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SUMMARY

Just as the visual system parses complex scenes
into identifiable objects, the auditory system must
organize sound elements scattered in frequency
and time into coherent ‘‘streams.’’ Current neuro-
computational theories of auditory streaming rely
on tonotopic organization of the auditory system to
explain the observation that sequential spectrally
distant sound elements tend to form separate
perceptual streams. Here, we show that spectral
components that are well separated in frequency
are no longer heard as separate streams if presented
synchronously rather than consecutively. In contrast,
responses from neurons in primary auditory cortex of
ferrets show that both synchronous and asynchro-
nous tone sequences produce comparably segre-
gated responses along the tonotopic axis. The
results argue against tonotopic separation per se
as a neural correlate of stream segregation. Instead
we propose a computational model of stream segre-
gation that can account for the data by using
temporal coherence as the primary criterion for pre-
dicting stream formation.

INTRODUCTION

When listening to someone at a crowded cocktail party, or trying

to follow the second violin line in a symphonic orchestra, we rely

on our ears’ and brain’s extraordinary ability to parse complex

acoustic scenes into individual auditory ‘‘objects’’ or ‘‘streams’’

(Griffiths and Warren, 2004). Just as the decomposition of

a visual scene into objects is a challenging and mathematically

ill-posed problem, requiring top-down and bottom-up informa-

tion to solve (Marr, 1983; Zeki, 1993), the auditory system uses

a combination of acoustic cues and prior experience to analyze

the auditory scene. A simple example of auditory streaming

(Bregman, 1990; Carlyon, 2004) can be demonstrated and

explored in the laboratory using sound sequences like those

illustrated in Figure 1. These sequences are produced by pre-

senting two tones of different frequencies, A and B, repeatedly

(Figure 1A). Many psychophysical studies have shown that this

simple stimulus can evoke two very different percepts, depend-

ing on the frequency separation, DF, between the A and B tones,

and the time interval, DT, between successive tones (for a review,

see Bregman, 1990). In particular, when DF is relatively small

(<10%), most listeners perceive and describe the stimulus as

a single stream of tones alternating in frequency, like a musical

trill. However, when DF is large, the percept is that of two parallel

but separate streams, each containing only tones of the same

frequency (A-A- and B-B-; see Supplemental Data available on-

line for an auditory demonstration). The perceptual separation of

sound components into distinct streams is usually referred to as

stream segregation; the converse process is variously known as

stream integration, grouping, or fusion. Manifestations of audi-

tory streaming have been observed in various nonhuman

species, including birds, fish, and monkeys, suggesting that

streaming is a fundamental aspect of auditory perception, which

plays a role in adaptation to diverse ecological environments

(Bee and Micheyl, 2008; Fay, 1998, 2000; Hulse et al., 1997;

Izumi, 2002; MacDougall-Shackleton et al., 1998).

Inspired by the observation that frequency-to-place mapping,

or tonotopy, is a guiding anatomical and functional principle

throughout the auditory system (Eggermont, 2001; Pickles,

1988), current models of auditory streaming rely primarily on

frequency separation for sound segregation (Beauvois and Med-

dis, 1991, 1996; Hartmann and Johnson, 1991; McCabe and

Denham, 1997). These models predict that consecutive sounds

will be grouped perceptually into a single auditory stream if

they activate strongly overlapping tonotopic channels in the

auditory system. In contrast, sounds that have widely different

spectra will activate weakly overlapping (or nonoverlapping)

channels, and be perceptually segregated (i.e., heard as sepa-

rate streams). In this way, models based on tonotopic separation

can account for behavioral findings that show an increase in

perceived segregation with increasing frequency separation

(Hartmann and Johnson, 1991). By additionally taking into

account neural adaptation and forward suppression of

responses to consecutive tones, these models can also account

for the influence of temporal stimulus parameters, such as the in-

tertone interval or the time since sequence onset, on auditory

streaming (Beauvois and Meddis, 1991, 1996; Bee and Klump,
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2004, 2005; Fishman et al., 2001, 2004; Kanwal et al., 2003;

McCabe and Denham, 1997; Micheyl et al., 2005, 2007; Press-

nitzer et al., 2008).

Although tonotopic separation is important, it is clearly not the

only determinant of auditory perceptual organization. Another

factor is the relative timing of sounds. Sounds that start and

end at the same time are more likely to be perceived as a single

event than sounds whose onsets and offsets are staggered by

several tens or hundreds of milliseconds (Darwin and Carlyon,

1995). Accordingly, if the AB tone pairs were presented synchro-

nously (as in Figure 1B) instead of sequentially (as in Figure 1A),

they might form a single perceptual stream, even at large

frequency separations. This prediction poses a serious problem

for purely tonotopic models of auditory streaming. Unfortunately,

nearly all perceptual studies of auditory streaming so far have

used strictly sequential, temporally nonoverlapping, stimuli

(Figure 1A), although one informal description of an experiment

involving partially overlapping stimuli exists (Bregman, 1990,

page 213). On the physiological side, it is unclear how synchrony

affects neural responses in the primary auditory cortex (AI),

where previous studies have identified potential neural corre-

lates of auditory streaming using purely nonoverlapping stimuli

(Fishman et al., 2001, 2004; Gutschalk et al., 2005; Kanwal

et al., 2003; Micheyl et al., 2005, 2007; Snyder et al., 2006; Wil-

son et al., 2007). The complexity of auditory cortical responses

makes it difficult to predict how responses of single AI units

will be influenced by stimulus synchrony: depending on the posi-

tion of the tones relative to the unit’s best frequency, responses

might be facilitated (i.e., enhanced), inhibited (i.e., reduced), or

left unchanged by the synchronous presentation of a second

tone within the unit’s excitatory receptive field.

Here we use a combination of psychophysics in humans,

cortical physiology in ferret, and computational modeling to

address these questions. We first report psychoacoustic find-

ings, which reveal that synchronous and nonsynchronous sound

sequences are perceived very differently, with synchronous

tone sequences heard as a single stream, even at very large

frequency separations. We then present physiological findings

that show synchronous and nonsynchronous tone sequences

evoke very similar tonotopic activation patterns in AI. Together,

these findings challenge the current view that tonotopic separa-

tion in AI is necessary and sufficient for perceptual stream segre-

gation. Finally, we describe a computational model of stream

segregation that uses the temporal coherence of responses

across tonotopic (or other) neural channels to predict percep-

tion, and demonstrate that this model can account for the

present and other psychophysical findings. By combining simul-

taneous and sequential perceptual organization principles that

have traditionally been studied separately, the model proposed

here provides a new and more general account of auditory

perceptual organization of any arbitrary sound combinations.

