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SUMMARY

The hippocampus plays a critical role in goal-
directed navigation. Across different environments,
however, hippocampal maps are randomized, mak-
ing it unclear how goal locations could be encoded
consistently. To address this question, we devel-
oped a virtual reality task with shifting reward contin-
gencies to distinguish place versus reward encoding.
Inmice performing the task, large-scale recordings in
CA1 and subiculum revealed a small, specialized cell
population that was only active near reward yet
whose activity could not be explained by sensory
cues or stereotyped reward anticipation behavior.
Across different virtual environments, most cells re-
mapped randomly, but reward encoding consistently
arose from a single pool of cells, suggesting that they
formed a dedicated channel for reward. These obser-
vations represent a significant departure from the
current understanding of CA1 as a relatively homo-
geneous ensemble without fixed coding properties
and provide a new candidate for the cellular basis
of goal memory in the hippocampus.

INTRODUCTION

The hippocampus is crucial for many kinds of spatial memory

(D’Hooge and De Deyn, 2001; Lalonde, 2002; Burgess et al.,

2002), in particular, learning to navigate to an unmarked goal

location (Morris et al., 1990; Rodrı́guez et al., 2002; Dupret

et al., 2010). Consistent with this role, individual hippocampal

neurons exhibit spatially modulated activity fields, or place fields,

that encode the animal’s current location (O’Keefe, 1976) and

collectively form a map-like representation of space (O’Keefe

and Nadel, 1978). These observations suggest that hippocampal

mapsmight serve to identify goal locations, but such a role seems

incompatible with other aspects of hippocampal coding.

Many neurons in the hippocampus are highly specific to the

features of each environment (Muller and Kubie, 1987; Anderson

and Jeffery, 2003; Leutgeb et al., 2005; McKenzie et al., 2014;

Rubin et al., 2015), and across different environments, the map

is essentially randomized (Leutgeb et al., 2005). While context-

specific representations are likely beneficial for episodicmemory
(Burgess et al., 2002), they seem poorly suited to guide goal-

directed navigation. In each new environment, any downstream

circuit sampling from the population would need to learn a new,

idiosyncratic code to localize the goal.

A potential solution for providing a context-invariant represen-

tation of the goal would be a specialized pool of cells (Burgess

and O’Keefe, 1996). If they existed, such cells would not track

place per se, but the goal itself, similar to the encoding of other

abstract categories (Quiroga et al., 2005; Lin et al., 2007). Across

different contexts, cells from the same population would be

active near the goal even while the rest of the hippocampal

ensemble remapped. If such cells provided information to other

brain regions, they would likely be present in the output layers of

the hippocampal formation, CA1 and the subiculum (van Strien

et al., 2009). And if they reflected a signal that influenced percep-

tion and behavior, the timing of their activity would likely be

correlated with the onset of motor activity related to goal

approach (Mello et al., 2015).

It remains unclear, however, whether such dedicated goal

cells exist (Poucet and Hok, 2017). Although the presence of a

goal can alter hippocampal activity in many respects (Ranck,

1973; Gothard et al., 1996; Hollup et al., 2001; Hok et al., 2007;

Dupret et al., 2010; McKenzie et al., 2013, 2014; Danielson

et al., 2016; Sarel et al., 2017), and in some cases, activity

is correlated with goal approach behaviors (Ranck, 1973;

Rosenzweig et al., 2003; Sarel et al., 2017), it has not been

demonstrated that any neurons are specialized for being active

near goals or that goal encoding is found in the same cells across

different environments. Moreover, adding a goal to an environ-

ment typically introduces a host of associated sensory and

behavioral features, such as visual or olfactory cues, or stereo-

typed motor behavior on approach to the goal or after reaching

it. These associated features create a fundamental ambiguity:

alterations to hippocampal activity might simply reflect the

constellation of sensorimotor events near the goal (Deshmukh

and Knierim, 2013; Deadwyler and Hampson, 2004; Aronov

et al., 2017) rather than serving to identify the goal itself.

To test for the existence of specialized goal-encoding cells, we

designed a virtual reality task in which activity near a goal loca-

tion could be compared across multiple environments and also

dissociated from confounding sensory and motor events.

Because any cells encoding the goal would likely be a small pop-

ulation (Hollup et al., 2001; Dupret et al., 2010; Dombeck et al.,

2010; van der Meer et al., 2010; Danielson et al., 2016), and

because previous studies have reported low yield from electrode

recordings in the subiculum (Sharp, 1997; Kim et al., 2012),
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Figure 1. A Distinct Population of Hippo-

campal Neurons Are Consistently Active

Near Reward

For a Figure360 author presentation of Figure 1,

see the figure legend at https://doi.org/10.1016/j.

neuron.2018.06.008#mmc2.

(A) Typical fields of view in CA1 and subiculum of

neurons expressing GCaMP3. Image widths are

200 mm.

(B) Schematic of the virtual linear track and reward

delivery location.

(C) COM locations of all cells with a spatial field

during condition Aend (9,761 cells, 11 mice). Black

lineshowsobserveddensity, andgraypatchesshow

density of a fittedmixture distribution consisting of a

uniform distribution (light gray) and a Gaussian dis-

tribution (dark gray, mean 355 cm, SD 25 cm).

(D) Schematic of condition in which reward de-

livery shifted between two locations.

(E) Activity of six simultaneously recorded CA1

neurons during the first three blocks of one session

of condition AendAmid. Each column shows the

spatially averaged activity of one cell in the first

(top), second (middle), and third (bottom) blocks.

Activity on each traversal was spatially binned

(width 10 cm), filtered (Gaussian kernel, SD 10 cm),

and averaged (70th percentile) across all traversals,

excepting the first three traversals of each block.

Black arrowheads indicate COM location

computed by pooling trials from all blocks of a

single context (Aend or Amid, see STAR Methods).

