; Kobatake and Tanaka 1994; Pasupathy and Connor
2002), responses to figure–ground cues (Pasupathy and Con-
nor 1999), and nonlinear spatial summation (Desimone and
Schein 1987; Gustavsen et al. 2004).

The relative success of the Fourier power model rests on its
incorporation of a specific nonlinear transformation into a
general method for systems identification. The choice of non-
linearity was motivated from results of previous studies of

FIG. 10. Spectral tuning properties explain selectivity for curved contours
in V4. A: contours generated by joining 2 line segments with a sharp corner at
different separation angles (left) and contours containing the same separation
angles but joined by a rounded corner (right). Fourier power transform of each
stimulus appears in the 2nd row. Entire stimulus set contained these 7 contours
at 8 different absolute orientations. Neurons were categorized according to the
separation angle (45, 90, 135, or 180°) and corner (sharp or smooth) of the
contour that produced the strongest predicted response from the SRF at any
absolute orientation. B: median orientation bandwidth for neurons in each
contour category. Error bars: 1 SE (estimated by jackknifing). Orientation
bandwidth is negatively correlated with preferred separation angle (r � 0.61,
P � 0.01). C: median bimodal tuning index for neurons in each contour
category. Bimodal tuning index is greater for neurons that prefer sharp corners
(median 0.15) than neurons that prefer round corners (median 0.05, P � 0.01).
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visual cortex that used small, restricted stimulus sets (Gallant
et al. 1996; Mazer et al. 2002; Pasupathy and Connor 2002). A
similar approach has proven effective for explaining some
aspects of pattern selectivity in area MT (Rust et al. 2006). We
suspect that a continued effort to expand systems identification
approaches with known nonlinear responses will produce even
more complete descriptions of neuronal tuning in V4 and other
sensory cortical areas (Wu et al. 2006).

Bimodal orientation tuning in V4

More than one quarter of V4 neurons have more than one
excitatory orientation tuning peak. Bimodal orientation tuning
explains previous observations of selectivity for sharp corners
(Pasupathy and Connor 1999). For similar reasons bimodal
orientation tuning can also explain selectivity for non-Carte-
sian gratings (Gallant et al. 1993) and for geometrical patterns
containing several oriented features (Kobatake and Tanaka
1994). Bimodal orientation tuning is a property distinct to
extrastriate cortex. It occurs only rarely and with smaller
magnitude in V1, where the majority of neurons are tuned to a
single dominant orientation. Because all input to V4 must first
pass through V1 (Felleman and Van Essen 1991), bimodal
tuning in V4 must reflect a very precise rule for pooling inputs
from V1. Bimodal V4 neurons must receive input from neu-
rons selective for two distinct orientations, while excluding
inputs from intermediate orientations. Much of the information
that passes from V1 to V4 must pass first through V2 (Felle-
man and Van Essen 1991). Neurons in V2 are sometimes
selective for complex patterns with multiple orientations
(Hegde and Van Essen 2000). However, it is an open question
whether V2 neurons possess a single dominant orientation
peak, like V1, or whether they show bimodal tuning, like V4.

Shape selectivity in V4

One persistent question in visual neuroscience is whether
tuning properties in V4 and other more central visual areas can
be described along a small number of dimensions (Gallant et
al. 1993; Wu et al. 2006). Identifying the relevant dimensions
would allow for an efficient description of the tuning of any V4
neuron. An analogy can be made to V1, where numerous
studies have concluded that Gabor wavelets provide an effi-
cient description of the tuning space (Daugman 1980; Jones
and Palmer 1987).

Tuning properties in V4 have been measured across specific
stimulus sets: bars and gratings (Desimone and Schein 1987;
Pollen et al. 2002), Cartesian and non-Cartesian gratings (Gal-
lant et al. 1993), shape features (Kobatake and Tanaka 1994),
or contour features (Pasupathy and Connor 1999). However,
previous studies have not demonstrated the completeness or
efficiency of any of these stimulus spaces. Untested stimulus
dimensions that are correlated with the tested dimensions could
describe tuning more efficiently. For example, within a set of
curved contours, a neuron might appear to be tuned to a single
curvature. However, changing the curvature of a contour also
changes its spatial frequency spectrum (Zetzsche and Barth
1990). The neuron that appears to be tuned to a particular
curvature may simply be tuned to the spatial frequency of the
stimulus. Determining the stimulus feature for which the neu-
ron is actually tuned requires a more general stimulus that tests
both of these possibilities.

The present study used natural images as stimuli to produce
a general and behaviorally relevant characterization of neuro-
nal tuning properties. Estimated SRFs explain why non-Carte-
sian (polar and hyperbolic) gratings are most effective in V4
(Gallant et al. 1993, 1996), whereas Cartesian gratings are
most effective in V1 (Jones and Palmer 1987). Non-Cartesian
selectivity has also been observed in several human studies
using a variety of techniques (Allison et al. 1999; Gallant et al.
2000; James et al. 1999; Wilkinson et al. 1998, 2000; Wilson
et al. 1997). These findings suggest that the human homologue
of macaque V4 (Hansen et al. 2005) will have SRF properties
similar to those found in the macaque.

The SRFs described here motivate more appropriate and
efficient parametric stimuli that can be used in future studies of
V4. In one subset of V4 neurons in our sample, natural images
are predicted to evoke larger responses than either Cartesian or
non-Cartesian gratings. These neurons tend to have bimodal
orientation tuning and broad spatial frequency bandwidth.
Natural images often contain sharp edges and corners, features
whose spectral properties are matched to these tuning proper-
ties. A more complete parametric stimulus set should include
features that probe these tuning properties in addition to the
tuning space spanned by Cartesian and non-Cartesian gratings.

In conclusion, the spectral receptive fields of V4 neurons
estimated from responses to natural images reveal a diversity
of tuning properties that are not observed in primary visual
cortex: large orientation and spatial frequency bandwidth and
bimodal orientation tuning. These tuning properties are suffi-
cient to explain the emergent selectivity for many complex
patterns in extrastriate cortex and suggest how information is
pooled from more peripheral areas. Given its explanatory
power and its ability to predict responses to arbitrary stimuli,
the SRF provides a foundation for a general model of visual
processing in area V4.
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Corrigenda

Volume 96, July 2006

Pages 492–504: Gerich FJ, Hepp S, Probst I, and Müller M. “Mitochondrial Inhibition Prior to
Oxygen-Withdrawal Facilitates the Occurrence of Hypoxia-Induced Spreading Depression in Rat
Hippocampal Slices” (doi:10.1152/jn.01015.2005; http://jn.physiology.org/cgi/content/full/96/1/
492). In Fig. 6B, a drug application indicated below the NADH/FAD traces is labeled incorrectly.
The third drug applied in this recordings was antimycin A (AMC, 20 �M) not FCCP.

Volume 96, December 2006

Pages 3492–3505: David SV, Hayden BY, and Gallant JL. “Spectral Receptive Field Properties
Explain Shape Selectivity in Area V4” (doi:10.1152/jn.00575.2006; http://jn.physiology.org/cgi/
content/full/96/6/3492). During production, Equation 1 was misrepresented. The correct form for
Equation 1 is:

ŝ��x, �y, t� � � �
x�1,y�1

N

e�i(�xx��yy)s(x, y, t)�2

J Neurophysiol 97: 958, 2007.
doi:10.1152/jn.z9k-7962-corr.2006.
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