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There is broad consensus that the ventral auditory pathway has a central  
role in forming decisions about the identity of auditory stimuli1–5. 
Early stages of this pathway, including the core auditory cortex and 
two of its prominent targets, the ML and AL belt regions of auditory 
cortex, encode information relevant to stimulus identity, such as its 
frequency content. Later stages of this pathway that receive direct and 
indirect input from ML and AL, including the ventrolateral prefron-
tal cortex, can encode decision outcomes, such as inferred auditory 
categories and associated behavioral choices. However, little is known 
about the process that converts stimulus information represented early 
in this pathway to the decision outcomes represented later, including 
which of these early representations constitute the actual evidence 
used to form a decision3,6–8. We sought to identify whether ML or 
AL auditory-driven responses are used as evidence to form decisions 
about the frequency content of auditory stimuli.

To achieve this goal, we recorded and manipulated ML and AL 
spiking activity in monkeys while they made a difficult decision about 
whether a noisy stimulus contained more low- or high-frequency tone 
bursts (Fig. 1). This approach provided three primary benefits9. First, 
we were able to assess the sensitivity of individual neurons in each 
brain region to the frequency content of the stimulus and compare 
such neurometric sensitivity to concurrently measured behavioral 
sensitivity around psychophysical threshold. These measures can help 
to identify neural signals that, in principle, could be used to form 
the decision10. Second, we could identify neural signals that were 
(weakly) modulated by the monkeys’ choices for nominally identical 
stimuli. Under certain conditions, such modulation is expected of 
neural signals that represent the evidence used to form a perceptual 
decision9,11. Third, combined with electrical microstimulation in ML 
and AL, we were able to assess the causal contributions of these brain 
regions to the decision process.

Consistent with previous studies, we found that both ML and AL 
neurons had frequency-tuned responses that, in principle, could be 
used as sensory evidence to form the auditory decision4,8,12,13. By 
combining these measures with concurrently measured behavioral  
reports, we advanced previous findings by showing that the AL 
responses were more closely related to behavior than ML responses. 
Thus, AL appears to have a more direct, causal role than ML in the 
formation of this auditory perceptual decision.

RESULTS
Behavioral performance
Monkeys T (n = 52 sessions) and A (n = 39 sessions) reliably reported 
whether a sequence of tone bursts contained more low-frequency 
or high-frequency tone bursts on the low-high task, with perform-
ance that depended systematically on stimulus coherence (Fig. 2).  
When a stimulus contained mostly low- or high-frequency tone 
bursts (coherences near ±100%), the monkeys almost always 
reported the correct answer. This high accuracy for high-coherence 
stimuli, quantified as low lapse rates (Fig. 2), implies that the mon-
keys were attentive and followed the rules of the task. Their choice 
accuracy decreased systematically as coherence approached zero; 
that is, for more difficult stimuli. We quantified this dependence  
by calculating the steepness of the logistic psychometric (choice) 
function with respect to coherence. These values imply that the mon-
keys used relevant information from the auditory stimuli to inform 
their decisions (median [interquartile range, or IQR] values across 

sessions were 0.7 [0.5–0.7]
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∆
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coherence  for monkey T and 
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%
high-freq choices
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 for monkey A; Fig. 2). The monkeys 
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Causal contribution of primate auditory cortex to 
auditory perceptual decision-making
Joji Tsunada1, Andrew S K Liu1, Joshua I Gold2,4 & Yale E Cohen1–4

Auditory perceptual decisions are thought to be mediated by the ventral auditory pathway. However, the specific and causal 
contributions of different brain regions in this pathway, including the middle-lateral (ML) and anterolateral (AL) belt regions  
of the auditory cortex, to auditory decisions have not been fully identified. To identify these contributions, we recorded from  
and microstimulated ML and AL sites while monkeys decided whether an auditory stimulus contained more low-frequency or 
high-frequency tone bursts. Both ML and AL neural activity was modulated by the frequency content of the stimulus. But, only 
the responses of the most stimulus-sensitive AL neurons were systematically modulated by the monkeys’ choices. Consistent with 
this observation, microstimulation of AL, but not ML, systematically biased the monkeys’ behavior toward the choice associated 
with the preferred frequency of the stimulated site. Together, these findings suggest that AL directly and causally contributes 
sensory evidence to form this auditory decision.
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were also relatively unbiased, making roughly equal numbers of low- 
and high-frequency choices (choice biases, measured as the coherence 
value corresponding to 50% high-frequency choices from the logistic 
fits, were 13 [−5–31]% coherence for monkey T and −22 [−30–7]% 
coherence for monkey A).