Red lines indicate reward location in each block.

(F) Top: track diagram. Bottom: COM locations

during Amid of cells with a spatially modulated field

located within 25 cm of reward during Aend (square

bracket beneath track diagram,1,171 cells, 6mice).

Red lines indicate reward location, and colored

bands indicate clusters of reward-associated cells

(purple) or cells whose field remained in the same

location (blue). Similar results were obtained when

considering CA1 and subiculum separately (Fig-

ure S1C).

(G) The COM locations of all cells with spatial fields

during both Aend and Amid (3,842 cells, 6 mice).

Red lines indicate reward location. Arrows indicate

regions defining reward-associated cells (purple)

and place cells with stable field locations (blue).

Coloredmarkers indicate the COM locations of the

examples in (E). Similar results were obtained

when considering CA1 and subiculum separately

(Figure S1D).
optical imaging was used to record activity in transgenic mice

expressing the calcium indicator GCaMP3 (Rickgauer et al.,

2014). Mice learned to identify goals at multiple locations within

the same or different environments, and the activity of thousands

of individual neurons was tracked to identify whether any

seemed specialized for being active near goals.

RESULTS

Moving Reward Location within One Environment
Mice were trained to traverse a virtual reality environment in an

enclosure that allowed simultaneous two-photon imaging at
180 Neuron 99, 179–193, July 11, 2018
cellular resolution (Harvey et al., 2009; Dombeck et al., 2010;

Domnisoru et al., 2013). The virtual environment was a linear

track with a variety of wall textures and colors that provided a

unique visual scene at each point (Figure 1B; Figure S1A). Like

many studies of goal-directed navigation, the goal used here

was a reward presented at a fixed point in the environment.

Mice were water restricted, and when they reached a certain

location on the track (366 cm), a small water reward was deliv-

ered from a tube that was always present near the mouth. After

the end of the track, the same pattern of visual features and

reward delivery was repeated, creating the impression of an

infinite repeating corridor.

https://doi.org/10.1016/j.neuron.2018.06.008#mmc2
https://doi.org/10.1016/j.neuron.2018.06.008#mmc2


Table 1. Recorded Cell Counts for Each Mouse

Mouse Condition Aend Condition AendAmid Condition AB

N Spatial field (%) N Spatial field (%) N Spatial field (%)

Aend only Amid only both A only B only both

EM1 925 59 2,702 20 20 23 – – – –

EM2 1,981 64 1,031 20 13 21 – – – –

EM3 4,137 53 2,353 20 14 35 – – – –

EM4 742 17 3,274 15 12 6 – – – –

EM5 149 70 6,670 16 16 17 – – – –

EM6 328 59 3,588 20 18 24 – – – –

AendAmid total 8,262 54 19,618 18 16 20 – – – –

AB1 4,519 72 – – – – 1,645 25 22 27

AB2 1,431 72 – – – – 2,666 21 20 31

AB3 369 72 – – – – 1,234 25 21 26

AB4 82 39 – – – – 226 31 12 26

AB5 1,024 73 – – – – 1,448 27 21 35

AB total 7,214 72 – – – – 7,425 24 20 30

EM7 – – 2,524 12 15 23 – – – –

Counts are shown separately for mice used in population analyses (EM1–EM6 for condition AendAmid, AB1–AB5 for condition AB) and one mouse used

for providing examples of many simultaneously recorded cells (EM7). Also shown is the fraction of recorded cells with a spatially modulated field in

each condition. Note that the recording and cell-finding techniques were likely biased toward detecting neurons with greater activity, potentially

increasing the fraction of cells with a spatial field compared to estimates from other techniques.
While mice interacted with the virtual environment, optical re-

cordings of neural activity weremade in CA1 and subiculum (Fig-

ure 1A). As in other studies in real and virtual environments

(O’Keefe and Nadel, 1978; Dombeck et al., 2010; Aronov and

Tank, 2014), many neurons in both regions exhibited place fields,

i.e., activity patterns that were significantly modulated by posi-

tion on the track (see Table 1). The activity location of each

spatially modulated cell was summarized by the center of

mass (COM) of its activity averaged across trials.

The COMs of spatial fields were distributed throughout most

of the track at uniform density (Muller et al., 1987; O’Keefe and

Speakman, 1987), but an excess density was located near the

reward, both when pooling all cells (Figure 1C) and consid-

ering CA1 and subiculum separately (Figure S1B). This

enhancement of the representation near reward was consis-

tent with previous studies in both real and virtual environments

(Hollup et al., 2001; Dupret et al., 2010; Dombeck et al., 2010;

Danielson et al., 2016), and it permitted subsequent experi-

ments to characterize the cells composing the increased

density.

Two possibilities were considered. First, the excess fields

might have reflected an increased number of place fields, i.e.,

fields encoding a particular position on the track as defined by

visual landmarks. Such fields might have formed at a higher

rate near reward due to the salience of the location, increased

occupancy time, or other factors (Hetherington and Shapiro,

1997). Alternatively, the excess fields might have encoded a fac-

tor related to the reward, in which case they could be dissociated

from the reward-adjacent environmental cues. To distinguish

these possibilities, we sometimes delivered the reward at a

different point on the track, alternating block-wise throughout

the session (condition AendAmid; Figure 1D).
During reward location alternation sessions, many cells

exhibited spatial fields (Table 1), and the fields of most cells re-

mained in the same location. At the same time, the fields of

some cells shifted to match the reward location. These two

response types are illustrated for one session (Figure 1E): stable

spatial fields were observed throughout the track (cells 1–3),

while a separate population shifted to be consistently located

near reward (cells 4–6).

