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Perceptual decision-making is an important and experimentally trac-
table cognitive ability that involves the timely integration of sensory, 
cognitive and motor information. Recent work has hypothesized that 
LIP plays a key role in simple forms of perceptual decision-making. 
Much of this literature has focused on either normative models, which 
aim to derive the optimal decision-making strategy for a given task 
from first principles1–8, or mechanistic models, which aim to qualita-
tively reproduce the dynamics governing neural activity in decision- 
making circuits9–15. Although these studies have generated many 
intriguing hypotheses and experiments, both of these approaches start 
with strong assumptions about the function of LIP and a limited view 
of its functional heterogeneity.

We developed a data-driven, statistical approach for investigating 
the encoding and decoding of information in LIP spike trains during  
a sensorimotor decision-making task. We begin by formulating 
a generalized linear encoding model that characterizes LIP spike 
responses as a function of the external variables of interest on the 
scale of individual trials. Encoding models have been used to describe 
and quantify information transfer in early sensory areas16–19 as well 
as motor cortices20–22 and rodent hippocampus23,24, but have had 
limited application to decision-making areas25–27.

A statistical model–based approach differs from other methodolo-
gies in that it does not seek a particular mechanistic or normative 
theory of LIP function. Rather, it aims to develop a rich, descrip-
tive model of the statistical features of LIP spike responses and their 
dependencies on task and behavioral variables. The primary challenge 
is that, in contrast with primary sensory or motor areas, an area such 
as LIP may reflect a panoply of signals, some of which are tightly cou-
pled with known sensory and motor events, and some of which may be 
the product of more elusive cognitive operations28–30. Here we show 
that the sort of generalized linear model (GLM) previously applied 

to spike representations in the early visual system can be extended 
to model LIP activity recorded during a decision-making task. The 
model reveals that LIP responses are best described as reflecting an 
interacting set of temporally overlapping response components. This 
implies that some of the spikes emitted during decision formation are 
potentially related to multiple factors, some of which are irrelevant to 
the accumulation of evidence. The model also provides a framework 
for understanding the statistically optimal readout of various kinds 
of information from single-trial spike trains. Our analyses reveal that 
the superposition of sensory, decision and motor variables encoded in 
LIP can be demultiplexed to read out decisions using a simple linear 
mechanism that spans multiple timescales. This encoding-decoding 
approach therefore both identifies and resolves a puzzle: LIP spikes 
do not purely encode the accumulation of evidence during the forma-
tion of decisions, but they can be feasibly decoded to extract more 
choice-related information than conventional spike-counting analyses 
have suggested.

Generally, these analyses provide a detailed account of the time-
varying information carried by LIP spikes and operate at the level of 
single trials. Thus, they provide a testing ground for interpreting LIP 
spikes on the timescale of individual stimulus events and decisions. 
This approach provides a platform for quantitatively characterizing 
the information carried by LIP, for comparing LIP responses across 
experiments, and for assessing the adequacy of various theories of 
LIP function.

RESULTS
We analyzed the spiking activity of 80 LIP neurons recorded from two 
monkeys while they performed a moving-dot direction-discrimination  
task31. In this well-known task32, monkeys view a random dot  
kinetogram and make decisions about the net direction of dot motion.  
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sensorimotor decision-making
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It has been suggested that the lateral intraparietal area (LIP) of macaques plays a fundamental role in sensorimotor decision-
making. We examined the neural code in LIP at the level of individual spike trains using a statistical approach based on generalized 
linear models. We found that LIP responses reflected a combination of temporally overlapping task- and decision-related signals. 
Our model accounts for the detailed statistics of LIP spike trains and accurately predicts spike trains from task events on single 
trials. Moreover, we derived an optimal decoder for heterogeneous, multiplexed LIP responses that could be implemented in 
biologically plausible circuits. In contrast with interpretations of LIP as providing an instantaneous code for decision variables, 
we found that optimal decoding requires integrating LIP spikes over two distinct timescales. These analyses provide a detailed 
understanding of neural representations in LIP and a framework for studying the coding of multiplexed signals in higher brain areas.
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They communicate their choice by making a saccadic eye movement to one 
of two choice targets on the screen. From trial to trial, the fraction of dots 
moving coherently in the correct direction is varied, spanning a range of 
difficulties from easy (high coherence) to hard (low coherence). Figure 1a  
illustrates the decision-making task and the variable timings of the 
four principal task elements: fixation point, choice targets, moving dots 
and saccade. We varied the timings (and/or values) of the first three  
elements independently, and the saccade exhibited intrinsic timing 
variability as a part of the animal’s behavior (Online Methods).