A key feature of the low-high task was that on each trial, the mon-
key, and not the experimenter, controlled the stimulus-presentation 
duration, thereby providing us with both choice and response-time 
(RT) data. A primary benefit of this kind of task is that the monkeys’ 
behavior can be used to define the temporal epoch used on each trial 
to form the decision, thereby facilitating identification of the under-
lying neural signals14. To better help define this epoch, we fit the 
psychometric and chronometric (RT) data to a drift-diffusion model 
(DDM) of decision-making (Fig. 2)15–20. This model describes the 
process of forming a decision by temporally accumulating incoming 
auditory evidence, which we assumed was represented in the brain as 
the noisy spiking activity of relevant populations of auditory neurons,  
to one of two pre-defined values. This process is mathematically 
equivalent to the one-dimensional movement of a particle under-
going Brownian motion to one of two absorbing boundaries. This 
model accounts for both the choice (which boundary was reached) 
and the decision time (when the boundary was reached) on each trial. 
We used the DDM fits to define the decision epoch by subtracting a 
non-decision time, which was fit as a separate free parameter in the 
DDM for each of the two choices and included stimulus-encoding 
and motor-preparation times, from the measured RTs.

Both monkeys’ decisions were consistent with a DDM process that 
interpreted sensory evidence over much of the stimulus-presentation  
interval, accounting for choices that were both more accurate and  
faster (Fig. 2) as absolute coherence increased. Similar to the logis-
tic fits, these DDM fits implied relatively unbiased choices (median 

[IQR] choice biases across sessions were 14 [−0.7–27] coherence for 
monkey T and −7 [−15–4]% coherence for monkey A; Spearman’s 
correlation coefficient between session-by-session values com-
puted using logistic and DDM fits = 0.96, P = 2.7 × 10−56) that 
depended strongly on coherence (median [IQR] psychometric slopes 

were 0.6 [0.5–0.7]
∆

∆
%

%
high-freq choices

coherence
 for monkey T and 

0.7 [0.6–0.8] ∆
∆

%
%

high-freq choices
coherence

 for monkey A; Spearman’s  

correlation coefficient for DDM versus logistic fits = 0.70, P = 2.2 ×  
10−14). The DDM fits accounted for the asymmetric RT data in terms 
of non-decision times, which were larger for high-frequency choices 
for monkey T and for low-frequency choices for monkey A and 
matched our qualitative observations of the monkeys’ asymmetric 
joystick-movement onset times (Fig. 2).

Recording-site localization
Because ML and AL are found relatively early in the ventral  
auditory pathway, we focused on understanding how their spiking 
activity might provide the auditory evidence used to form an auditory 
decision later in the pathway (possibly via a DDM-like accumulate-
to-bound mechanism15). We classified 140 frequency-tuned single 
units (88 from the right hemisphere of monkey T, 52 from the right 
hemisphere of monkey A) into ML and AL based on their tonotopic 
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Figure 1 Stimuli and task. (a) The auditory stimulus was a temporal 
sequences of tone bursts. Coherence refers to the percentage of high-
frequency bursts (up to +100%) or low-frequency bursts (down to 
−100%). (b) The monkey indicated its choice by moving a joystick to the 
right to report low frequency or to the left to report high frequency. The 
monkey could report its choice any time after stimulus onset.
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Figure 2 Psychophysical performance on the low-high task. Psychometric 
(left) and chronometric (right) functions for Monkey T (top) and Monkey A  
(bottom). Psychometric functions are plotted as the percentage of trials 
in which monkey chose high frequency as a function of signed coherence, 
where larger negative and positive coherence values indicate more 
low- and high-frequency tone bursts. The horizontal dashed gray lines 
on the psychometric plots indicate lapse rate (errors for strong stimuli, 
presumably reflecting lapses in attention or inappropriate application 
of the decision-motor mapping, which were estimated from logistic-
model fits indicated as solid blue curves). Chronometric functions are 
plotted as the mean RT, which was the time interval between stimulus 
onset and onset of joystick movement, on correct trials as a function 
of signed coherence. Gray dots are low-frequency choices, and black 
dots are high-frequency choices. Solid red curves are simultaneous fits 
of both psychometric and chronometric data to a drift-diffusion model 
(DDM)18–20,29–33. The horizontal dashed gray lines on the chronometric 
plots indicate choice-dependent non-decision times (NDT) estimated by 
the DDM fits. Decision time (DT) was estimated as the difference between 
the trial-specific RT and the choice-specific NDT.
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gradients along the anterior-posterior axis (Fig. 3). Similar to previ-
ous findings, ML frequency tuning increased at more posterior sites, 
whereas AL frequency tuning increased at more anterior sites4,12,13. 
Neurons around the ML-AL border were tuned for low frequencies. 
Examples of frequency-response profiles with different preferred fre-
quencies are shown in Figure 3c. The subsequent neurophysiologi-
cal analyses were conducted on 45 ML neurons (25 from monkey T 
and 20 from monkey A) and 55 AL neurons (31 from monkey T and  
24 from monkey A). Microstimulation analyses were conducted on 
41 ML sites (30 from monkey T and 11 from monkey A) and 44 AL 
sites (27 from monkey T and 17 from monkey A). Our findings are 
robust to uncertainty about the specific location of the ML-AL border 
(similar results were obtained when we excluded neurons near our 
estimated border) and when we included multi-unit activity in our 
analyses (Supplementary Fig. 1).