Stability versus shifting to track the reward was a discrete dif-

ference. Of cells active near the reward during Aend (Figure 1F,

black bracket), those with spatial fields during Amid tended to

be active in one of two locations: either near the same part of

the track (blue band) or near the reward location at 166 cm

(purple band). This pattern was significantly bimodal (p < 1e–5,

Hartigan’s dip test), indicating that cells associated with reward

formed a discrete subgroup andwere thus distinct from those re-

maining active near the same visual landmarks.

To identify response types in the entire population, we

compared field locations for all cells with a spatial field in both

contexts (Figure 1G). When the reward shifted, the fields of

most cells either remained in the same location (blue arrow) or re-

mapped randomly (background scatter), while a separate popu-

lation shifted to be consistently active near reward (purple ar-

row). The latter group will be referred to as ‘‘reward-associated

cells,’’ and they composed 4.2% of cells with fields in both con-

ditions (0.8% of all recorded cells). Of the remaining cells, five

response types were observed: cells with no spatial field in either

condition (46.8% of all recorded cells), cells with a field in Aend

only (17.8%), cells with a field in Amid only (15.8%), cells with a

field in both contexts that shifted by less than 50 cm (10.9%),

and cells with a field in both contexts that remapped to new,

apparently random locations (7.9%). These response types are
Neuron 99, 179–193, July 11, 2018 181



consistent with the well-characterized physiology previously

described in CA1, in the subiculum, and throughout the hippo-

campal formation (Andersen et al., 2007), and they will be

referred to as ‘‘place cells.’’ Against this backdrop, reward-asso-

ciated cells stood out as a separate population, showing that at

least some cells in the excess density were related to the reward

rather than track position.

An additional distinction can be made among reward-associ-

ated cells: some were active prior to reward delivery, and others

were active at a location subsequent to the reward. While both

might be relevant for navigation, cells active before reward are

particularly noteworthy, since their activity could not be ex-

plained as a response to either visual cues or reward delivery

and consumption. Instead, they must have been driven by an

expectation signal that arose internally, encoding either a spe-

cific behavior or a cognitive state associated with reward antic-

ipation, a distinction that will be considered below. In either case,

reward-associated cells with fields located prior to both rewards

will be referred to as ‘‘reward-predictive cells,’’ in the sense that

their field locations consistently indicated where the reward

would be delivered even before it arrived. The name is not in-

tended to suggest that they necessarily play a role in memory

or reward-prediction tasks, though these possibilities will be

considered. Among reward-associated cells, 34% were reward

predictive, 34% had fields located subsequent to both rewards,

and the remainder had fields before one reward and after the

other. Although reward-predictive cells did not seem to form a

discretely different subset, in subsequent sections they will be

singled out for consideration because their activity was most

readily comparable to reward anticipation behavior.

Switching between Two Environments
If reward-associated cells were truly specialized to encode

reward, downstream circuits would likely benefit from those sig-

nals arising from the same cell population in each environment.

Contrary to the consistency that this scheme requires, hippo-

campal representations seem to be largely randomized in

different spatial contexts (Leutgeb et al., 2005; McKenzie et al.,

2016; though see Rubin et al., 2015). We therefore asked

whether reward-associated activity would be re-assigned to

different cells in a new environment or instead arise from the

same population.

To distinguish these possibilities, a separate cohort of mice

was trained on a new paradigm, condition AB (Figure 2A), in

which mice alternated block-wise between the original track

(track A) and a second, shorter track with distinct visual textures

(track B, Figure S2A). On track B, reward was also delivered near

the end, and on both tracks, spatial fields occurred at increased

density near reward (Figure S2B).

As mice alternated between tracks A and B, the fields of some

cells shifted to different, apparently random locations, while

others were consistently active near reward, indicating that

reward-associated cells formed a separate group. These two

response types are illustrated for several cells in Figure 2B,

and they were shown to be representative in several popula-

tion-level analyses.

Across the tracks, most spatial fields shifted in a manner

consistent with global remapping. Field locations (Figure 2D)
182 Neuron 99, 179–193, July 11, 2018
spanned the complete range of possible shifts, and their

density appeared approximately uniform, possibly excepting

regions near reward. This effect was confirmed quantitatively

by comparing to a previous study that observed global remap-

ping and employed similar recording techniques (Danielson

et al., 2016). That study found that the average population vector

correlation across two distinct physical treadmills was 0.22,

while in the present study, the equivalent value was 0.099

(95% confidence interval 0.094 to 0.103). This comparison

confirmed that switching between tracks A and B elicited global

remapping and provided further evidence that virtual environ-

ments are capable of reproducing much of the same hippocam-

pal phenomenology that has been characterized using other

methods (Harvey et al., 2009; Dombeck et al., 2010; Domnisoru

et al., 2013; Aronov and Tank, 2014).

Despite random remapping among most neurons, reward-

associated fields appeared to be produced by largely the

same cells on both tracks. This was first apparent by comparing

remapping in two subsets of cells (Figure 2C). While most place

cells remapped to random locations (wide bracket, upper histo-

gram), cells with a field near reward on track A tended to be

active near reward on track B (narrow bracket, lower histogram).

To demonstrate this effect statistically, we generated quantita-

tive hypotheses for how switching between tracks affected field

locations. The first hypothesis, H1, postulated that cell identities

were randomly shuffled between the two conditions, though, on

each track, there was still an increased field density near reward.

Under H1, a given cell could, for example, contribute to the

excess density of fields near reward in one environment and

then encode a random place on the track in the other environ-

ment. The second hypothesis, H2, postulated that cell identities

were perfectly preserved. Under H2, reward-associated cells

would continue tomaintain fields near the reward on both tracks.

Meanwhile, place cells would remap randomly, including to loca-

tions near the reward but with the same probability as other parts

of the track. Each of these hypotheses predicted a particular

distribution for the density of field locations on the two tracks

(Figure 2E). To account for a partial contribution of each hypoth-

esis, a weighted combination of the H1 and H2 distributions was

fit (see STAR Methods).