Classical analyses of coding in LIP begin with the peri-stimulus 
time histogram (PSTH) aligned to events such as the onset of the mov-
ing dots or the occurrence of the saccade (Fig. 1b). Other approaches 
regress binned spike rates against levels of various experimental vari-
ables, and are sometimes applied at the level of single trials or sin-
gle neurons7,33–35. Our model works at the resolution of individual 
spikes, neurons and trials. It quantifies the dependencies of the neural 
response on multiple task variables by regressing single-trial spike 
trains against the timing and value of each variable represented on 
each trial, while also capturing the influence of spike history on sub-
sequent spikes, and a nonlinearity associated with spike generation. 
It is therefore possible to dissociate firing rate components associated 
with each task variable given their decorrelated design (for example,  
trial-to-trial variability in the relative timings of events and independ-
ent variation of motion coherence) while also capturing the neuron’s 
own temporal response properties (for example, refractoriness, bursti-
ness, longer timescale autocorrelations).

Encoding: a description of the neural code in area LIP
An encoding model aims to describe p(r|x), the probability of a spike 
train response r given a set of external variables x on a single trial. 
Our model defines this probability in terms of a time-varying spike 
rate λt, given by

lt
i

i ix t t= +










∑exp ( )( ) ( )( )k h r* *

hist

where ( )( )ki ix t*  denotes linear convolution of xi(t), the time course 
for the ith external event (for example, the target kernel is zero every-
where except the time at which the saccade targets appear), with the 
linear filter, or kernel, ki, which captures the time-varying relationship  

(1)(1)

between this event and the neuron’s probability of spiking. The second 
term ( )( )h r*

hist t  denotes the linear convolution of the neuron’s spike 
history rhist with the post-spike filter h. We illustrate these compo-
nents in a model diagram shown in Figure 2a.

Under this model, the probability of a spike train for a single trial 
is given by a Poisson distribution:

p p r e
t

T

t

T
t t
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0 0
∆ ∆

where ∆ is the time bin size, T is the number of time bins in  
the trial, rt is the spike count at time t, and q = {{ }, }k hi  are the  
model parameters.

Figure 2 illustrates the model fit to data from a typical LIP neuron. 
To provide intuition for the model’s basic capabilities, we highlight 
the kernels related to the three primary task elements that occur 
on each trial: the appearance of the choice targets, the moving dots 
stimulus and the saccade made by the monkey to indicate a deci-
sion (either into or out of the response field of the neuron under 
study, which we refer to as IN and OUT). We plot the predicted time- 
varying change in spike rate resulting from each task element for 
each of five possible motion coherences and two possible saccade 
directions (Fig. 2b). For each component, this change is given by 
the linear convolution of the kernel with the corresponding task  
element and then passed through an exponential nonlinearity. The 
product of three such components forms the predicted spike rate 
for a single trial (equation (1)). These predictions closely match the  
neuron’s actual PSTH (Fig. 2c).

Randomness and variability in the timings of experimental events 
are essential for dissociating the different components of the response. 
For example, if the interval between the onset of the choice targets 
and the saccade were constant, we could not differentiate spikes time-
locked to the targets from those time-locked to the saccade. Similarly, 
stimulus kernels for each motion coherence can be dissociated thanks 
to randomized coherences and duration, despite having onsets locked 
to the appearance of targets. The large number of task elements 
makes for a large number of model parameters; we therefore fit ker-
nels in smooth temporal bases and applied Bayesian regularization 
 methods to prevent over-fitting (Online Methods). We verified the 
fits via PSTH prediction (Fig. 3b), single trial prediction on a test set  

(2)(2)
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Figure 1 Decision-making task and classical analysis of LIP responses. (a) The task requires an observer to fixate, judge the direction of a moving (dots) 
stimulus and report a decision by moving the eyes to one of two targets. Temporal variability in the task design variables (indicated by gray arrows) 
allows for statistical dissociation of the effects of different extrinsic variables on neural responses. (b) Standard analysis of spike responses from an  
LIP neuron. Spike trains are grouped by the stimulus coherence (the fraction of dots moving toward (+) or away from (−) the neuron’s response field),  
and the saccade into (IN) or opposite (OUT) the response field. These are aligned to the stimulus onset (left) or saccade time (right). Although the spike 
trains exhibit substantial variability (top), their average time courses (below) exhibits coherence-dependent ramping. The gray area indicates the short 
portions of trials often considered in prior work33.
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(Figs. 4 and 5a), time-varying spike count variance (Supplementary 
Fig. 1) and interspike interval statistics (Supplementary Fig. 2).

Previous work has shown that LIP neurons are heterogeneous36, 
with diverse response characteristics during the moving-dots task31. 
We fit the model to each LIP neuron in the data set and found that 
it captured the responses of both conventional and radically uncon-
ventional LIP neurons with high accuracy (Fig. 3a). The fitted model 
parameters reveal that LIP neurons carry information about a variety 
of task elements and that the output of each LIP neuron reflects a 
roughly multiplicative combination of signals (Supplementary Figs. 3  
and 4). Furthermore, individual cells encode these elements in dis-
tinct ways, both in terms of overall magnitude and in nuanced aspects 
of the time course. This cell-by-cell analysis suggests that the marked 
differences in PSTHs may arise from the combination of heterogene-
ous task-related components that can now be examined in isolation 
at the level of single neurons.