Neuronal stimulus sensitivity
Both ML and AL auditory-driven responses were modulated by 
the frequency content of the stimulus. For the example ML neuron 
shown in Figure 4a, the preferred frequency was assigned to the 
high-frequency value of the tone-burst sequence. Consequently, as 
signed coherence approached +100%, the firing rate of the neuron  
increased. This coherence-dependent modulation had a strong  
phasic increase in activity that started <~50 ms after stimulus onset 
and then persisted for a few hundred milliseconds. For the example 
AL neuron shown in Figure 4a, because the preferred frequency 
was assigned to the low-frequency value, its firing rate increased as 
signed coherence approached −100%. The response of this neuron, 
as with the ML neuron, had coherence-dependent modulations,  
but had slightly later response onsets and more sustained, coherence- 
dependent responses throughout stimulus presentation. At the  
population level, both ML and AL showed qualitatively similar trends 
as these two example units; in both cases showing sensitivity to 
signed coherence that was most prominent just after stimulus onset 
for ML, but was more persistent throughout stimulus presentation 
for AL (Fig. 4b).

Despite their slightly different average frequency-dependent 
response profiles, ML and AL neurons had similar sensitivity to 
the frequency content of the stimulus (which depended on not just 
the average response, but also its variability) throughout stimulus 
presentation. We quantified neuronal sensitivity using receiver 
operating characteristic (ROC)-based ‘neurometric functions’ that 
described the probability that an ideal observer could use the spiking 
activity of an individual neuron to decide whether a given stimu-
lus contained more high- or low-frequency tone bursts (Fig. 5a  
and Supplementary Fig. 2)21. Across our populations of AL and ML 
neurons, the slopes of these functions tended to increase from just 
after stimulus onset until around the time of decision commitment  

(that is, the end of the decision time inferred from DDM fits plus 
an additional 50 ms to account for the sensory latency; Fig. 5b).  
The neurometric slopes, which were calculated from firing rates 
between stimulus onset and the inferred time of the decision 
commitment, were similar for the two brain regions and the two 

monkeys (ML, monkey T: median [IQR] = 0.3 [0.2–0.5]
∆
∆

ROC value
coherence%

, 

monkey A: 0.4 [0.3–0.6]
∆
∆

ROC value
coherence%

; AL, monkey T:  

0.3 [0.1–0.4]
∆
∆

ROC value
coherence%

; monkey A: 0.4 [0.2–0.5]
∆
∆

ROC value
coherence%

; 

two-tailed Wilcoxon rank-sum test for H0: median difference 
between ML and AL slopes = 0, P = 0.46 for monkey T, P = 0.13 for 
monkey A). Neurometric slopes were slightly lower than the corre-
sponding psychometric slopes for the two brain regions and the two 
monkeys (median psychometric slope [IQR] from all sessions for 

both monkeys = 0.8 [0.7–1.0]
∆

∆
%

%
high-freq choices

coherence
), two-tailed 

Wilcoxon signed-rank test, monkey T: P = 5.6 × 10−6 ML and  
P = 1.2 × 10−6 AL, monkey A: P = 2.0 × 10−4 ML and P = 1.8 × 10−5 AL).  
Thus, on average, single-neuron ML and AL spiking activity was  
sensitive to stimulus coherence, but less so than psychometric  
sensitivity. This finding implies that either ML or AL activity could, in 
principle, be pooled to improve sensitivity and provide the evidence 
needed to make the decision22.

There was also a slight session-by-session relationship between 
neurometric sensitivity and concurrently measured psychometric 
sensitivity (Fig. 5c–e). We measured this relationship using sliding 
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Figure 3 Recording locations and ML and AL tonotopy. (a) Schematic  
of the ventral auditory pathway. (b) Coronal MRI sections of  
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windows of spike counts measured relative to 
different task events: the onset of the auditory 
stimulus, the inferred time of the decision 
commitment and the inferred time of move-
ment initiation. Qualitatively, these correla-
tion profiles looked roughly similar in ML 
and AL: in both cases, they peaked around 
the inferred time of the decision commit-
ment. However, the effects were statistically 
more reliable in AL, particularly for data aligned to stimulus onset, 
suggesting a slightly closer association for AL versus ML activity  
and perceptual performance (Fig. 5c). Nevertheless, these results 
further support the idea that ML and AL stimulus-driven responses 
are similar, and either or both could, in principle, be used to inform 
the monkeys’ decisions.