The observed density of field locations (Figure 2F) exhibited an

approximately uniform density everywhere, except for an

increased density at the intersection of reward locations.

Notably, there was no increase in density along the reward lines

as predicted by H1, suggesting that the data were entirely ac-

counted for by H2. This qualitative impression was confirmed

by a numerical fit. Among cells composing the excess density,

all remapped according to H2 (100.0%, 95% confidence interval

99.6%–100.0%). The same result was found when CA1 and

subiculum were analyzed separately (Figure S2C). Reward-

associated cells with a field on both tracks composed 4.4% of

all recorded cells in CA1 and 5.7% in subiculum.

The preceding analysis focused exclusively on cells with a

spatial field on both tracks (‘‘dual-track cells’’). For cells with

a field on only one track (‘‘single-track cells’’), remapping could

not be followed across environments. However, the identity of

single-track cells (place cells or reward-associated cells) could

be inferred by incorporating an additional assumption: among
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Figure 2. Reward-Associated Cell Identity

Persists across Contexts

(A) Schematic of condition in which mice were

teleported between two different virtual linear

tracks.

(B) Activity of six simultaneously recorded CA1

neurons during the first three blocks of one session

of condition AB. Same conventions and spatial-

averaging procedure as in Figure 1E, except that

all traversals were included.

(C) COM locations on track B for two populations

of cells. Upper histogram: cells with a spatial field

on track A located between 25 cm after track start

and 25 cm before reward (wide square bracket).

Lower histogram: cells with a spatial field on track

A located in the 25 cm preceding reward (narrow

square bracket).

(D) COM locations of all cells with a spatial field on

both track A and track B (2,168 cells, 5 mice). Red

lines indicate reward locations. Gray line indicates

proportionally equivalent locations on the two

tracks. Coloredmarkers indicate COM locations of

examples in (B).

(E) Schematic of COM density under two hypoth-

eses for how spatial fields remapped (see text).

(F) Observed density of COMs on track A and track

B (same data as in D), spatially binned (width

12.5 cm) and smoothed (2D Gaussian kernel, SD

20 cm). Due to circularity of the track, increased

density is present in all four corners.

(G) Schematic summarizing the observed remap-

ping. Among both place cells and reward-associ-

ated cells, cell identities were fixed, though spatial

fields were formed by a different subset of cells in

each environment. Place cell fields (blue) covered

the track uniformly, while reward-associated cell

fields (purple) were only located near reward.

Neuron 99, 179–193, July 11, 2018 183
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Figure 3. Reward-Predictive Cell Activity Is Correlated with Anticipation of Reward

(A) Representative example of reward approach behaviors.

(B) Movement speeds during one session with slowing threshold (dashed line).

(C) Spatially binned speed for single trials (gray lines) and averaged across trials (black lines). Red lines indicate reward.

(D) Left: spatially binned speed for the first three blocks of one session of condition AendAmid; first block is top panel, same conventions as in (B). The first three

traversals of each block are omitted. Right: running speed on the first 50 traversals.

(E) Reward approach behavior on six trials from the session depicted in (C) comparing speed (gray), slowing onset (black), and activity (purple) of one reward-

predictive cell in CA1.

(legend continued on next page)
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place cells with a spatial field on at least one track, a random

cross section would also have a field on the other track. This

assumption postulated that, for example, all place cells with a

field on track A were equally likely to have a field on track B

regardless of their track A field location. This assumption,

based on findings of independence across environments

(Leutgeb et al., 2005), implied that single-track and dual-track

place cells would exhibit the same COM density. Since the

preceding analysis established that dual-track place cells

were uniformly distributed, it followed that single-track place

cells were also uniform, and thus, among single-track cells,

the excess density was composed exclusively of reward-

associated cells (Figure S2D).

This analysis demonstrated that cell identity was perfectly

(100.0%) preserved across the two environments. While the

population of place cells remapped to random locations, consis-

tent with the global remapping observed in previous studies,

reward-associated cells did not deviate from the reward loca-

tion. Moreover, reward-associated cells fully accounted for the

excess density of fields near reward. This sharp division of cell

identities revealed an unexpected degree of consistency in the

hippocampal encoding of reward and was particularly surprising

in CA1, where cell classes that persist across contexts have not

been described before.

In this sense, reward-associated cells seemed to form a dedi-

cated channel for encoding the reward location. Yet their encod-

ing was also context specific: some cells exhibited a field near

reward on both tracks, while others formed fields on only one

track, and, presumably, some reward-associated cells not active

on either track would have developed fields on a third track.

Thus, the identities of reward-associated cells were invariant to

context, but, just as among place cells, each context elicited

spatial fields among a different subset (Figure 2G). This property

might allow reward-associated cells to serve two roles simulta-

neously: providing a simple readout of reward location when

considering the summed signal of all cells yet also encoding

the current context based on which neurons are active.

Correlation of Reward-Predictive Cells with Reward
Anticipation
The previous results have shown that many reward-associated

cells reliably indicated the reward location, even across different

contexts, but it has not been addressed whether mice them-

selves could predict reward (e.g., anticipatory licking). If so, it

would be important to identify whether activity was linked to

the behavioral prediction or whether, instead, reward-associ-

ated cells encoded reward location independently of behavior.