In addition to capturing the average time course of neural activity 
for different stimulus and choice conditions, the model can predict 

spiking activity on single trials from the timings and values of task 
elements (Fig. 4). Despite the diversity of responses across trials 
and across neurons, the model captures the details of single-trial 
spike rate modulations accurately, on par or better than the model’s 
account of the full PSTH. Note that these predictions are unique to 
each neuron, and differ for each trial because the task elements have  
randomized times.

Single-trial prediction accuracy improves even further when 
the model includes a post-spike filter, which captures the effects of 
spike history on a neuron’s probability of firing (Fig. 5a). The auto-
correlation functions of spike trains in LIP vary substantially across 
neurons (Fig. 5b) and frequently exhibit fine timescale structure that 
is inconsistent with a Poisson model. A model without a post-spike  
filter cannot account for the detailed shape of these autocorrelation 
functions, whereas the full model captures them accurately. The fitted 
post-spike filters (Fig. 5c) reveal detailed and diverse shapes that are 
not obvious from the autocorrelation function. For these neurons, 
the probability of firing was enhanced for more than 200 ms after a 
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Figure 2 Encoding model, fitted components, and rate predictions. (a) The model specifies the  
probabilistic relationship p(r |x) between external variables x and a set of neural spike trains r.  
The parameters consist of linear weights specifying the neuron’s dependence on the external  
variables and spike history. (b) Illustration of fitted model components for an example LIP neuron.  
Because the nonlinearity is exponential, we can plot the exponentiated output of each filter as  
a gain signal reflecting the influence of each task element on the time-varying spike rate.  
These signals are combined multiplicatively to obtain the instantaneous spike rate, which drives spiking via a conditionally Poisson process with 
feedback (8 of 12 total kernels shown; Online Methods and Supplementary Figs. 6 and 7). (c) PSTHs predicted by the model (above) and computed 
from real data (below). Each trace reflects a different coherence level and saccade direction.
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Figure 3 Encoding model captures responses across a heterogeneous population. (a) Fitted model components for five additional neurons (columns 
1–5) showing the relative contributions of targets, moving dots and saccades to the predicted spike rate of each neuron (rows 1–3) and predicted and 
observed PSTH (rows 4 and 5) as in Figure 2. The population exhibited substantial heterogeneity across neurons; for example, the fourth neuron’s 
PSTH peaked early and then declined, regardless of choice (column 4, bottom row), yet the model still extracted a classical ‘ramping’ choice-related 
component (third row). More unusually, the fifth neuron’s choice-dependent component (fifth column, row 3) exhibited a time-dependent reversal, 
meaning that, early in the trial, the neuron fired more spikes before saccades to the anti-preferred (OUT) target. (b) Goodness-of-fit across the 
population. Each point corresponds to the percent of variance accounted for in the PSTH of each neuron.
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spike (but not much longer; Supplementary 
Fig. 5). Note that such a long timescale of self-
excitation is a purely statistical description (as 
opposed to a proposed recurrent mechanism) 
and reflects a form of temporal integration 
above and beyond that explained by the external task elements. 
Despite its contribution to spike train prediction, inclusion of the 
post-spike filter in the model exerts only a modest scaling effect on the 
other temporal kernels (the median correlation coefficient between 
the kernels fit with and without the post-spike filter was 96%, and the 
median scaling effect was 75%).

We validated the use of an exponential nonlinearity by comparing it 
to a nonparametric estimate of the nonlinear relationship between filter 
output and firing rate (Supplementary Fig. 3a). This implies a multipli-
cative interaction among components (but see Supplementary Figs. 3b,c 
and 4 for comparison to rectified linear function) and is critical for the 
statistically optimal linear decoding mechanism we describe below.

Together, the distinct pieces of the encoding model—linear kernels 
for task variables, a post-spike filter and an approximately exponential  
nonlinearity—jointly capture the statistical relationship between LIP 
responses and various external and internal variables relevant to a 
sensorimotor decision-making task, enabling the model to predict 
spike trains on single trials and capture the fine structure of each cell’s 
autocorrelation function. These results suggest that, despite LIP’s cog-
nitive function and more distant relation to simple sensory and motor 
processing, simple task- and behavior-related signals may explain the 
bulk of LIP responses. However, the value of the encoding model goes 

beyond its ability to account for what makes an LIP neuron respond 
during the dots task, as we demonstrate below.

Decoding: readout of decision-related information from  
LIP spike trains
Encoding models specify an explicit probability distribution over neural  
activity given a set of external task variables, but they also provide 
a powerful tool for analyzing the readout of information from spike 
trains. In this application, we can decode decisions from spiking activ-
ity in LIP by using the fitted model to evaluate the probability of the 
spikes on a single trial under both possible choices (that is, saccades 
to one target or the other). For each trial, the model provides a predic-
tion in the form of a Poisson spike rate underlying the activity on that 
trial. Intuitively, decoding amounts to evaluating whether the spikes 
are more probable under the rate function consistent with a saccade 
IN or OUT of an LIP neuron’s response field.