Neuronal choice sensitivity
To more directly assess the relationships between ML and AL activity  
and the monkeys’ decisions, we computed choice probabilities of  
individual neurons (Fig. 6a). Choice probability quantifies the  
ability of an ROC-based ideal observer to use spiking activity to dis-
criminate between low- and high-frequency choices for nominally 
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identical stimuli. We found that certain ML and AL neurons were 
modulated by the monkeys’ choices: 20% (9 of 45) of ML and 31% 
(17 of 55) of AL neurons had choice-probability values that differed 
from chance (permutation test for H0: choice-probability value = 0.5, 
P < 0.05). However, because the average value was ~0.5 in both brain 
regions (two-tailed Wilcoxon signed-rank test for H0: median = 0.5, 
P = 0.41 for ML and P = 0.38 for AL), we did not identify any sys-
tematic effect of choice on the spiking activity of our populations of 
recorded neurons.

Nonetheless, in AL only, we found a strong, positive correlation 
between choice probability and neurometric sensitivity (slope) of 
individual neurons. That is, the most sensitive AL neurons had task-
driven activity that was most related to the monkey’s choices23–26.  
This positive correlation, which was found in both monkeys  
(Fig. 6b–e) and when multi-unit data were also included in the 
analyses (Supplementary Fig. 1), was evident during stimulus lis-
tening (Fig. 6b) around the inferred time of decision commitment 
(Fig. 6c) and persisted after the inferred time of movement initiation  
(Fig. 6d). This persistence into the motor-response epoch is consist-
ent with the notion that that choice-related activity during this period 
reflected feedback from higher decision areas, as opposed to feedfor-
ward contributions to the decision itself27. We did not find reliable 
relationships between choice probability and neurometric sensitivity  
for any ML epoch (Fig. 6 and Supplementary Fig. 1). Together, 
these results imply that AL activity was more related to the monkeys’  
decision-making behavior than ML activity.

Microstimulation
To identify possible causal roles for each brain region in the low-high 
task, we applied electrical microstimulation to individual sites in ML 
(n = 41 sites) or AL (n = 44 sites) during stimulus presentation and 
assessed how this manipulation of localized neural activity affected 

behavior. We found that microstimulation in AL only had a systematic 
effect on the monkeys’ choices: on average, microstimulation biasing 
the monkeys toward the choice associated with the preferred fre-
quency of the microstimulation site. We could not identify a reliable 
effect of microstimulation on RT in either brain region.

Four example sites illustrate our main findings (Fig. 7a). ML micros-
timulation did not have any systematic effect on choice behavior, leaving  
both the slope (representing sensitivity) and horizontal position 
(representing a choice bias) of the psychometric function unchanged 
(Fig. 7a). In contrast, AL microstimulation had a systematic effect on 
choice bias, resulting in more high-frequency choices when applied to 
a high-frequency site and more low-frequency choices when applied 
to a low-frequency site, without affecting sensitivity (Fig. 7a).

These examples suggest that neurons with appropriate frequency 
tuning in AL, but not ML, provide sensory evidence used to form the 
decision. According to this interpretation, activation of AL sites tuned 
for a relatively low frequency should provide more evidence for the 
low-frequency choice, and therefore increase the likelihood that the 
monkey would move the joystick to the right (that is, ipsilateral to 
the site of microstimulation, which was in the right hemisphere for 
both monkeys). Conversely, activation of AL sites tuned for a rela-
tively high frequency should bias movements toward more leftward 
(contralateral) joystick movements.

Across the population of sites tested, the effects were consistent 
with this interpretation and not with an alternative possibility that 
microstimulation simply caused more choices to one side or the other, 
independent of the frequency tuning of the microstimulation site. 
Specifically, microstimulation at low-frequency AL sites tended to cause 
more ipsilateral joystick movements, and microstimulation at high- 
frequency AL sites tended to cause more contralateral joystick move-
ments (Fig. 7b). In contrast, there was no systematic effect on choice for 
either low- or high-frequency microstimulation sites in ML (Fig. 7b).
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These effects corresponded to systematic shifts of choice biases in the 
expected direction, based on the frequency tuning of the microstimu-
lation site, for AL but not ML sites (Fig. 7c). On average, ML micros-
timulation did not cause systematic changes in choice bias (Fig. 7c). In 
contrast, AL microstimulation shifted choices in the expected direction 
(Fig. 7c). The microstimulation effects were too noisy to be sufficiently 
reliable in each monkey, but, as we report, were highly reliable when 
combining data across monkeys for AL (two-tailed Wilcoxon sign-rank 
test, P = 0.010), but not ML (P = 0.45), and the effects were consistent 
across the two monkeys for AL (two-factor ANOVA for shift [no micro-
stimulation and microstimulation conditions] × monkey [monkey T 
and monkey A], main effect of shift: P = 0.004; and the main effect of 
monkey: P = 0.53), but not for ML (main effect of shift: P = 0.29; and the 
main effect of monkey: P = 0.56). Both ML and AL microstimulation 
did not affect psychometric sensitivity (two-tailed Wilcoxon sign-rank 
test, P = 0.23 for ML and P = 0.17 for AL; Fig. 7d).