To make this comparison most effectively, we considered only
(F) Speed (gray) and activity (purple) on all traversals in which slowing onset (black

in (E). Each pixel shows average in a 2 cm spatial bin. Black tick marks show ex

(G) Activity of a simultaneously recorded place cell, same conventions as in (E),

(H) Statistical test to evaluate correlation between activity and speed for the cell

(I) Left: COM locations of cells with spatial fields in both Aend and Amid (gray poin

slowing-correlated during Aend (see definition in text). Right: lower bound of estim

smoothed (see STAR Methods). Dashed lines indicate approximate boundaries

(J) Top: average activity of 198 slowing-correlated cells (6 mice, maroon trace) du

cells, gray trace). Red line indicates Aend reward location. Bottom: activity of same

Amid (solid) and Aend (dashed). Bands indicate SEM. For arrowheads, see text.
reward-predictive cells (those active before reward in both con-

texts) in some of the following analyses.

In mice that had experienced many traversals of condition

Aend, two kinds of anticipation behaviors were apparent: slowing

down prior to reward delivery and licking the reward tube (Fig-

ure 3A). Slowing was typically initiated prior to licking (Figures

S3A–S3C), making it the earliest reliable indicator of reward

anticipation. In addition, slowing was observed more frequently

than licking (data not shown), and therefore, slowing was used

to indicate the onset of reward anticipation.

Slowing behavior developed gradually throughout training

and, with sufficient experience, was observed on nearly every

trial, as illustrated here for one mouse (Figure 3C). Importantly,

in condition AendAmid, which involved shifting reward delivery,

the slowing location rapidly adapted to the current reward loca-

tion, typically within the first 2–3 traversals (Figure 3D). This

demonstrated that the mouse understood the reward alternation

paradigm and further showed that slowly walking was a robust

phenomenon that could be used to track reward anticipation at

single-trial resolution.

For quantitative analyses, slowing onset required a precise

definition. Consistent with previous experiments showing a

discrete onset of anticipation behaviors (Mello et al., 2015),

movement speeds here were significantly bimodal (Figure 3B,

p< 1e–5, Hartigan’s dip test). On each trial, the onset of reward

anticipation was defined as speed dropping below a mouse-

specific threshold for the last time prior to reward delivery.

The timing of reward anticipation seemed to be precisely

aligned to the activity of many reward-predictive cells, but gener-

ally not place cells. This difference between reward-predictive

cells and place cells was demonstrated in three quantitative

population analyses described below and is illustrated for two

simultaneously recorded cells in Figures 3E and 3F. On a few

representative single traversals (Figure 3E) and across all

traversals (Figure 3F), the activity of the reward-predictive cell

occurred at approximately the same distance after the onset of

slowing. In contrast, a simultaneously recorded place cell ex-

hibited no such correlation (Figure 3G). These visual impressions

were confirmed to be significant using a statistical metric, the

percentile correlation, in which the observed value was

compared to a shuffle distribution (Figure 3H; see STAR

Methods).

To show that these examples were representative of all re-

corded neurons during condition AendAmid, we compared the

percentile correlation of each cell to how the cell remapped (Fig-

ure 3I). Cells that were ‘‘slowing-correlated,’’ defined as a

percentile correlation of 5 or less, were primarily those that main-

tained fields near the reward (dashed purple outline). Although
lines) occurred within 60 cmbefore the reward location (red line) for same cell as

ample trials plotted in (E).

except activity is shown in blue.

s depicted in (F) and (G).

ts, same data as Figure 1G). Highlighted cells (maroon circles, 116 cells) were

ated density of slowing-correlated cells, binned by COM location, and spatially

of reward-predictive cells (purple) and stable place cells (blue).

ring Aend blocks, and all simultaneously recorded cells with a spatial field (7,343

cells during the interleaved Amid blocks. Red lines indicate reward location for
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some cells that exhibited spatial fields in the same location

across contexts (dashed blue outline) were also slowing-corre-

lated, they did not occur at a rate exceeding chance.

This result was confirmed in a separate, non-parametric anal-

ysis that did not explicitly measure cell density. For cells that

were slowing-correlated during Aend blocks, fluorescence activ-

ity was plotted as a function of position by averaging across cells

and traversals (Figure 3J, top panel). As expected, most activity

of slowing-correlated cells was located just prior to the reward

(solid arrowhead), while in the general population, it was distrib-

uted relatively uniformly (gray trace). During the interleaved Amid

blocks (bottom panel), the activity peak of slowing-correlated

cells shifted to the current reward location (solid arrowhead),

showing that many slowing-correlated cells were also reward-

predictive cells. However, at the location where the peak had

been observed previously, there was no increase above baseline

(hollow arrowhead), showing that few, if any, place cells were

slowing-correlated. A similar pattern was observed for cells

that were slowing-correlated during Amid (Figures S3D–S3F)

and also when considering CA1 and subiculum separately

(data not shown).

The result was also confirmed using a separate metric for

slowing, the slowing correlation index (SCI; see STAR Methods).

Whereas the percentile correlation score showed a relationship

between speed and activity, the SCI more specifically assessed

whether transients tended to occur at a fixed offset relative to

slowing. Using this metric, we showed that more reward-predic-

tive cells than place cells were significantly aligned with slowing

(Figure S4).

These analyses demonstrated that during condition AendAmid,

correlation with slowing was not a general feature of the hippo-

campal ensemble. Instead, it was found primarily among

reward-predictive cells and, in some cases, among a smaller

fraction of place cells.

Interestingly, the correlation with slowing was less prevalent

during condition AB. Though some slowing-correlated cells

seemed to be present, they composed a much smaller fraction

of the total population (5.4% of cells with sufficient activity

were slowing-correlated on track A during condition AB versus

11.2% during Aend blocks of condition AendAmid). The discrep-

ancy showed that reward-predictive cells were not generally

aligned to all instances of reward anticipation, but, instead, their

recruitment depended on particular features of the task. In this

case, the important difference might have been increased cogni-

tive demand: during condition AendAmid, anticipating the reward

required accurate recall of recent events, whereas during condi-

tion AB, anticipation could have relied entirely on the immediate

visual cues.