Figure 6a shows spike trains and corresponding rate predictions 
for pairs of randomly selected IN and OUT trials from three differ-
ent neurons. By considering the spikes up to each point in time, we 
can obtain a time-varying estimate of the animal’s eventual decision. 
Note that these probabilistic estimates diverge from 0.5 (the prior  
probability of an IN decision) as soon as the rate predictions diverge. 
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For the six trials shown, the decoder achieved near certainty (prob-
ability of an IN choice close to one or zero) by the time of saccade, 
although this did not occur for all trials or in all neurons.

Formally, model-based decoding of the animal’s decision relies on 
the posterior distribution over choice given the spikes, which can be 
derived from the encoding distribution using Bayes’ rule. If we assume 

that IN and OUT choices are equally probable a priori, the posterior 
probability is given by
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in Fig. 4, column 5) using weights that change sign midway through the trial. (d) Comparison of traditional and model-based CP for all neurons in the 
population, using spikes at least 50 ms before saccade on zero-coherence trials. Vertical and horizontal lines show ±s.d. bootstrap confidence intervals. 
For the majority of neurons in the population, model-based decoding supports more accurate readout of the animal’s decisions from LIP spike trains.
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where x  denotes all other covariates besides the choice direction 
component xc. The posterior probability of an OUT choice is simply 
1 − =p xc( , )IN|r x , as the posterior must sum to 1.

Fortuitously, these posterior probabilities can be computed very sim-
ply under our model. For a GLM with Poisson noise and exponential 
nonlinearity, Bayesian decoding can be achieved with a linear weight-
ing of the spike response. Specifically, the log-likelihood ratio (LLR), 
which is also the log of the ratio of posterior probabilities, is given by

LLR
IN

OUT
constant=

=
=

= +log
( | , )
( | , )
p x
p x

c

c

r x
r x

w r



T

where w denotes a set of linear decoding weights over time, and 
the additive constant does not depend on the response r (Online 
Methods). The LLR leads to a simple decoding rule for predicting the 
animal’s choice: whenever LLR > 0, an IN saccade is more probable; 
whenever LLR < 0, an OUT saccade is more probable. The optimal 
decoding weights are in fact given by w k k= −IN OUT, the difference 
of the fitted saccade kernels for IN and OUT choices (Fig. 6b).

Bayesian decoding of decisions from LIP spike trains can therefore 
be implemented with a set of time-varying linear weights. The shape 
of each neuron’s weight profile tells us how much information that 
neuron’s spikes carry about the animal’s decision as a function of time 
before the eye movement. The weights determined empirically from 
data suggest that instantaneous spike rate in LIP (or a race between 
competing pools in LIP9) does not fully characterize the amount of 
decision-related information in the neural response, as the weights 
frequently extend out to 1.5 s before the movement, indicating that 
spikes from LIP should themselves be integrated over a relatively long 
window to optimally predict the decision. Note that this linear readout 
mechanism would not be statistically optimal if the nonlinearity were 
not exponential, as our model formally belongs to the family of log-
linear models known as probabilistic population codes6,37,38.

This decoding analysis supports a model-based extension of the 
basic concept of choice probability (CP), a metric for quantifying the 
information that neural responses carry about an animal’s decision39. 
Conventional CP, which applies to scalar quantities such as spike 
count, assumes that the optimal rule for reading out a pair of neuron  
and ‘anti-neuron’ responses is to choose the preferred stimulus of 
the neuron with the larger response (a ‘max’ decoding rule). Model-
based CP, on the other hand, can be defined using any model-based 
decoding rule and non-scalar representations of neural activity such 
as a binned spike train. If we assume an anti-neuron for the neuron 
that we are decoding to have exactly the same model weights, except 
with opposite choice-related decoding weights (kIN for kOUT, and 

(4)(4)

vice versa), then a simple comparison rule for the projection to both 
neurons suffices for decoding, as the threshold is exactly the same 
for both neurons. We can therefore compute model-based CP using 
projections of spike trains instead of simple spike counts.

The key difference between conventional and model-based CP is 
that model weights specify the relative importance of different time 
bins for reading out the choice. Figure 6b–d shows a comparison 
of model-based and conventional CP for quantifying decoding per-
formance. Model-based CP outperforms conventional CP as the time 
window grows toward the saccade (Fig. 6c). Moreover, model-based 
CP increases almost monotonically, whereas conventional CP remains 
closer to chance levels. Conventional CP is clearly inadequate for 
decoding LIP neurons such as example cell 3, where the polarity of 
rate associated with IN and OUT choices reverse during the trial. 
Even for the more canonical example cell 1, model-based decoding 
extracts substantially more decision-related information than the 
conventional CP. Model-based CP was, on average, 6.2% higher than 
conventional CP (mean model-based CP, 75.2%; mean traditional CP, 
69.9%). Figure 6d illustrates the advantage of model-based decoding 
for a population of 80 neurons.