In principle, one possible reason for the different effects in AL 
and ML could be systematic differences in the local spatial organiza-
tion of frequency tuning around sites of microstimulation in the two 
brain regions, independent of different causal relationships to choice 
behavior. For example, more homogenous local tuning in AL versus 
ML might promote more consistent change in sensory evidence pro-
vided by AL microstimulation, resulting in more systematic changes 
in choice behavior. However, two lines of evidence argue against this 
interpretation. First, for both brain regions, neurons recorded on the 
same electrode had comparable preferred frequencies (median [IQR] 
difference in the preferred frequency 0.33 [0–1.2] octaves for ML and 
0.33 [0–0.8] octaves for AL; Wilcoxon rank-sum test for H0: ML and 

AL have the same difference, P = 0.79). Second, we did not identify 
for either brain region any systematic relationship between the size 
of the microstimulation current (range = 25–75 µA) and the size 
of the associated change in the psychometric shift (Pearson’s r for 
current intensity versus shift = −0.30, P = 0.06 for ML and 0.15, P = 
0.33 for AL) or slope (r = −0.06, P = 0.72 for ML and 0.13, P = 0.42 
for AL), which might be expected to differ when comparing activa-
tion of locally homogenous versus heterogeneous populations. Thus, 
these microstimulation results suggest that AL had a more direct and 
causal role than ML in the formation of the decisions that guided the 
monkeys’ behavioral responses on the low-high task.

DISCUSSION
We combined behavior, neural recordings and electrical micros-
timulation to determine whether and how auditory-evoked neural 
responses in the ML and AL belt regions of auditory cortex contribute 
sensory evidence to a perceptual decision about the frequency content 
of an auditory stimulus. Despite similar modulation by the timing and 
frequency content of the stimulus (Fig. 4), ML and AL differed con-
siderably with respect to their relationships to behavioral choices. In 
particular, neuronal sensitivity was positively correlated with choice 
probability and electrical microstimulation biased choices for AL, 
but not ML. Our results are, to the best of our knowledge, the first to 
demonstrate that two distinct brain regions in the ventral auditory 
pathway can have similar stimulus-driven responses, but different 
causal relationships with a perceptual decision.

Our behavioral analyses suggested that the monkeys formed their 
auditory decisions by temporally accumulating sensory evidence in 
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a manner consistent with a well-known sequential-sampling model, 
the DDM18–20,28–33. Because ML and AL activity is strongly linked to 
auditory input and not behavioral output, we focused on analyses that 
addressed potential roles of these brain regions in providing sensory 
evidence for the decision. We do not know how and where in the brain 
this decision is formed, but it is likely that downstream brain regions 
(for example, the ventrolateral prefrontal cortex34) might accumulate 
this evidence to form the decision. On a more practical level, the 
DDM fits provided an estimate of the time in a trial that the monkeys 
used to form the decision, allowing us to better identify neural modu-
lations that were relevant to the decision process14.

Such modulations included choice-selective responses of the most 
sensitive AL neurons (that is, those with the highest neurometric 
slopes; Fig. 6). One interpretation of this result is that these weak 
choice-related signals reflect a feedforward decision process that uses 
pooled activity from the most sensitive AL neurons as evidence22, 
which is consistent with our microstimulation findings and is remi-
niscent of findings from other systems23–26. Alternatively, these sig-
nals might represent feedback to relevant sensory regions once the 
decision is formed elsewhere, which is consistent with our finding 
that the modulations occurred relatively late in the decision proc-
ess8,27. Regardless, this result reinforces the importance of appropri-
ately identifying the temporal window in which to conduct analyses 
that relate neural activity with behavior14. By doing so, we identified 
marked differences in choice-related signals in ML and AL, which 
might reflect, in part, their anatomical relationship: because ML pro-
vides a major source of auditory information to AL (schematized 
in Fig. 3), neural representations of stimulus features in ML might 
be transformed into representations of sensory evidence in AL via a 
single stage of information processing4.