More generally, the present findings suggest that the principle

of grouping information across sensory channels based on

temporal coherence may play a key role in auditory perceptual

organization, just as has been proposed for visual scene analysis

(Blake and Lee, 2005).

RESULTS

Psychophysics
Experimental Results

Informal listening to sound sequences like those illustrated in

Figure 1A reveals that, for relatively large frequency separations

between the A and B tones (e.g., six semitones or more), the

alternating-tone sequence (Figure 1A) usually evokes a percept

of two separate streams, each with a constant pitch (A-A- and

B-B-). In contrast, the sequence of synchronous tones

(Figure 1B) evokes the percept of a single stream, even at large

DFs. To confirm and quantify this subjective impression, we

asked listeners to discriminate between two sequences similar

to those shown in Figure 1B, except that in one of those two

sequences, the last B tone was slightly shifted temporally

(forward or backward) so that it was no longer exactly synchro-

nous with the corresponding A tone. We measured the smallest

temporal shift that listeners could correctly detect 79.4% of the

Figure 1. Schematic Spectrograms of Stimuli Used to Study the

Perceptual Formation of Auditory Streams

(A) The typical stimulus used in many psychophysical and physiological

studies of auditory streaming; a sequence of tones alternating between two

frequencies, A and B. The percept evoked by such sequences depends

primarily on the frequency separation between the A and B tones, DF, and

on the intertone interval, DT. For small DFs and relatively long DTs, the percept

is that of a single stream of tones alternating in pitch (ABAB); for large DFs and

relatively short DTs, the percept is that of two separate streams of tones of

constant pitch (A-A and B-B).

(B) A variation on the traditional stimulus, used in this study. Here, the A and B

tones are synchronous, rather than alternating. Such sequences usually evoke

the percept of a single stream, regardless of DF and DT.

(C) An alternating sequence of tones that is partially overlapped (40 ms onset

asynchrony or about 50% overlap). This sequence is usually heard like the

nonoverlapping tone sequence (see panel [A]).
318 Neuron 61, 317–329, January 29, 2009 ª2009 Elsevier Inc.



Neuron
time. Based on earlier results indicating that listeners can detect

onset shifts of as little as a few milliseconds between spectral

components of complex tones (Zera and Green, 1993a, 1993b,

1995), but cannot accurately judge the relative timing of tones

that fall into separate auditory streams (Bregman and Campbell,

1971; Broadbent and Ladefoged, 1959; Formby et al., 1998; Neff

et al., 1982; Roberts et al., 2002; Warren et al., 1969), we

reasoned that if listeners heard the A and B tones as a single

fused stream, their thresholds in the asynchrony detection task

would be relatively small (i.e., a few milliseconds), whereas if

the listeners perceived the A and B tones as two separate

streams, their thresholds should be substantially larger.

The results shown in Figure 2 (filled squares) support these

predictions. In the condition where all the A and B tones before

the last were synchronous (with intertone intervals of 50 ms),

thresholds were small, in the 2–4 ms range. This is true at all of

the three A-B frequency separations tested, including the very

large one (15 semitones, which is larger than an octave). This

outcome is consistent with the hypothesis that synchrony

between the A and B tones promotes the perceptual integration

of these tones into a single stream, even for relatively large

frequency separations.

To check that thresholds in the asynchrony-detection task

provided a valid marker of the listener’s auditory percept of

streaming, three control conditions were run. The first two

control conditions involved stimulus sequences in which the

silent gap between consecutive B tones was either shorter

(30 ms) or longer (70 ms) than that between consecutive A tones

(50 ms), but with the stimulus parameters chosen such that the

last A and B tones in one of the two stimulus sequences pre-

sented on a given trial would be synchronous (see Figure 2 inset).

If thresholds in the asynchrony detection task are a faithful indi-

cator of the listener’s auditory percept, these thresholds should

be larger in these control conditions than in the main condition

because (1) the asynchrony between the A and B tones would

promote the perceptual segregation of the stimulus sequence

into two separate streams, and (2) stream segregation should

hamper listeners’ ability to accurately compare the timing of

the A and B tones in that pair. The aim of the third control condi-

tion was to measure listeners’ sensitivity to changes in the timing

of the last B tone, even when the A tones were not present. We

turned off the A tones and asked listeners to decide in which of

the two presented sequences of (B only) tones the last tone

was temporally shifted (either backward or forward, as in the

main experiment). Therefore, in this control condition, listeners

had to detect which of two presented sequences of B tones con-

tained a temporal irregularity near the end.

Considerably larger thresholds (10–20 ms) were observed in

the two control experiments, where the nominal duration of the

intertone interval in the A tone stream was different from that in

the B tone stream, being either shorter (30 ms) or longer

(70 ms) [F(1,10) = 7.394, p < 0.001]. This outcome is consistent

with the idea that asynchrony between the A and B tones

promotes the perceptual segregation into two streams and

makes it difficult, if not impossible, to accurately judge the timing

of events in separate streams. In fact, the thresholds measured

in those conditions were not significantly different from those

measured in the third control condition, in which the A tones

were turned off, so that the only cue listeners could use to

perform the task was to listen for an irregularity in the timing of

the B tone stream. This indicates that listeners were able to

use the presence of the A tones to improve performance only

when the A tones were all gated synchronously with the B tones.

Overall, the psychophysical results confirm that synchronous

and asynchronous tone sequences produce very different

percepts, with the synchronous tones being perceived as a single

stream and the asynchronous tones being perceived as two

streams at large frequency separations.

Neurophysiology
The psychophysical results raise the question of whether neural

responses to sequences of synchronous and sequential tones

in the central auditory system differ in a way that can account

for their very different percepts. To answer this question, we

Figure 2. Thresholds for the Detection of a Temporal Shift Imposed

on the Last B Tone in Various Types of Stimulus Sequences

The different symbols indicate different sequence types, which are repre-

sented schematically in the inset. Polygonal symbols correspond to

sequences of A and B tones, with the duration of the silent gap between

consecutive A tones set to 30, 50, or 70 ms, as indicated in the legend. Note

that because the duration of the silent gap between consecutive B tones

(excluding the last two) was kept constant at 50 ms, the use of a 50 ms gap

for the A tones yielded synchronous A and B tones with identical tempi; in

contrast, when the gap between consecutive A tones was equal to 30 or

70 ms, these tones were not synchronous with the B tones, and had a different

(slower or faster) tempo. Crosses are used to indicate the results of a control

condition, in which the A tones were turned off, and the listener’s task was

to indicate in which of the two presented sequences of B tones the last tone

was shifted in time, creating an heterochrony. The numbers on the abscissa

indicate the frequency separation between the A and B tones, in semitones.