Given that many reward-predictive cells were active during

slow movement, a behavioral state that can be associated with

decreased place cell activity (McNaughton et al., 1983), it was

possible that during reward anticipation, the entire population

switched from encoding place to encoding reward, in which

case place cells and reward-predictive cells would reflect

disjoint states of hippocampal activity. A previous study found,

for example, that attending to different features caused CA1 to

switch between mutually exclusive maps of the same environ-

ment on the timescale of � 1 s (Kelemen and Fenton, 2010). If
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the same were true of place cells and reward-predictive cells,

their activity would be negatively correlated. In fact, their activity

was slightly positively correlated (Figure 4), with the two popula-

tions often being active simultaneously, at least on timescales

that can be resolved by imaging calcium transients. Thus,

reward-predictive cells and place cells seemed to be part of

the same map, performing complementary, rather than mutually

exclusive, functions.

Sequential Activation of Reward-Predictive Cells
To better understand the correlation between anticipation

behavior and reward-predictive cell activity, we examined their

relative timing at the population level. This analysis revealed a

sequence of activations that was highly consistent across con-

texts, as illustrated for one session in Figures 5A and 5B.

Comparing blocks of Aend to Amid, reward-predictive cells

were active in almost exactly the same order, with a highly sig-

nificant correlation in their peak activity times (p < 0.0001).

Moreover, their timing across different contexts was nearly

identical, with the peak fluorescence shifting by a median of

only 0.4 s. This was a remarkably brief offset in light of several

factors: the potential for behavioral variability, the temporal

uncertainty of calcium imaging methods, and the fact that the

sequence spanned more than 6 s. The long duration of the

sequence also ruled out the possibility that reward-predictive

cells were triggered by sharp wave ripples, since the ripple-

triggered events detectable with calcium imaging span less

than 0.5 s (Malvache et al., 2016).

Activations in approximately the same order were also found

for the full populations of reward-predictive cells in both condi-

tions (Figure 5C) and also when considering CA1 and subiculum

separately (data not shown). Such similar sequential activation,

regardless of location or environment, showed that even individ-

ual reward-predictive cells seemed to be highly specialized.

Reward-Predictive Cell Sequences Did Not Encode
Reward Anticipation Behaviors
The previous results have shown that reward-associated cells

formed a distinct and specialized population that was consis-

tently active near reward and that the timing of many reward-

predictive cells was tightly correlated with reward anticipation.

It was unclear, however, whether reward-predictive cells were,

in fact, triggered by anticipation behaviors or if instead their

activity could be dissociated from behavior. It seemed unlikely

that reward-predictive cells would encode the motor actions of

slowing down and licking, given that many were not correlated

with slowing, and that different cognitive demands resulted in

different fractions of the population exhibiting correlation. Never-

theless, this possibility was tested in four control analyses.

First, the relative timing of activity and behavior was

compared. If reward-predictive cell sequences were triggered

by slowing per se, they would always start after speed began

to decrease. Contrary to this prediction, in several preparations,

the earliest reward-predictive cells became active prior to any

detectable reduction in speed (Figure 5D).

To show that reward-predictive cells did not encode

events preceding a decrease in speed, such as changing gait

or premotor planning, we compared reward approach with other
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Figure 4. Place Cells and Reward-Predic-

tive Cells Were Active Simultaneously

(A) For each of six sessions (columns) from four

mice, ten representative pre-reward walking bouts

(rows) are shown. For each bout, colored traces

show activity averaged across all reward-predic-

tive cells (purple) or reward-adjacent place cells

(blue). Bouts are sorted according to the fraction of

total activity that arose from place cells (most to

least). Activity was averaged in 0.3 s bins and is

shown beginning 1 s prior to the onset of slowing

(black vertical line) until reward delivery (red verti-

cal line) or, at most, 5 s. On many bouts, reward

cells and place cells were active simultaneously.

(B) Example illustrating how the activity of each

bout is summarized in the population analysis of

(C). For a single bout (left, same conventions

as in A), activity is plotted as a scatter (right)

comparing place cells (horizontal) to reward-pre-

dictive cells (vertical).

(C) Two-dimensional histogram summarizing

activity from all pre-reward walking bouts in one

session. Place and reward-predictive cells were

frequently active simultaneously, and their activity

was significantly correlated.

(D) Two-dimensional histogram summarizing

activity from all pre-reward walking bouts during

condition AendAmid, same conventions as in (C).

To enhance readability, tails of the distribution

(0.3% of time points) are not shown. The

activity of place cells and reward-predictive

cells was significantly correlated, indicating a

tendency for the two populations to be active

simultaneously.

(E) Control to ensure that the positive correlation

was not due to place cells and reward-predictive

cells having a similar time course. When activity

was shuffled across all sessions (top), the distri-

bution of correlations (black histogram) was lower

than the observed value (black vertical line). This

was also true when activity was shuffled only

within each session (bottom).

(F) Control to ensure that the correlation was not

due to the residual fluorescence time course

following cessation of activity. For each cell, the

original time course was binarized by zeroing all

time points following the initial rise in each tran-

sient and setting the amplitude of all non-zero

points to 1 (top; see STAR Methods). After using

these binarized time courses to perform the same

analysis as in the bottom of (E), there was still a significant correlation between the activity of reward-predictive cells and place cells (bottom). These results show

that reward-adjacent place cells and reward-predictive cells were not anti-correlated, and, in fact, the two populations tended to be active simultaneously more

often than expected by chance.
instances in which mice slowed down. While running between

reward locations during condition AendAmid, mice occasionally

slowed, stopped, and then resumed running. These brief rest

events were initiated at locations throughout the track and

were almost never accompanied by licking (Figures S5B–S5D),

suggesting that they were unrelated to reward anticipation. At

the onset of rest events, reward-predictive cell activity was

indistinguishable from the baseline activity during running

(0.9 ± 0.4%DF=F, mean ± SE versus 1.12 ± 0.03, p = 0.57,

Student’s t test) and far below the average activity observed

when mice slowed prior to reward (7.1 ± 0.8). In the first 1 s after
slowing, activity during rest events remained indistinguishable

from baseline (1.3 ± 0.03, p = 0.65), while during pre-reward

walking bouts, it increased even further (10.4 ± 0.7). These

comparisons demonstrated that reward-predictive cells did not

encode events associated with slowing down, since their activity

remained at baseline levels when slowing was unrelated to

reward anticipation.