Extending our approaches might also help to clarify previous, 
mixed findings relating auditory cortex to choice behavior. Under 
certain conditions, neural activity in auditory cortex is not reliably 
modulated by choice35,36. Our findings suggest that such a lack of 
overall choice modulation might reflect the absence of a direct role 
in the decision process, as with ML, or a more nuanced role involving 
primarily contributions from the most-sensitive neurons, as with AL.  
In contrast, other conditions have been shown to elicit stronger and 
more systematic choice-related activity than we found, even for 
regions in the ventral pathway as early as the primary auditory cor-
tex8,37. Several non-exclusive reasons may contribute to this appar-
ent difference from our results. One possibility is basic differences 
between task designs: we used a forced-choice discrimination task 
that might require a more complex decision variable, using multi-
ple levels of processing, than the detection tasks used by others8,38. 
Second, our task required a relatively high-level decision about the 
relative frequencies of high and low tone bursts in a sequence, whereas 
other tasks required decisions about lower level stimulus features (for 
example, pitch or amplitude modulation) that might be represented 
directly in the responses of individual neurons in the early auditory 
pathway8,39–41. A third possibility involves differences in how choice-
related activity was analyzed. We focused on neural data from trials 
in which the stimulus was relatively ambiguous (that is, low coher-
ence) to help isolate the effects of choice from other stimulus-related 
factors on neural responses. In contrast, previous studies might have 
conflated stimulus- and choice-related activity8,37,38.

In summary, our findings are consistent with the hypothesis that 
the ventral auditory pathway is functionally and causally involved in 
forming auditory perceptual decisions. A simple, feedforward scheme 
might involve a representation of the acoustic features of a stimulus  
in the core auditory cortex and ML, which gets converted into  

task-relevant sensory evidence in AL. This evidence, in turn, is used 
to form the decision in the ventrolateral prefrontal cortex34. The func-
tional contributions of each of these brain regions may be further 
modified by the specific nature of the task and auditory decision3,8,37. 
This hierarchical relationship may be analogous to that observed for 
perceptual decisions in the visual and somatosensory systems15,42. 
Future research should focus on clarifying the differential and specific 
contributions of core auditory cortex and ML to auditory perception, 
identifying the mechanism by which sensory evidence in AL is con-
verted into a choice in the prefrontal cortex, and the contribution of 
correlated activity to perception and decision-making8,43.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Animals. The University of Pennsylvania Institutional Animal Care and Use 
Committee approved all of the experimental protocols. All surgical procedures 
were conducted under general anesthesia and using aseptic surgical techniques. 
The authors were not blind to group allocation during the experiment and in 
assessing the data outcomes.

In each session, a male monkey (Macaca mulatta; monkey T, 15 years old; 
monkey A, 14 years old) was seated in a primate chair. A calibrated speaker 
(model MSP7, Yamaha) was placed in front of the monkey at its eye level. The 
monkey moved a joystick, which was attached to the primate chair, to indicate its 
behavioral report. These sessions took place in a radio frequency–shielded room 
that had sound-attenuating walls and echo-absorbing foam on the inner walls.

Identification of auditory-cortical fields. Prior to recording, the stereotactic 
locations of AL and ML were identified through structural MRI scans44–46. ML 
and AL were functionally differentiated by their tonotoptic organization4,12,13 
(Fig. 3 and below).

Auditory tasks and stimuli. Auditory stimuli were generated using the RX6 digital-
signal-processing platform (TDT Inc.) and were transduced by the Yamaha speaker.

Preferred-frequency task. Monkeys listened passively while individual tone 
bursts were presented in a random order. The tone bursts (100-ms duration with 
a 5-ms cos2 ramp; 65 dB SPL) varied between 0.3–12 kHz in one-third octave 
steps. A neuron’s ‘preferred frequency’ was the frequency that evoked the highest 
firing rate during tone presentation.

Low-high task. This single-interval, two-alternative forced-choice discrimina-
tion task required the monkey to report whether a temporal sequence of tone 
bursts contained more low-frequency or high-frequency tone bursts (Fig. 1).  
A trial began with the monkey grasping the joystick, and, after a delay of 400 ms, 
a sequence of tone bursts (50-ms duration; 5-ms cos2 ramp; 10-ms inter-burst 
interval) was presented. The monkey moved the joystick: (1) to the right to report 
that the sequence contained more low-frequency tone bursts, or (2) to the left to 
report that the sequence contained more high-frequency tone bursts. The monkey 
could report its choice at any time after stimulus onset.

The frequency of each tone burst was determined relative to the preferred 
frequency of a concurrently recorded neuron. By convention, when the preferred 
frequency was <1,750 Hz, we used it as the low frequency, and the other (non-
preferred) frequency was 1–3 octaves above that value. In contrast, when the 
preferred frequency was >1,750 Hz, we used it as the high frequency, and the 
other (non-preferred) frequency was 1–3 octaves below that value.