For the control condition in which only the B tones were present, this param-

eter was used to determine the frequency of the B tones so that it was equal to

that used in corresponding conditions where A tones were also present. The

error bars are geometric standard errors.
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performed two experiments in which we recorded the single-unit

responses in AI to sequences such as those illustrated in Figure 1

in the awake (nonbehaving) ferret. In the first experiment, we

explored directly the extent of segregation between the

responses to the A and B tones. In the second experiment, we

assessed the range of frequencies over which the tones inter-

acted (or mutually influenced their responses).

Experiment I: Segregation between Two-Tone

Responses

This experiment examined the distribution of responses to the

two tones by translating them together, relative to the best

frequency (BF) of an isolated single unit in AI of awake ferrets

in five steps (labeled 1–5 in Figure 3A), where positions 1 and 5

correspond to one of the two tones being at BF of the unit. The

frequency separation (DF) between the tones in each test was

fixed at 1, 0.5, or 0.25 octaves, corresponding to 12, 6, and 3

semitones, respectively. As described previously, alternating

tone sequences are usually perceived as two streams at separa-

tions of 12 and 6 semitones (1 or 0.5 octaves), but are only

marginally segregated at a separation of 3 semitones (0.25

octaves). In contrast, synchronous tone sequences are always

heard as one stream (Figure 2). Therefore, if the spatial segrega-

tion hypothesis were valid, alternating sequences should evoke

well-segregated neural responses to the far-apart tones (1 and

0.5 octaves), whereas synchronous sequences should evoke

spatially overlapping responses in all cases.

The results from a population of 122 units in the AI of four

ferrets are shown in Figure 4. In Figure 4A, the average rate

profiles for the synchronous, overlapping, and alternating

presentation modes are constructed from the responses as

described in Methods. All 122 units were tested with the

synchronous and alternating modes; 75/122 units were also

tested with the overlapping sequences. When the tones are far

apart (DF = 1 octave; right panel of Figure 4A), responses are

strongest when either tone is near BF (positions 1 and 5); they

diminish considerably when the BF is midway between the tones

(position 3), suggesting relatively good spatial separation

between the representations of each tone. When the tones are

closely spaced (DF = 0.25 octave; left panel of Figure 4A), the

responses remain relatively strong at all positions, suggesting

that the representations of the two tones are not well separated.

More importantly, the average rate profiles are similar for all

presentation modes: in all cases, the responses are well-segre-

gated with significant dips when the tones are far apart (DF = 1

octave), and poorly separated (no dips) when the tones are

closely spaced (DF = 0.25 octaves). Thus, based on average

rate responses, the neural data mimic the perception of the asyn-

chronous but not the synchronous tone sequences. Therefore,

the distribution of average rate responses does not appear to

represent a general neural correlate of auditory streaming.

Instead of averaging the responses from all cells, we tabulated

the number of cells indicating a significant segregation in the

responses (implying a percept of two streams) or no segregation

(a percept of one stream) by examining whether a significant dip

occurred in each cell’s profile during the two extreme presenta-

tion modes (synchronous versus alternating tones). The deter-

mination of a dip was derived for each condition by finding a

significant difference (one-tailed t test; p < 0.025) between the

distributions of the maximum response at either of the BF sites

(1 or 5) compared with the minimum response at any of the non-

BF sites (2, 3, or 4). For the purposes of this analysis, we used

a population of 66 units for which positions 1 or 5 were BF sites,

and measurements were completed at all positions (1–5). In

most experiments, several units with diverse BFs were recorded

simultaneously with multiple electrodes, and hence it was only

possible to match the tone frequencies to the BF of one or two

of the cells. The percentage of cells with a significant dip in their

profiles is shown in the histograms of Figure 4B. We also calcu-

lated the magnitude of the dip (see Experimental Procedures)

for each unit and established that there was no significant differ-

ence in neural responses between synchronous and alternating

modes (two-tailed t test, p = 0.54 at 0.25 octave, p = 0.37 at 0.5

octave, and p = 0.42 at 1 octave), and that spatial segregation

increases significantly with increasing DF (one-tailed t test, shown

in Figure 4B). The results show that (1) segregation is strongest at

1 octave separation and weakest at 0.25 octaves, and that (2)

there is little difference between the patterns of responses to

the synchronous and alternating sequences. Thus, thisalternative

individual-cell response measure also fails to predict the different

streaming percepts of the alternating and synchronous tones.

Experiment II: Frequency Range of Interactions

The key question of interest in this experiment was whether the

range of interactions between the two tones was significantly

different in the three presentation modes (alternating, overlap-

ping, or synchronous). We measured the frequency range of inter-

actions between the two tones by fixing tone A at the BF of the iso-

lated unit, while placing tone B at ±1/3, ±2/3, ±1, ±1.5, and ±2

octaves around the BF (Figure 3B). We also estimated the unit’s

frequency tuning by measuring the isointensity response curve

with a single tone sequence (curve with open diamonds in

Figure 3. Schematic of the Tone Frequen-

cies and Conditions Used in the Physiolog-

ical Experiments

Both alternating and synchronous tone sequences

were tested in all conditions.

(A) Experiment I: The two tone frequencies were

held fixed at one of three intervals apart (DF =

0.25, 0.5, 1 octaves), and then shifted through

five equally spaced positions relative to the BF of

the isolated cell.

(B) Experiment II: Tone A is fixed at the BF of the

isolated unit, and tone B is shifted closer to BF in

several steps.
320 Neuron 61, 317–329, January 29, 2009 ª2009 Elsevier Inc.
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Figure 5A). Other methodological details can be found in Experi-

mental Procedures.

The average spike counts are shown in Figure 5A from a popula-

tion of 64 single units (in the synchronous and alternating modes)

and 41 units (overlapping mode) that were recorded separately

from experiment I. All data were combined by computing the iso-

intensity response curve of each unit, centering it around the BF

of the unit, and normalizing it by the response of the unit to the

single BF tone. We then kept only the half of the tuning curve above

or below the BF from which the full two-octave range was tested.