It was also shown that reward-predictive cell activity did not

encode the current lick rate. Comparing the 3 s intervals just

before and after reward delivery, the lick rate increased more

than 4-fold (1.01 ± 0.01 Hz pre versus 4.73 ± 0.01 post), while
Neuron 99, 179–193, July 11, 2018 187
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Figure 5. Reward-Predictive Cells Formed

a Consistent Sequence that Began Prior to

Reward Anticipation Behavior

(A) Mean activity of 22 simultaneously recorded

reward-predictive cells from CA1 shown in the

same order for Aend (left) and Amid (right). Small

black lines indicate time of peak activity. Cells

were selected for having COM locations within

50 cm before reward and being active on at least

20 trials in the 100 cm before reward. Time cour-

ses were filtered with a Gaussian kernel (SD 0.1 s).

(B) Time of peak activity relative to slowing for the

same cells as in (A). Bars indicate width at half max

of unfiltered trace.

(C) Time of peak activity relative to slowing for all

reward-associated cells recorded during condi-

tion AendAmid (218 cells, 6 mice) and condition AB

(243 cells, 5 mice). Bars indicate width at half max

of unfiltered trace.

(D) Five reward-predictive cells active early in their

respective sequences. In each case, fluorescence

increased 1–2 s before speed decreased. Cells

were recorded in fourmice,witheachcolumnacell.

Cells in columns 2 and 3 were recorded simulta-

neously. The cell in column 4 was from subiculum,

and others were from CA1. Top: speed and activity

on single traversals, same conventions as in Fig-

ure 3F. Activity on each trial was normalized to have

a maximum of 1. Red lines indicate the time of

rewarddeliverywhen it occurredearly enough tobe

within plot bounds. Bottom: average across trials of

activity (80th percentile) and speed (mean).
the fluorescence of reward-predictive cells fell by nearly half

(11.5 ± 0.1 %DF=F pre versus 5.99 ± 0.08 post).

Finally, it was shown that reward-predictive cells were not

responding to the full constellation of anticipation behaviors,

namely slowing down, walking at a low speed for several sec-

onds, and simultaneously licking. This possibility was tested

using a natural control: ‘‘error’’ trials.

During condition AendAmid, mice frequently slowed, walked, and

licked prior to reward, but, sometimes, they exhibited these be-

haviors at other locations, especially before the rewarded location

of the non-current context (e.g., walking before 166 cm when the

reward was delivered at 366 cm; Figures S5E and S5F). These

‘‘incorrect’’ walking bouts were defined as those overlapping the

non-current reward location (see STAR Methods), and they were

accompanied by significantly more licking than walking bouts
188 Neuron 99, 179–193, July 11, 2018
that did not overlap a rewarded location

(2.12 versus 0.85 licks/bout, p < 1e–10,

Student’s t test), showing that mice had

an expectation of reward. If reward-pre-

dictive cells encoded the stereotyped be-

haviorsof rewardanticipation, their activity

should not depend on where anticipation

took place. In particular, they should be

equally active during walking bouts before

the current or non-current reward location.

Figure 6A shows two example walking

bouts from the same session, one before
the current reward location and one spanning the non-current

reward location. In both cases, the mouse suddenly slowed

down and then walked for several seconds while licking at a

rate of approximately 1 Hz. Despite the similarity of anticipation

behaviors, reward-predictive cells were much more active

when approaching the current reward site than the non-current

reward site.

These examples are representative of the entire session (Fig-

ure 6B). Average movement speeds were virtually identical in

the two categories, yet reward-predictive cell activity was

more than two times greater when walking before the current

reward. An even greater difference in activity was observed

when considering the full population of reward-predictive cells

recorded from mice in both conditions (Figure 6C). Several

control analyses verified that differential activity could not be
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Figure 6. Reward-Predictive Cell Activity

Cannot Be Explained by Reward Anticipa-

tion Behavior

(A and B) Activity is shown for the same 22 simul-

taneously recorded reward-predictive cells de-

picted in Figure 5A.

(A) Instantaneous movement speed (top), activity

of each reward-predictive cell plotted in the

same order as in Figure 5A (middle), and popu-

lation mean activity (bottom) during two walking

bouts, preceding the current (left) or non-current

(right) reward location. Black lines indicate onset

of walking, red lines indicate reward, and gray

lines indicate the end of the unrewarded walking

bout.

(B) Top: movement speed averaged over all

walking bouts from this session, excluding the

first three traversals of each block, grouped by

whether they preceded current (pink) or non-cur-

rent (blue-green) reward. Bottom: simultaneous

activity of reward-predictive cells. Single-trial

traces were averaged in half-second chunks

before combining across trials; bands show SEM

across trials.

(C) Average speed relative to slowing threshold

(top) and average activity of reward-predictive

cells (bottom). Only includes sessions in

which reward-predictive cells were recorded.

A subset of bouts was manually chosen (see

STAR Methods) to maximize the similarity of

average speed; for all bouts, see Figure S6.

Condition AendAmid only includes data from day 7

of training or later to ensure that mice were familiar with the reward delivery paradigm. Same averaging procedure and plotting conventions as in (B).