On a trial-by-trial basis, we randomly varied the strength of the sensory  
evidence by varying the proportion of low- and high-frequency tone bursts 
(coherence) in the auditory stimulus. A stimulus with all low-frequency tone 
bursts was a −100% coherence stimulus, whereas a stimulus with all high- 
frequency tone bursts was a +100% coherence stimulus. These sequences were 
the most easily discriminable (Fig. 1a). A stimulus with 0% coherence was one in 
which 50% of the tone bursts were randomly assigned to be low or high frequency. 
Because this stimulus had equal numbers of low- and high-frequency tone bursts, 
it was hardest to discriminate (Fig. 1a). Each stimulus was generated by randomly 
assigning the frequency of each tone burst to the low- or high-frequency value 
based on the given coherence. For all analyses, stimulus coherence was calculated 
from the actual proportion of low- and high-frequency tone bursts that were 
presented from stimulus onset until the monkey indicated its choice by moving 
the joystick (that is, during the RT interval) on the given trial.

Training procedure and reward schedule for the low-high task. Each monkey was 
first trained with the most easily discriminable stimuli (that is, ±100% coherence 
stimuli) and given a juice reward for a correct choice. The monkey’s reward did 
not depend on the speed of the behavioral report, only its accuracy. Error trials 
resulted in a 2-s longer inter-trial interval. After performance stabilized, more 
difficult stimulus coherences were introduced. Because there was not a ‘correct’ 
answer for a 0%-coherence stimulus, the monkey received a reward on 50% of 
the trials, independent of its behavioral report.

Recording methodology. For each recording session, a tungsten microelectrode 
(~1.0 MΩ at 1 kHz, FHC) was placed in a skull-mounted microdrive (Narishige, 
MO-95) and then lowered into the brain through a recording chamber. All neural 
signals were sampled at 24 kHz, band-pass filtered between 700 Hz and 7 kHz 

(RA16PA and RZ2, TDT), and stored for online and offline analyses. OpenEx 
(TDT), Labview (NI), and Matlab (The Mathworks) software synchronized 
behavioral control with stimulus production and data collection. Single-neuron 
activity was isolated from the neural signals with on-line (OpenSorter, TDT) and 
off-line spike-sorting programs (WaveClus47).

data-collection strategy. Once a neuron was isolated, the monkey participated 
in the preferred-frequency task. After identifying the preferred frequency of the 
neuron, we assigned the values of the low and high frequencies for the low-high 
task. Next, the monkey participated in the low-high task.

During electrical-microstimulation sessions, on 50% of randomly interleaved 
trials, we delivered negative-leading bipolar current pulses (rate: 300 Hz; pulse 
duration: 250 µs; amplitude: 25–75 µA) using a dual-output square-pulse stimula-
tor (Grass S88) and two optical isolation units (Grass PSIU6)32,48. Microstimulation 
started with stimulus onset and terminated at joystick movement. Microstimulation 
trials were rewarded using the same schedule as non-microstimulation trials. Thus, 
the monkeys were not incentivized to respond differently during microstimulation 
trials than during non-microstimulation trials.

Behavioral analyses. Drift-diffusion model. Psychophysical and chronometric 
data were fit to a standard drift-diffusion model (DDM), which models a deci-
sion process in which noisy evidence is accumulated over time until it reaches a 
fixed bound18–20,29–33. This version had five free parameters: k, A, B, F1, and F2. 
k governed the stimulus sensitivity of the moment-by-moment sensory evidence: 
the evidence had a Gaussian distribution N(µ,1) in which the mean µ scaled 
with the stimulus coherence (COH): µ = k × COH. The decision variable was the 
temporal accumulation of this momentary sensory evidence. A decision occurred 
when this decision variable reached a decision bound (+A or −B, corresponding 
to a high- and low-frequency choice, respectively). ‘Decision time’ was the time 
between stimulus onset and the crossing of either bound. ‘Response time’ was 
the sum of the decision time and a non-decision time (F1 for a high-frequency 
choice and F2 for a low-frequency choice). Non-decision time can include proc-
esses such as stimulus encoding and motor preparation. The probability that the 

decision variable crossed the +A bound first is e
e e

B

B A

2

2 2
1m

m m
−

− − . The average 

decision time is A B A B B B+ × + −m m m mcoth( ( )) coth( ) for high-frequency choices 

and A B A B A A+ × + −m m m mcoth( ( )) coth( ) for low-frequency choices.