Such (half-tuning)curves fromall unitswere thenaveraged for each

condition. The results highlight the interactions observed as the

tones approached each other in frequency. For instance, when

tone B was far from tone A at BF (e.g., at ±2 octaves), the effects

of the B tone on the cell are relatively small, and the firing rate in

all modes was similar to thatof the single tone atBF (thenormalized

rate of 1, indicated by the dotted line). As tone B approached BF,

the responses become modulated, first decreasing and then

increasing steeply beyond about one octave on either side of the

BF. Apart from differences in absolute firing rates, the pattern of

interactions was similar in all three presentation modes. For

Figure 4. Responses of Single Units to

Alternating (Nonoverlapping and Partially

Overlapping) and Synchronous Two-Tone

Sequences at Three Different Intervals

(DF = 0.25, 0.5, 1 Octaves)

The two tones were shifted relative to the BF of the

cell in five equal steps, from tone B being at BF

(position 1) to tone A at BF (position 5), as

described in experiment I paradigm.

(A) Average firing rates from a total of 122 single

units in the five frequency positions in the synchro-

nous and nonoverlapping modes. Overlapping

tones were tested in only 75/122 units. Error bars

are standard errors. Responses in all presentation

modes exhibited a significant dip in response

when tones were further apart (0.5 and 1 octaves),

and neither was at BF (shaded positions 2–4).

(B) The percentage of cells that exhibited a signifi-

cant dip in their responses were similar in the two

extreme presentation modes (synchronous and

nonoverlapping alternating). Only the 66 single

units that were tested at all five positions were

included in this analysis (as responses from all

positions are necessary to compile such histo-

grams). The magnitude of dip showed significant

difference across DF but nonsignificant difference

across presentation mode. Error bars represent

standard errors.

example, the frequency separations at

which significant interactions ensue are

similar, implying that the units’ receptive

fields (or their tuning curves) are similar

whether they are driven by synchronous,

alternating, or partially overlapping

sequences.

To further quantify the population

responses, we computed the effective

bandwidth of interactions for each unit, defined as the furthest

frequency on either side of the BF at which response interac-

tions between the two tones were significant (see Experimental

Procedures). The data from all units in the synchronous and

alternating (nonoverlapping) modes are displayed in the histo-

gram of the differences between the two measured ranges in

Figure 5B. The scatter is mostly symmetric, with a mean not

significantly different from zero (two-tailed t test, p = 1). Hence,

the bandwidth differences for individual units fail once more to

account for the different streaming percepts evoked by the

alternating and synchronous presentation modes. Similar

comparisons were also performed for the overlapping versus

synchronous and overlapping versus alternating modes. The

bandwidth differences in both cases were also mostly

symmetric, with a mean not significantly different from zero.

Conclusions

The results from the two physiological experiments in awake

ferrets contradict the hypothesis that segregation of AI

responses to two-tone sequences is sufficient to predict their

perceptual streaming. Instead, our findings reveal that synchro-

nous and nonsynchronous sequences do not differ appreciably
Neuron 61, 317–329, January 29, 2009 ª2009 Elsevier Inc. 321
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in the spatial representations of their temporally averaged

responses in AI despite the substantial differences in their

streaming percepts. Clearly a model that is successfully able

to predict perception from these neural data will need to incorpo-

rate the time dimension.

Computational Modeling
Model Structure

Based on our physiological and psychophysical results, we

propose a new model of the relationship between cortical

responses and auditory streaming, which can account for the

finding that synchronous and nonsynchronous tone sequences

evoke very different percepts.

The model is based on the premise that temporal coherence

between different sound features (e.g., frequency) is a funda-

mental organizing principle underlying the formation of percep-

tual streams. Specifically, auditory channels whose activity is

positively correlated over time are assigned to the same percep-

tual stream, whereas channels with uncorrelated or anticorre-

lated activation patterns are assigned to different streams. In

this way, the model combines, in a general framework, aspects

Figure 5. Averaged Responses from a Total of 64 Units

Tested for Alternating, Synchronous, and Overlapping

(Tested in Only 41/64 Units) Sequences Using the

Paradigm of Experiment II

(A) The tuning near the BF averaged from all units. The average

isointensity response curve is with open diamonds for

comparison. To increase the number of cells included in the

average, we folded the responses from above and below

BF, but included only units that were tested with the entire

two-octave range from BF. Error bars are standard errors.

All presentation modes show some suppression of responses

as tone A approaches the BF (1–1.5 octaves), and a significant

increase closer to BF (about 1 octave, marked by asterisks).

(B) Histogram of the difference in bandwidth of interactions

between the tones during the two extreme presentation

modes (synchronous and alternating) is roughly symmetric,

indicating no systematic bias in the scatter.

of sequential and simultaneous auditory grouping,

which in the past have often been treated as sepa-

rate areas of research (e.g., Darwin and Carlyon,

1995).

The model consists of two stages, which are

schematically depicted in Figure 6A. The first stage

(temporal integration) takes as input an auditory

spectrogram of a physical stimulus. The signal in

each frequency band or ‘‘channel’’ of this spectro-

gram is passed through an array of bandpass filters

tuned to frequencies between 2 and 32 Hz (see

Experimental Procedures for details); these ‘‘rate

filters’’ perform temporal integration with time

constants ranging from 50 to 500 ms, consistent

with the multiscale dynamics of cortical responses

(Chi et al., 1999). In the second stage (coherence

analysis), a windowed correlation between each

pair of channels is computed by multiplying the

outputs from filters corresponding to different

channels with each other. The result is represented as a dynamic

coherence matrix (denoted C), i.e., a correlation matrix that

evolves over time. Effectively, the model computes the coinci-

dence between all pairs of channels viewed over a range of time-

scales of the order of tens to hundreds of milliseconds, consis-

tent with experimentally observed cortical temporal responses

(Kowalski et al., 1996a, 1996b; Miller et al., 2002). Cortical

responses typically phase lock only to relatively slow temporal

modulations of less than 30 Hz (Miller et al., 2002). Consequently,

measuring correlations between cortical responses must be

commensurate with these time scales, allowing for a window

long enough to include multiple periods of such responses.