Implementation: low-dimensional readout of LIP population 
activity
So far we have considered the problem of decoding choices from 
spikes in LIP using an ideal observer with access to the saccade time 
and other task variables for the trial in question. This perspective is 
useful for determining theoretical limits on the accuracy with which 
downstream neurons could read out choice-related information from 
LIP, but it does not necessarily apply to neurally plausible mecha-
nisms. At first glance, statistically optimal readout seems difficult, as 
each neuron has a unique decoding-weight profile and these weights 
exhibit substantial cell-to-cell heterogeneity.

However, there exists a practical mechanism for population read-
out that requires no knowledge of the saccade (or decision) timing, 
is insensitive to other task variables and flexibly accommodates the 
heterogeneity of the temporal decoding weight profiles, but that still 
performs very close to theoretically optimal decoding. First, we can 
compute the linear projection of the spike trains onto the decod-
ing weights in continuous time via linear filtering: at each moment 
in time, the output of the linear filter is the LLR (equation (4)) for 
a ‘preferred’ saccade at the current time. Second, instead of pro-
jecting to the time-varying decoding weights associated with each 
neuron—which are highly diverse—we can approximately decom-
pose each decoding weight as a linear combination of a few prin-
cipal components of the collection of decoding weights, and then 
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sum the results (Fig. 7a). Indeed, we found that the constellation 
of decoding weights are well described by two principal compo-
nents (explaining 93.3% of the variance). To represent the total log-
probability of a decision given the spikes from a population of LIP 
neurons, the filter outputs corresponding to each RF can simply be 
summed. Third, we found that the decoding subspace spanned by 
these two principal components can be well approximated by a pair 
of exponential filters. This simplifies the problem of implementa-
tion because, although single neurons may not be able to perform 
arbitrary time-dependent weightings of spikes on the timescale of a 
second, a neuron or a population of neurons can naturally implement 
a leaky integrator14. We found that two exponential filters, e t( / )− t ,  
with τ = 237 and 410 ms, explain 92.1% of the variance of the seemingly 
diverse decoding weights (Fig. 7a). Finally, we posit two competing 
populations, each integrating evidence for one of the choice alterna-
tives (that is, two opposite choice target locations), with balanced  
contributions from the other response components, so as to nullify 
the effects of other task variables.

Figure 7b shows a schematic of the proposed plausible decoding 
circuit: LIP neurons associated with the same choice project with 
appropriate weights to a pair of subpopulations functioning as leaky 
integrators, each with a different time constant. The instantaneous log-
probability of a choice can be obtained by summing activity of the 
two subpopulations. Finally, the preferred target is read out through 
a winner-take-all mechanism and transmitted to the motor neurons 
that generate the saccade.

The proposed scheme yields compelling improvements over tra-
ditional decoders (Fig. 7c). Decoding performance using the model-
derived weights is substantially better than simply counting spikes in 
a fixed time window. Moreover, decoding with two leaky integrators 
performs virtually as well as with the complex individual decoding 
weights.

In summary, this decoding scheme offers one plausible way to read 
out decisions from the population activity of LIP neurons. It charac-
terizes how decision-related information is represented in population 
spiking activity in LIP and suggests that statistically optimal decoding 
could be implemented by low-dimensional dynamics in biologically 
plausible circuits, even in the face of multiplexed signals and consider-
able heterogeneity across neurons.

Invariance to target-induced changes in firing
The decoding mechanism we have proposed achieves performance 
that is invariant to firing rate modulations induced by variables not 
directly relevant to the task. To illustrate this invariance, we manipu-
lated the visual saccade targets so that on half of the trials they per-
sisted until the end of the trial (targets-ON trials), whereas on the 
other half they flashed briefly and then disappeared (targets-FLASH 
trials; the animal made a saccade to the remembered, stereotyped 
target location). Although this manipulation did not affect choice 
behavior, it produced large changes in spike rate in many neurons31. 

This motivates a substantial refinement to previously described mod-
els that regard the firing rate of an LIP neuron as a direct neural 
correlate of LLR or some other normative quantity5. Our descriptive 
model, however, captures the effects of visual target removal through 
a multiplicative interaction with an additional target-related kernel 
(although saccade endpoints were affected by the targets-FLASH 
manipulation, the single target–based kernel is sufficient to account 
for the changes in LIP response; also see ref. 40).

Figure 8a shows an example neuron that reduced its response 
markedly when visual targets are extinguished early in the trial (that 
is, before the onset of the moving dots). The model captures the dif-
ference with a single filter aligned to the time when targets disappear. 
Furthermore, model-based decoding is unaffected by the inclusion 
of this component, and there is negligible difference in decoding 
performance for the two kinds of trials (Fig. 8b). This robustness 
indicates that the superposition of the target-related kernels and the 
decision-related (saccade locked) kernels is appropriate. More gener-
ally, it suggests that additional decision-irrelevant factors that affect 
LIP responses in other tasks might similarly be isolated so as to pre-
serve the readout of decisions.