Logistic analysis of psychophysical data. We used a logistic function32,49,50 
to fit psychophysical performance during recording and microstimulation  
sessions31,50,51. This function related the probability (p) that the monkey reported 
high-frequency choices as a function of coherence (COH) and took the form 

p L L
e COH COH= + −

+ − ∗ +( ) ( )1 2 1
1 0b b

.

L represents the upper and lower asymptotes (lapse rates) of the logistic  
function. βCOH represents the effect that coherence had on the monkey’s reports; 
it governs the slope of the psychometric function. β0 governs the function’s  
horizontal position. A maximum-likelihood procedure fit the logistic function 
to the behavioral data.

From this logistic fit, we quantified two parameters. (1) Perceptual sensitivity 
to stimulus coherence, which depended on βCOH and reflected the steepness of 
the psychometric curve (steeper slopes reflected higher sensitivity). Sensitivity 
was defined as the slope of the function determined from the 25% and 75% high-
frequency choice points10. (2) Choice bias depended on β0 and was the stimulus 
coherence that elicited 50% high-frequency choices, computed as β0/βCOH .

The effect of microstimulation on behavior was quantified using the follow-
ing procedure. First, we independently fit logistic curves to the behavioral data 
generated on microstimulation and on non-microstimulation trials, with the 
assumption of a common lapse. Next, using data from non-microstimulation 
trials, we used a bootstrap procedure to resample trials and fit the resampled 
data to the logistic function32. From this resampling procedure, distributions of 
discrimination thresholds or choice biases were generated. A microstimulation 
parameter was considered significant if it was outside the 95% confidence interval 
of its resampled distribution.
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neural analyses. No statistical methods were used to pre-determine sample sizes, 
but our sample sizes are similar to those reported in previous publications and 
are similar to those generally employed in the field51,52.

Neurometric analysis. A neurometric function was constructed from neural 
activity on correct trials for each neuron. We only used correct trials to ensure 
that the neurometric function indexed stimulus sensitivity, independent of 
choice effects21,22. This function plots the probability that an ideal observer could  
use firing rate alone to correctly identify whether a stimulus contained more  
high-frequency tone bursts. We computed the curve by comparing neural 
responses of each neuron to pairs of stimulus coherences with the same magnitude  
but different signs (for example, <−80% versus >80%), which is equivalent to 
assuming that on a given trial, the decision is made by comparing the responses 
of a pair of neurons with symmetric tuning properties (that is, one tuned to the 
high-frequency value, the other to the low-frequency value)21. For each sym-
metric pair of coherence values, we pooled the firing rates from correct trials 
into two distributions and generated a ROC curve. The area under the curve is 
the probability that this ideal observer could discriminate between two stimulus 
coherences (we expressed this probability as percent correct to facilitate compari-
son with the psychometric data). This process was repeated for all of the pairs 
of stimulus coherences (<−80% versus >+80%; −80% to −40% versus +40% to 
+80%; and −40% to 0% versus 0% to +40%). Finally, this function was fit to a 
logistic equation analogous to that described in above.

Neurometric curves were calculated using 300-ms bins of neural data  
that advanced in 10-ms increments. Neurometric sensitivity was quantified  
by calculating the slope of the neurometric function: as the value of βCOH of the 
fitted logistic increases, the slope of the neurometric curve becomes steeper.

Choice probability. Choice probability quantifies the ability of an ROC-based 
ideal observer to determine choice based only on spike rates from a single  
neuron, given responses separated by choice (in this case, high frequency versus  

low frequency) for nominally identical stimulus conditions24,26,34,35,53. We  
computed choice probability separately for trials using ranges of low-coherence 
values, which elicited sufficient numbers of correct and error trials to be able to 
separate responses to a given range into the two choices. The ranges were −20% 
to −10%; −10% to 0%; 0%; 0% to +10%; and +10% to +20%. Reported choice 
probabilities were the mean of the values computed separately for each range.

code availability. The data analyses were performed in Matlab; this code is  
available on request.

A Supplementary methods checklist is available.
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Erratum: Causal contribution of primate auditory cortex to auditory 
 perceptual decision-making
Joji Tsunada, Andrew S K Liu, Joshua I Gold & Yale E Cohen
Nat. Neurosci. 19, 135–142 (2015); published online 14 December 2015; corrected after print 23 December 2015

In the version of this article initially published, the neurometric slope values in the bottom panel of Figure 4a were given as 1.6, 1.0., 1.0;  
the correct values are 0.8, 0.5, 0.5. The x axes in Figure 4b, right panel, were numbered 0 to 3; the correct range is 0 to 1.5. The segments of the 
traces in Figure 6b–d with significant regression coefficients were gray; they should have been red. And the top segment of the bar for 0–10% in 
the bottom panel of Figure 7c was blue; it should have been pink. The errors have been corrected in the HTML and PDF versions of the article.
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