Model Predictions

Figure 6B shows simulated coincidence matrices corresponding

to alternating (upper panel) and synchronous (lower panel) tone

sequences (depicted in Figure 6B, left). The right panels of

Figure 6B represent dynamic coherence matrices averaged

over time, and capture both the average spatial distribution of

activity as well as temporal coherence within and across chan-

nels. The diagonal entries merely reflect the average power in

the input channels and are not predictive of the perceptual
322 Neuron 61, 317–329, January 29, 2009 ª2009 Elsevier Inc.
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organization of the sequences. The off-diagonal entries are

indicative of the correlation (or lack thereof) across different

channels, and are predictive of how the stimulus sequences

are perceptually organized. These entries are at zero for the

alternating sequence because in this case the activation patterns

in the channels corresponding to the A and B tones are out of

phase (i.e., anticorrelated). In contrast, for the synchronous

sequence, the off-diagonal entries corresponding to channels

1 and 5 are nonzero, reflecting the fact that these channels are

activated in a coherent way (i.e., in phase).

To quantify the difference between these matrices, we used an

eigenvalue analysis to decompose each matrix into its maximally

coherent components (Golub and Van Loan, 1996). Intuitively,

this spectral decomposition of the coherence matrix allows us

to determine which channels are positively correlated with

each other (hence possibly forming one stream), and anticorre-

lated with different channels (which would form a separate

stream). By performing an eigen decomposition of the coher-

ence matrix, we are effectively determining the number of axes

(or independent dimensions) that best capture the data and, by

analogy, the number of streams present in the stimulus. Hence,

the rank of the matrix (or number of independent dimensions)

can be interpreted as the number of auditory streams into which

the stimulus sequence is likely to be perceptually organized by

human listeners. Thus, a matrix of rank 1 (i.e., a matrix that can

be fully decomposed using a single eigenvalue) is interpreted

as reflecting a single perceived stream, and a matrix of rank 2

is associated with a percept of two streams.

Using this model, we can relate the perceptual organization of

the synchronous and alternating sequences to the neural

responses of the cortical units obtained in neurophysiological

experiment I. The responses for each stimulus position

(numbered 1–5) are equivalent to responses from different

cortical sites, corresponding to five different ‘‘channels’’ along

the spectral axis. We accumulated the peristimulus time histo-

grams (PSTHs) for each position and each stimulus condition

by averaging over the ten presentation times at a resolution of

1 ms. These five-channel histograms for each stimulus condition

Figure 6. Schematic of the Coherence Analysis Model

(A) The model takes as input a time-frequency spectrographic representation of sound. The signal in each channel yi(t) is then processed through a temporal

integration stage, implemented via a bank of filters (J) operating at different time constants. Finally, the output of each rate analysis is correlated across channels,

yielding a coherence matrix that evolves over time.

(B) A stimulus consisting of an alternating (upper) and synchronous (lower) tone sequence is generated with the two tones located at channels 1 and 5 of a five-

channel spectrogram. The correlation matrices corresponding to these two sequences are generated and averaged over time (rightmost panels).
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(presentation mode and DF) are then given as input to the

temporal integration and coherence analysis model, to derive

coherence matrices similar to those described in Figure 7.

Figure 7A shows the mean coherence matrices (across all 66

neurons in the recorded BF sites sample from experiment I) for

alternating (top row) and synchronous (bottom row) tone

sequences with frequency separations (DFs) of 0.25 (left), 0.5

(middle), and 1 (right) octave. As explained previously, the posi-

tive diagonal entries reflect overall activity in each frequency

channel. These positive diagonal entries show decreasing activity

in the intermediate channels (2–3) with increasing frequency

separation between the tones, reflecting increasing tonotopic

separation in the measured cortical activation patterns. The

fact that this pattern is observed for both synchronous and alter-

nating tones confirms that tonotopic separation per se is not a

valid indicator of the perceptual organization of these stimulus

sequences. In contrast, the activation of the off-diagonal entries

in these coherence matrices follows a pattern that is more closely

aligned to perception, with more activation found in conditions

that are perceived as a single stream.

The predicted number of streams, as determined by the

number of ‘‘significant’’ eigenvalues (see Experimental Proce-

dures) is shown in the upper left corner of each panel in Figure 7.

For the synchronous conditions, the coherence matrices always

yielded a single significant singular value, even at the largest two

DFs (0.5 and 1 octave; singular values for each matrix are

included in the figure caption), in line with the perception of a

single stream. In contrast, in the alternating conditions, a second

significant eigenvalue was observed at frequency separations of

0.5 and 1 octave, in line with the perception of two streams.

The model presented here can be adapted so as not to rely

only on the rank of the coherence matrix to predict the percep-

tual organization from the input. The size of the eigenvalues, as

well as the shape of the eigenvectors, is also a strong indicator

of the different dimensions (or streams) in the scene. To illustrate

this claim, we performed a simulation using sequences of two

tones (A and B). The low tone was fixed at 300 Hz, and the

high tone was fixed at 952 Hz. Both tones were 75 ms long.

The onset delay between the A and B tones was varied from

0 ms (DT = 0%) to fully alternating (DT = 100%). Figure 8A shows

the coherence analysis for the latter case, and reveals that the

coherence matrix has rank 2 (indicating a two-stream percept).

The ratio of the second-to-first singular values (l2/l1) equals

0.93, indicating that both l values are almost equal. In contrast,

Figure 8C shows the case of complete synchrony and reveals

that the coherence matrix can be mapped on one main dimen-

sion, hence correlating with the percept of one stream. In this

case, the ratio l2/l1 is equal to 0.01, revealing that the second

singular value is close to zero. Using the relative sizes of the first

and second singular values (not just the rank of the matrix), we

Figure 7. Coherence Analysis from Neural Population

The neural responses of n = 66 neurons are averaged for each tone configuration (alternating, A, and synchronous, B, tones), and each frequency separation

(DF = 0.25, 0.5, and 1 octave). For each condition, a coherence matrix is derived for each neuron and averaged across the population. The final population coher-

ence matrix has a resolution of 5 3 5 (five stimulus positions along the spectral axis). For display purposes, we interpolate each matrix into 500 3 500 points using

MATLAB (MathWorks Inc., MA). The (5 3 5) matrices have been interpolated for display purposes only. The singular value decomposition for each matrix (from left

to right) yields the values (0.97, 0.14, 0.11, 0.10, 0.10), (0.97, 0.15, 0.12, 0.12, 0.10), and (0.93, 0.25, 0.21, 0.15, 0.13) for synchronous sequences, and (0.92, 0.30,

0.17, 0.15, 0.13), (0.78, 0.55, 0.19, 0.16, 0.15), and (0.78, 0.52, 0.23, 0.21, 0.17) for alternating sequences. The noise floor is estimated at about 0.45.
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can explore the ‘‘strength’’ or ‘‘confidence’’ of the percept of one

or two streams as we vary the degree of asynchrony. Figure 8B

shows the decrease in this ratio as DT is gradually varied from

100% to 0%, allowing us to parametrically follow the influence

of degree of asynchrony on grouping of two frequency streams,

thereby allowing us to predict the transition between the

percepts of one and two streams.