DISCUSSION
We developed a GLM to describe LIP responses during a complex 
perceptual decision-making task. This framework yielded several new 
insights into the coding of information in LIP spike trains. First, we 
found that the multiplexed representations in LIP can be decomposed 
into separate components related to the targets, the visual stimulus 
and the eventual saccadic decision; the superposition of these com-
ponents, in turn, provides accurate prediction of spike responses on 
single trials. Second, LIP neurons exhibited notably long-timescale 
self-excitation that was statistically separable from the effects of sen-
sory and motor drive, an effect that can be captured with a spike 
history–dependent model component. Third, despite substantial 
population-level heterogeneity in LIP response characteristics, deci-
sion-related information was well captured by a two-dimensional 
linear projection of the spike trains, which led to an implementation 
of statistically optimal decoding using a pair of leaky integrators with 
distinct timescales.

Our model allows the spike rate at any time to depend on a com-
bination of multiple task components. We exploited the randomized 
structure of the experimental design to identify these dependencies and 
showed that LIP activity could be well modeled as reflecting a super-
position of contributions from different sources. This result mirrors 
insights recently reported in rodent41 and other primate28 decision-
making tasks. The dominant model in the context of the moving dots 
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task—drift diffusion to bound—takes the coherence-dependent ramp-
ing signals seen in averages as a neural correlate of an evolving decision 
variable and often appeals to a race between competing integrators to 
generate decisions9. This framework assumes that the instantaneous 
firing rate in LIP should reflect the eventual choice. Our analysis adds 
a dimension to this perspective, suggesting a readout rule involving 
much longer temporal integration of LIP response, on the timescale of 
seconds. In other words, if LIP is the critical encoder of the accumula-
tion of evidence, an optimal mechanism would still need to decode it 
using a time-varying weighting function, as opposed to simply thresh-
olding its instantaneous spike rate. Time-varying decoding weights 
may be more generally applicable in other contexts in which a fixed 
threshold on LIP responses has also been shown to be untenable42.

Multiplexing applies even to the decision formation period, where 
spikes are influenced by the moving dots stimulus, but also by the 
placement of the choice targets and the upcoming saccade. Although 
LIP clearly carries decision-related signals, the mixture of sensory, 
cognitive and motor signals that simultaneously affect it argues against 
the assumption that it is a pure integrator underlying the accumulation 
of sensory evidence28–30. Instead, our encoding analyses suggest that 
LIP should be regarded as the recipient of multiple task-related signals, 
only some of which are directly related to the formation of decisions.  
Our decoding analyses reveal that it is still possible to read out deci-
sions in the face of this multiplexing, with higher accuracy than indi-
cated by conventional CP. This perspective raises the possibility that 
the difficulties in distinguishing between various functional roles of 
LIP (for example, attention/salience, decision-making, motor inten-
tion) may not have arisen because LIP has a single functional role, but 
because it simultaneously encodes multiple signals that are at least 
partially separable downstream. The application of descriptive statisti-
cal models in other task variants may therefore provide the means for 
further integration of visual, attentive, decisional and motor function 
in LIP. Further causal manipulations of the circuit are likely necessary 
for a definitive resolution, but our statistical analyses have shown that 
the information is multiplexed at encoding and can be demultiplexed 
by a plausible readout stage. One implication is that if LIP responses 
are critical for decision-making, future empirical work should shift 
focus from demonstrating the encoding of various cognitive factors 
in LIP to determining how these complex signals are demultiplexed 
by later stages of neural processing.

Although our model provides an illuminating perspective on LIP 
function, it is not without limitations. It makes very few assertions 
about the function of LIP, but does require making some assumptions 
in the structure of the model. However, these assumptions amount to 
decisions about how to represent external, observable variables in a 
regression framework, and therefore involve far less conceptual baggage  
and a tighter reliance on the data than normative approaches. We 
attempted to use the simplest approach, modeling brief events as 
impulses and prolonged events as boxcars. Future work will benefit from 
more nuanced manipulation and modeling of finer-grained temporal  
structure on each trial. In addition, prior applications of GLMs have 
provided insights into the form of dependencies between neurons and 
the relevance of correlated firing to information carried by a neural  
population; such analyses motivate follow-up work that involves 
recording multiple cells simultaneously43. Our findings about neurally  
plausible implementations of decoding could also motivate future 
investigations into how or where the brain might accomplish rea-
dout involving simultaneous recordings in multiple brain areas.  
Indeed, work in related structures and paradigms has already explored 
how neurally constrained models of the oculomotor system can be 
applied44,45.