DISCUSSION

Evidence Against a Purely Tonotopic or Spatial Model
of Auditory Streaming
We examined the hypothesis that acoustic stimuli exciting

spatially segregated neural response patterns are necessarily

perceived as belonging to different perceptual streams. This

‘‘spatial’’ hypothesis underlies (explicitly or implicitly) previous

interpretations of the neural correlates of streaming in the phys-

iological investigations and the computational models of

streaming (Beauvois and Meddis, 1991, 1996; Bee and Klump,

2004, 2005; Fishman et al., 2001, 2004; Kanwal et al., 2003;

McCabe and Denham, 1997; Micheyl et al., 2005, 2007; Press-

nitzer et al., 2008). One of the elegant aspects of the spatial

hypothesis is that it can be generalized to predict that separate

streams will be perceived whenever sounds evoke segregated

responses along any of the representational dimensions in the

auditory cortex, including not just the tonotopic axis but also

a fundamental frequency (F0) or virtual pitch axis (Bendor and

Wang, 2005, 2006; Gutschalk et al., 2007) as well as, perhaps,

temporal and spectral modulation rate axes (Bendor and

Wang, 2007; Kowalski et al., 1996a, 1996b; Schreiner, 1998;

Schreiner and Sutter, 1992, 2005; Versnel et al., 1995), thereby

accounting for psychophysical findings of stream segregation

induced by differences in F0 or modulation rate in the absence

of tonotopic cues (Grimault et al., 2002; Roberts et al., 2002; Vlie-

gen and Oxenham, 1999).

However, the experimental data reported here cast doubt on

the validity of an explanation of auditory streaming in terms of

neural response separation that ignores temporal coherence

as an important determinant of perceived segregation. Our

human psychophysical results show very different perceptual

organization of synchronous and asynchronous tone sequences,

whereas the extent of segregation of the neural responses in

ferret AI was essentially independent of the temporal relation-

ships within the sequences. This finding emphasizes the funda-

mental importance of the temporal dimension in the perceptual

organization of sound, and reveals that tonotopic neural

response separation in auditory cortex alone cannot explain

auditory streaming.

A Spatiotemporal Model of Auditory Streaming
Our alternative explanation augments the spatial (tonotopic)

segregation hypothesis with a temporal dimension. It is a spatio-

temporal view, wherein auditory stream segregation requires

both separation into neural channels and temporal incoherence

(or anticoherence) between the responses of these channels.

This spatiotemporal hypothesis predicts that if the evoked neural

responses are temporally coherent, a single stream is perceived,

regardless of the spatial distribution of the responses. This

prediction is consistent with our psychophysical findings using

synchronous tone sequences. The prediction is also consistent

with the introspective observation, confirmed in psychophysical

studies, that synchronous spectral components generally fuse

perceptually into a single coherent sound (e.g., a vowel or

a musical chord), whereas the introduction of an asynchrony

between one and the other components in a complex tone

results in this component ‘‘popping out’’ perceptually (Ciocca

and Darwin, 1993).

The present demonstration of a critical role of temporal coher-

ence in the formation of auditory streams does not negate the

role of spatial (tonotopic) separation as a factor in stream

Figure 8. Simulation of Two-Tone Sequences with Varying Asynchrony

(A) A sequence of two alternating tones is presented as input to the model. The coherence analysis and singular value decomposition of the matrix C reveals a rank

2 matrix, as indicated by the two singular values (lower panel).

(B) Ratio of second-to-first (l2/l1) singular values as the value of DT is changed from 100% (alternating) to 0% (synchronous).

(C) A sequence of two synchronous tones is presented as input to the model. The coherence analysis and singular value decomposition of the matrix C reveals

a rank 1 matrix, as indicated by one nonzero singular value (lower panel).
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segregation. The extent to which neurons can signal temporal

incoherence across frequency is determined in large part by their

frequency selectivity. For example, the responses of two

neurons tuned to the A and B tones in an alternating sequence

(Figure 1A) can only show anticoherence if the frequency selec-

tivity of the neurons is relatively high compared with the A-B

frequency separation. If the neurons’ frequency tuning is broader

than the frequency separation, both neurons are excited by both

tones (A and B) and respond in a temporally coherent fashion. In

this sense, spatial separation of neural responses along the to-

notopic axis may be necessary for stream segregation but, as

this study shows, it is not sufficient.

The principle of channel coherence can be easily extended

beyond the current stimuli (see Supplemental Data for further

simulations) and the tonotopic frequency axis to include other

auditory organizational dimensions such as spectral shape,

temporal modulations, and binaural cues. Irrespective of the

nature of the dimension explored, it is the temporal coherence

between the responses along that dimension that determines

the degree of their integration within one stream, or segregation

into different streams.

Finally, there are interesting parallels between the present

findings, which suggest an important role of temporal coherence

across sensory channels in auditory scene analysis, and findings

in other sensory modalities such as vision, where grouping

based on coherence of temporal structure has been found to

provide an elegant solution to the binding problem (e.g., Alais

et al., 1998; Blake and Lee, 2005; Fahle, 1993; Treisman,

1999). Together, these findings suggest that although the

perceptual analysis of visual and auditory ‘‘scenes’’ pose (at

least, superficially) very different problems, they may in fact be

governed by common overarching principles. In this regard,

parallels can be drawn between prominent characteristics of

auditory stream formation, such as the buildup of streaming

and its dependence on frequency separation, and processes

involved in the visual perception of complex scenes.

Do Percepts of Auditory Streams Emerge in or Beyond
Primary Auditory Cortex?
For neural activity in AI to be consistent with the psychophysical

observation that synchronous tones with remote frequencies are

grouped perceptually while alternating tones are not, there

should be cells in AI whose output is strongly influenced by

temporal coherence across distant frequencies. Though such

cells are likely to be present in AI (Barbour and Wang, 2002;

Kowalski et al., 1996b; Nelken et al., 1999), we did not systemat-

ically find many that reliably exhibited the properties necessary

to perform the coincidence operation. For example, all neurons

sampled in this study followed the temporal course of the stimuli

(with increased firing rates during epochs where at least one tone

was present); the responses did not unambiguously increase in

the presence of temporal coherence across tonotopic channels.

Therefore, one possibility is that the percepts of stream segrega-

tion and stream integration are not determined in AI. Another

possibility is that the coincidence and subsequent matrix

decomposition described in the model are realized in a different,

less explicit, form. For instance, it is theoretically possible to

replace the spectral decomposition of the coherence matrix by

a singular value decomposition directly upon the arrayed cortical

responses. The spectral decomposition of the coherence matrix

is equivalent to principal component analysis of the covariance

matrix of the channel responses. Equivalent results can be

computed by a singular value decomposition directly on the

channel temporal responses (i.e., without computing the covari-

ance matrix), obviating the need for the coincidence detectors.

This leaves open the question of how and where, in or beyond

AI, the detection of temporal coincidences across remote

frequency channels is neurally implemented (Nelken, 2004).

The auditory streaming paradigm, with its relatively simple and

well-controlled stimuli and extensively characterized percepts,

may provide an excellent vehicle to explore a broader issue in

brain function—that of the relationship between perception

and neural oscillations, which reflects coherent responses

across different regions in the brain. Coherence as an organizing

principle of brain function has gained prominence in recent years

with the demonstration that it could potentially play a role in

mediating attention (Liang et al., 2003; Zeitler et al., 2006), in

binding multimodal sensory features and responses (Lakatos

et al., 2005; Schroeder et al., 2008), and in giving rise to

conscious experiences (Fries et al., 1997; Gross et al., 2007;

Meador et al., 2002; Melloni et al., 2007). Our results reinforce

these ideas by emphasizing the importance of temporal coher-

ence in explaining auditory perception. Specifically, the inclusion

of the time dimension provides a general account of auditory

perceptual organization that can in principle deal with any arbi-

trary combinations of sounds over time and frequency.

Attention and the Neural Correlates of Streaming
Interpretations of neural responses recorded in passive animals

as ‘‘correlates’’ of auditory percepts are necessarily speculative,

as behavioral measures of the animal’s percepts during the

recordings are not available. Under such conditions, the experi-

menter can, at best, assert that the neural responses differ

across experimental conditions (e.g., different stimuli) in a way

that is consistent with behavioral measurements obtained in

the same (or a different) animal (or species) under similar stim-

ulus conditions. In this respect, the present study suffers from

the same limitation as previous investigations of the neural basis

of auditory streaming in awake animals that were either passive

(Bee and Klump, 2004, 2005; Fishman et al., 2001, 2004; Kanwal

et al., 2003) or engaged in a task unrelated to streaming (Micheyl

et al., 2005).

The possibility remains that AI responses to alternating and

synchronous tone sequences in awake animals that are engaged

in a task, which requires actively attending to the stimuli, might

be substantially different from those recorded in passive animals.

It is known that neural responses in AI are under attentional control,

and can change rapidly as the task changes (Fritz et al., 2003,

2005a, 2005b).Suchattentionally driven changes in receptivefields

might differentially affect the neural responses to alternating tones

and to synchronous tones, in a way that makes these responses

more consistent with the percepts evoked by those sequences

(Yin et al., 2007). However, the aspects of streaming investigated

here—in particular the increased segregation with increasing

frequency separation in asynchronous conditions—have been

posited to be automatic or primitive and hence independent of
326 Neuron 61, 317–329, January 29, 2009 ª2009 Elsevier Inc.
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attention (Macken et al., 2003; Sussman et al., 2007), although

the matter is still debated (Carlyon et al., 2001).

The possible effects of attention could be investigated in future

studies by controlling the attentional and behavioral state of the

animal. Our model postulates the existence of units that should

exhibit a dependence on temporal coherence. We have not

found such units in AI, and therefore a future search may concen-

trate more fruitfully on other, supramodal, areas, such as the

prefrontal cortex, where attentional modulation of AI responses

may originate (Miller and Cohen, 2001).

EXPERIMENTAL PROCEDURES

Psychophysics

Listeners

Nine listeners took part in the study (none of authors participated in these

tests). They all had normal hearing (defined as pure-tone hearing thresholds

less than 20 dB HL at octave frequencies between 250 and 8000 Hz) and

extensive experience with the test procedure and stimuli.

Stimuli

The stimuli were sequences of A and B tones, where A and B represent

different frequencies. The frequency of the A tone was kept constant at

1000 Hz. The frequency of the B tone was set 0.5, 0.75, or 1.25 octaves above

that of the A tone. Each tone was 100 ms in duration, including 10 ms raised

cosine onset and offset ramps. Each sequence consisted of five precursor

tones at each frequency (i.e., five A tones and five B tones), followed by two

target tones (i.e., one A tone and one B tone). Depending on the condition

being tested, the precursor A and B tones were either synchronous or asyn-

chronous. In the synchronous case, all the tones were separated by silent

gaps of 50 ms; in the asynchronous case, the gap between consecutive

precursor B tones was still 50 ms, but the gap between consecutive A tones

was either 30 ms or 70 ms, depending on the condition being tested. Depend-

ing on the observation interval, the target B tone was either separated from the

preceding precursor B tone by the same 50 ms silent gap as consecutive

precursor B tones (standard interval), or it was shifted forward or backward

in time by an amount, DT, which was controlled by the adaptive threshold-

tracking procedure (signal interval). The two parallel sequences of A and B

tones in each interval were always positioned in time relative to each other

in such a way that the target A and B tones were synchronous in the standard

interval and shifted by DT in the target interval. In addition, a control condition

was run in which the A tones were turned off and the B tones were generated in

exactly the same way as described previously.

Procedure

Thresholds were measured using a two-interval, two-alternative forced-choice

(2I-2AFC) procedure with an adaptive three-down one-up rule, which tracked

the 79.4%-correct point on the psychometric function. On each trial, two

sequences were presented, separated by a silent gap of 500 ms. In one of

those sequences (the standard interval), the target A and B tones were

synchronous; in the other (the target interval), they were asynchronous. The

order of presentation of the two sequences was randomized, with each

sequence being a priori as likely as the other to come first. The listener was

informed of this fact and asked to indicate after each trial which of the two

sequences (first or second) contained the asynchronous A and B tones at

the end. Listeners gave responses by pressing keys (‘‘1’’ or ‘‘2’’) on a computer

keyboard. At the beginning of each adaptive run, the tracking variable, DT, was

set to 20 ms. It was divided by a factor c after two consecutive correct

responses, and multiplied by that same factor after each incorrect response.