Dynamical models provide another kind of approach to under-
standing the function of area LIP13, and such models have been elabo-
rated to include multiple factors that drive LIP, such as the response 
to visual targets11. A key difference is that such models start with a 
semi-biological circuit structure that constrains the neural dynam-
ics, and the framework for adding other components is rather flex-
ible. Statistical models of the kind that we propose could complement 
these models by providing a principled technique for assessing which 
components to incorporate; these models may therefore provide a 
tool not just for interpreting LIP activity, but for linking normative 
and mechanistic models of the sorts that have already been proposed 
in this context6,13,46,47.

More generally, we note that a variety of both classical and recent 
controversies regarding LIP’s functional role have relied on attempts 
to dissociate or isolate various response components. For example, 
a recent study reported that LIP responses were modulated by the 
magnitude of either appealing or aversive outcomes (consistent with 
a salience account) as opposed to being sensitive to value (in the 
neuroeconomic sense) per se48. A follow-up debate then focused 
on whether the data were generalizable, owing to the lack of strong 
persistent activity seen during the task49,50. Our analysis could pro-
vide a path toward resolving this sort of debate by testing whether 
persistent activity can be modeled as an independent driver of the 
LIP response (in which case, its presence or absence is irrelevant to 
the salience/value issue) or whether it indeed interacts with salience/
valuation. The latter outcome would not just demonstrate that per-
sistent activity is necessary to observe value signals in LIP, but would 
suggest intriguing computations that link these two components.

More consideration will be required to create families of experi-
mental designs amenable to analysis via the GLM. However, we feel 
that the framework promises both to enrich interpretations in well-
studied procedures and to pave the way for more ambitious and direct 
tests of hypotheses about higher brain function.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
The data analyzed here were initially described in a previous report31. Here, we 
briefly summarize the experimental methods most important to the analyses 
described here.

Preparation, neurophysiology and tasks. All procedures were performed in 
accordance with US National Institutes of Health guidelines and the Institutional 
Animal Care and Use Committee at the University of Texas at Austin. Two male 
rhesus macaque monkeys underwent surgery for implantation of a head-holder 
and a recording chamber over the posterior parietal cortex. A single electrode was 
advanced into LIP based on anatomical references, and was further located by 
signature neural activity observed during an instructed saccade task, which was 
also used to locate the RF of a neuron. Only neurons that were spatially selective 
during an instructed saccade task were included31. After the RF was determined 
using an instructed saccade task, the neuron’s spiking responses were recorded 
during the decision task.

The decision task was a standard variable-duration moving-dot direction-
discrimination that has been used previously. To achieve fixation at a trial’s 
start, the monkey’s eye position had to register within a window around the 
central fixation point no later than 3 s of fixation point appearance. The monkey 
then needed to maintain eye position within that window until the fixation 
point vanished, which was the go signal for the monkey to make a saccade  
to a target.

500 ms after the monkey achieved fixation, two saccadic choice targets 
appeared. One choice target was located in the RF of the neuron (the IN 
choice), whereas the other choice target was diametrically opposite (the 
OUT choice). Randomly, on half of the trials, the targets disappeared after  
100 ms (in figures showing PSTHs or single trials, we show only the targets-
ON trials). 200 ms after the appearance of the choice targets, a motion stimulus 
appeared in a circular aperture and the monkey had to decide the net direction 
of motion and communicate their decision with a saccade to one of the two 
choice targets.

The algorithm for generating the dot motion display was identical to that used 
in prior LIP studies31,33. Motion coherence strengths of 0, 3.2, 6.4, 12.8, 25.6 and 
51.2% were used. At 0% coherence (no motion on average), the monkey was ran-
domly rewarded with 50% probability. After the motion was displayed for a spec-
ified time (500–1,000 ms, uniform distribution), the motion stimulus vanished. 
The monkey continued to maintain fixation for another 500 ms until the fixation 
point also disappeared, thereby signaling that he could now saccade to the cor-
rect target location to obtain a reward. The monkey received a liquid reward  
200 ms after eye position entered the spatial window around the correct target. 
The monkey was considered to have made a saccade to a target location if eye 
position registered inside the spatial window around the target location within 
100 ms of leaving the fixation point window. Entry into the spatial window 
around the target also had to occur within 450 ms of the go signal to be con-
sidered a complete trial. About 800–1,200 trials were collected per recording 
session (per neuron).

Plotting neural response. PSTHs were smoothed with a gaussian filter (s.d., 
75 ms). In Figures 2 and 3, each conditional PSTH was stitched together by 
averaging temporally overlapping local PSTHs of length 500–1,000 ms that were 
obtained by aligning at the median event time. The spike trains corresponding to 
fixed windows around the aligned time are collected and averaged to obtain the 
local PSTHs. For example, for the dots motion event, we aligned to the onset and 
offset separately with −25–600-ms and −400–500-ms time windows, respectively. 
Conditional PSTHs with less than 20 trials are not shown and were excluded from 
the variance explained analysis.