The value of c was set to 4 at the beginning of the adaptive run; it was reduced

to 2 after the first reversal in the direction of tracking (from decreasing to

increasing), and to O2 after a further two reversals. The procedure stopped

after the sixth reversal with the O2 step size. Threshold was computed as

the geometric mean of DT at the last six reversal points. Each listener

completed at least four threshold measurements in each condition. The

psychophysical data shown in this article are geometric mean thresholds

across listeners.

Apparatus

The stimuli were generated digitally and played out via a soundcard (LynxStu-

dio L22; Costa Mesa, CA) with 24-bit resolution and a sampling frequency of

32 kHz, and presented to the listener via the left earpiece of Sennheiser HD

580 headphones (Sennheiser Electronic Corporation; Old Lyme, CT). Listeners

were seated in a double-walled sound-attenuating chamber (Industrial Acous-

tics Company; Bronx, NY).

Neurophysiology

Experimental Design

The stimuli were sequences of A and B tones, where A and B represent

different frequencies as illustrated in Figure 1. Both alternating (nonoverlap-

ping and partially overlapping) and synchronous sequences were used (see

details following). In experiment I, tones A and B were shifted equally in five

steps relative to a unit’s BF, as shown in Figure 3A, with tone B starting at

the BF and tone A ending at the BF. DF between the tones was 0.25, 0.5, or

1 octave, which was fixed within a trial and varied among different trials. The

total number of conditions was 45 (five positions 3 3 DF 3 3 modes). In exper-

iment II, tone A was set at the BF of the isolated unit, and tone B was placed to

be ±1/3, ±2/3, ±1, ±1.5, and ±2 octaves away from tone A, as illustrated in

Figure 3B. The stimuli also included a single tone sequence to measure the

frequency tuning of the unit.

In both experiments I and II, each trial included 400 ms prestimulus silence, 3

s stimulus length, and 600 ms poststimulus silence. Tone duration was 75 ms,

including 5 ms onset and offset ramps, and an intertone gap of 25 ms in the

alternating sequence and 125 ms in the synchronous sequence. For the over-

lapped sequences, the tone onset asynchrony was 40 ms (i.e., about 50%

overlap between the tones). All conditions were presented pseudorandomly

10 times at 70 dB SPL or at about 10 dB above threshold of the isolated units.

Data Analysis

For each unit and each condition, a period histogram was constructed from the

PSTHs by folded (averaged) responses to the two tones over the duration of the

trial from 0.6 to 3 s after the onset of the stimuli. Examples of such histograms

from a single unit responding to stimuli of experiment I are shown in Figures S1

and S2. For each stimulus response, we excluded the first 0.6 s so as to avoid

adaptation effects. The mean firing rate (spikes per second) was computed by

taking the average value of the period histogram (averaged over 0.2 s). The

overall firing rate patterns were obtained by averaging the normalized

responses from all isolated units. To compensate for inherent differences in

the relative strength of tone responses across units, firing rates were first

normalized by dividing them by the maximum rate at each DF and at each stim-

ulus mode in experiment I and by the mean firing rate at BF in experiment II.

The magnitude of dip was determined according to the following equation:

ðSide� CenterÞ=ðSide + CenterÞ%

where ‘‘Side’’ is the maximum response at either of the BF sites (position 1 or

5); and ‘‘Center’’ is the minimum response at any of the non-BF sites (positions

2, 3, or 4).

To measure the effective bandwidth of interaction between tones, the mean

firing rate at the frequency closest to BF (i.e., 1/3 or �1/3 octave) was

compared with those at the other frequencies on the same direction (i.e.,

below BF or above BF). The frequency showing the significant difference

(two-tailed t test, p < 0.05) in mean firing rate from the frequency closest to

BF was the effective bandwidth of interaction.

Modeling

The neural responses to the shifting two tones (experiment I) from n = 66 (BF

sites) neurons are pooled together and processed through a coherence anal-

ysis as follows.

A PSTH is constructed for each stimulus condition (i.e., a given tone

synchrony configuration, a specific frequency separation, and a position rela-

tive to the spectral response of the neuron) by averaging the responses across

ten stimulation trials using 1 ms bins. Each PSTH sequence is then convolved

in time with an array of filters, with impulse response hJ(t), parameterized by

J = (uc,qc), and defined as hJðt; uc; qcÞ= ucgðuctÞcosqc + uc bgðuctÞsinqc;

where g(t) = t2e�3.5t sin(2pt) and g(.) and ĝ(.) denote Hilbert transform pairs

(Bracewell, 1999). Each filter hJ(t) is characterized by two tuning parameters:
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uc, a characteristic rate, which varies over the range [2 4 8 16 32] Hz; and qc,

a characteristic phase, which is set to span the entire range [0,2p] in steps

of p/3. The characteristic rates are chosen to cover the range of temporal

modulations observed in tuning properties of cortical neurons, whereas the

phases vary to allow different phase configurations of the impulse response

of the rate analysis. The seed function g(.) is chosen to be a gamma function

(as shown in the inset of the model schematic in Figure 6A (Chi et al., 1999).

Functionally, this temporal filtering stage integrates the temporal response

from each channel over a range of analyses windows, yielding a three-

dimensional representation covering time (t), channel (i), and rate (J). The

responses from all channels are pooled together in a vector representation,

Rðt; uc; qcÞ= ½R1ðt; uc; qcÞ;R2ðt; uc; qcÞ;/;R5ðt; uc; qcÞ�
0
; where [.]0 denotes

the transpose operator. These responses are cross-correlated with each other

(via an inner product operation) and averaged across the entire array of rate

filters to yield a cross-correlation matrix C(t) whose entries are defined as

cijðtÞ=
X

uc

X
qc

Riðt; uc; qcÞRjðt; uc; qcÞ
0

The matrix C captures the degree of coherence in the neural responses at

different frequency locations along the tonotopic axis. A high correlation value

between two channels indicates a strong coherent activity at these two loca-

tions, whereas a low correlation value indicates lack of coherent neural activity.

To estimate the baseline level for average eigenvalue level in case of random

coherence, we simulate activity of 66 different neurons with random PSTH

activity over 3 s duration for five different positions. These random PSTHs

are then processed through the coherence analysis, yielding a matrix C of

random correlations among channels. The matrix from each ‘‘random’’ unit

is first normalized to unit norm, before averaging across all units to yield one

random coherence matrix. The singular value decomposition of this final

matrix produces a full rank matrix, with five almost-equal eigenvalues.

SUPPLEMENTAL DATA

Supplemental Data include two figures and three audio files and can be

found with this article online at http://www.neuron.org/supplemental/S0896-

6273(08)01053-2.
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