Trials in Figure 4 were chosen by sorting the mean square error between the 
predicted spike rate and the boxcar smoothed spike trains in the 2-s window 

around saccade time. Only the correct decision trials with high coherence in the 
cross-validation set were used.

The autocorrelation function R(τ) was normalized by the mean firing rate m 
to quantify excess spike rate

R
m N

r t r t m
t

( )
( )

( ) ( )t
t

t= −










 −∑1 1

where t is over all bins, r(t) is the binned spike train, and N(τ) is the number 
of bins such that both r(t) and r(t − τ) are valid. We have removed the 0th lag 
component from the autocorrelation plots in Figure 5b.

model parameter representation. The spike trains were discretized into 1-ms 
bins. Each event was represented as a delta or boxcar function over time, and con-
volved with a filter (or a kernel; Supplementary Fig. 1). We used smooth temporal  
basis functions defined by raised cosine bumps separated by π/2 radians  
(50 ms) to parameterize the filters (Supplementary Fig. 10). Each event kernel 
was represented as a linear combination of basis functions that cover a specified 
range of time: 2-s window after fixation point onset, 1-s window after target onset,  
4-s window after target disappearance for the targets-FLASH condition and  
500-ms window after the dots disappearance. For the saccade response, we had two  
kernels, one for each direction which was anti-causal (that is, predicting spikes 
as a function of time prior to the saccade) for 2,504 ms for monkey J, and 2,662 
ms for monkey P and with total duration of 5.3 s. We grouped the directional 
coherence levels into five groups (to reduce the number of parameters): one for 
zero-coherences (0%) and two each for high (51.2%, 25.6%, 12.8%) and low (6.4%, 
3.2%) coherence in each direction. The dot-motion stimulus was represented as 
a boxcar of corresponding duration and the filter duration for each coherence 
level was 800 ms. The post-spike history filter was parameterized by 20 linear 
weights; 10 1-ms uniform bases (to represent the fast refractory effects) followed 
by 10 raised cosine bases stretched in a logarithmic scale that spanned 265 ms17 
(Supplementary Fig. 10). The total number of parameters for each neuron was 
402 (or 422 with post-spike history filter) from the 11 (or 12) filters above. To 
facilitate visual interpretation, a rank-2 parametrization was used for the five 
coherence kernels for Figures 1 and 2.

Fitting. The encoding model was fit by maximizing the log posterior, where we 
used a ridge prior to regularize the weights

L( ) ( ( )log( ) ) || ||q l l x q= − −
=
∑
t

T
t tr t

0

2∆ Η

where θ is a vector representing the weights on the basis functions, and ξ is 
chosen from a grid to maximize the marginal likelihood. We computed marginal  
likelihood p p p( | ) ( , ) ( )r rx q x q x q= ∫ | | d  using Laplace approximation.  
For each neuron, we divided the trials randomly into five equally sized 
sets to perform fivefold cross-validation. Maximizing marginal likelihood  
for selecting the hyperparameter ξ is known as evidence optimization, and it 
does not require cross-validation, hence we only use cross-validation sets for 
evaluating the resulting fits51.

Goodness-of-fit in Figure 3 was computed on the stitched PSTH smoothed 
with a 25-ms Gaussian for each stimulus coherence and behavioral choice  
pair. Conditions with less than 30 trials were discarded from the comparison. 
Spike prediction accuracy in Figure 5a was computed by taking the difference 
between the full model log-likelihood and the log-likelihood of a (single param-
eter) homogeneous Poisson model normalized by the number of spikes on the 
cross-validation set17.
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decoding. We derive the LLR (equation (4)) decoding rule. Let tc be the time 
when the decision is read out.

where the constant terms do not depend on r.

Note that the dot product can be computed continuously at every time point 
by a simple linear filter since w r rwT = − + ==∑ w i r t L i ti

L ( ) ( ) ( ) *1
 where w  is 

the time reversed weight vector, L is its length, and r(t) is the length-L vector of 
response history at time t.

CP quantifies the dependence between the spike counts of a neuron and  
a binary decision variable under a fixed sensory stimulus. Given a pair of  
randomly selected IN and OUT choice trials, the probability that the higher 
spike count belongs to the IN trial is CP. A high CP implies that the spike 
count covaries strongly with the decision. CP in Figure 6c,d was computed 
by randomly drawing 1,000 pseudorandom (IN, OUT) pairs of trials. We 
repeated this procedure 40 times to obtain the error bars. For traditional CP, 
we used the spike count in the −1,500 to –50 ms window before the saccade 
detection (for Fig. 6c, the beginning of the window was fixed at −1,500 ms,  
and x axis shows the end of the window). For the model-based CP, spike  
trains from the cross-validation set were projected onto the weights obtained 
from the training set.

A Supplementary methods checklist is available.
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51. Cunningham, J.P., Yu, B.M., Shenoy, K.V. & Sahani, M. Inferring neural firing rates 
from spike trains using Gaussian processes. Adv. Neural Inf. Process. Syst. 20, 
329–336 (2007).
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