(D) Comparison of how quickly slowing behavior and reward-predictive cell activity adapt to a new context. Condition AB only includes data from track A. Top:

fraction of traversals in whichmice exhibited a pre-rewardwalking bout (pink) or an unrewardedwalking bout spanning the non-current reward location (blue-green).

Error bars indicate 95% confidence interval. Bottom: mean fluorescence of reward-predictive cells in the first 5 s after slowing onset; error bars show SEM.
ascribed to a difference in the average lick rate, the overall level

of hippocampal activity, or selection bias introduced when clas-

sifying reward-predictive cells (Figures S6 and S7).

This comparison demonstrated that reward-predictive cells did

not encode the behavioral events that typically preceded reward.

Instead of producing a stereotyped response to all instances of

reward anticipation, their activity was strongly modulated by the

particular circumstances in which anticipation took place. This

suggested that they encoded a cognitive variable that reflected

the internal state, one that apparently differed when the mouse

was walking at the current or non-current reward location.

Because the previous analyses averaged across trials and

excluded the first three traversals of each block, a separate anal-

ysis was performed to identify how rapidly reward-predictive

cells remapped after the context switched (Figure 6D). During

condition AendAmid, activity shifted after one or two exposures

to the new reward location, whereas during condition AB, the

change was immediate. These time courses were similar to the

speed at which reward anticipation shifted to the new location,

revealing onemore respect in which reward-predictive cell activ-

ity was aligned to changes in behavior.

DISCUSSION

We have described a novel population of neurons in two

major hippocampal output structures, CA1 and the subiculum.
Reward-associated cells exhibited activity fields that did not

deviate from the reward location, and these cells entirely ac-

counted for the excess density of fields near reward. Their

pattern of remapping cleanly distinguished them from simulta-

neously recorded place cells, both when reward was shifted

within one environment and most place fields remained stable

and across environments when place cells remapped to random

locations. During these manipulations, the population of reward-

associated cells never mixed with place cells (0.0% crossover),

suggesting that they formed a dedicated channel for encoding

reward. The timing of many reward-predictive cells was corre-

lated with the onset of reward anticipation, yet their activity could

be dissociated from anticipation behavior, indicating that they

encoded a cognitive variable related to the expectation of

reward. These findings demonstrate an unexpected degree of

stability in the hippocampal encoding and are consistent with

reward-associated cells playing an important role in goal-

directed navigation. More broadly, they reveal an important

new target for studying reward memory in the hippocampus.

Reward-associated cells appear to be the experimental

confirmation of a cell class hypothesizedmore than two decades

ago (Burgess and O’Keefe, 1996). Burgess and O’Keefe pro-

posed that dedicated ‘‘goal cells’’ might serve as an anchor point

for devising goal-directed trajectories. Interestingly, another

component of their proposed algorithm, cells providing a

context-specific encoding of distance and angle to the goal,
Neuron 99, 179–193, July 11, 2018 189



has recently been described in bats (Sarel et al., 2017). Other

models of navigation have also been developed in which

reward-associated cells could serve a critical function. For

example, animals might explore possible routes in advance of

movement (Pfeiffer and Foster, 2013; Johnson and Redish,

2007), in which case activating reward-associated cells would

indicate a successful route. Other observations have suggested

that the computation proceeds in reverse, from the goal to the

current location (Ambrose et al., 2016), meaning reward-associ-

ated cells could provide a seed for this chain of activations. In the

framework of reinforcement learning, reward-predictive cells are

consistent withmodels in which the role of the hippocampus is to

support prediction of expected reward, such as the successor

representation theory (Dayan, 1993; Stachenfeld et al., 2017).

While diverse in their algorithms, these models illustrate the

importance of reward-associated fields being carried by the

same cells: consistency enables other circuits to reliably identify

reward location, regardless of environment or context.

Though reward-associated cells were not characterized

anatomically, it is possible that they project to a specific external

target, such as nucleus accumbens. This would be consistent

with recent observations in ventral CA1 that neurons projecting

to nucleus accumbens are more likely to be active near reward

than neurons with other projections (Ciocchi et al., 2015). If

reward-associated cell axons did reach the ventral striatum, their

sequential activation could conceivably (Goldman, 2009) under-

lie the ramping spike rate that precedes reward (Atallah et al.,

2014) and might even contribute to reward prediction error sig-

nals of dopaminergic neurons (Schultz, 1998).

Reward-predictive cell sequences were often precisely

aligned with—and sometimes even preceded—anticipation be-

haviors. This might have reflected reward-predictive cells mak-

ing a direct contribution to reward anticipation, or they might

have received an ‘‘efferent copy’’ of a prediction signal gener-

ated elsewhere. It is intriguing that more cells were correlated

with behavior during anticipation that required recall of recent

events (condition AendAmid) and less prevalent when anticipation

could have been based entirely on immediate cue association

(condition AB).We speculate that this differencemight be related

to previous findings that short-term memory tasks often involve

the hippocampus (Lalonde, 2002; Sato et al., 2017), while cue

association typically does not (Rodrı́guez et al., 2002), though

future studies will be required to dissect how reward-predictive

cell activation covaries with the behavioral effects of hippocam-

pal lesion or inactivation.

Cognitive demands might also have affected the timing of

reward-predictive cells. During condition AB, reward cells

become active 1–2 s earlier than during condition AendAmid (Fig-

ure 6C). If reward-predictive cells did reflect a signal contributing

to anticipation behavior, this timing differential might have arisen

from a difference in decision threshold, suggesting that reward-

predictive cells might have encoded the degree of certainty in

reward proximity.

An important openquestion iswhy reward-predictive cellswere

more active when mice anticipated reward correctly rather than

incorrectly. The amplitude of activity might have indicated the

level of subjective confidence that reward was nearby, possibly

implyinga link toorbitofrontal cortexneurons that seem toencode
190 Neuron 99, 179–193, July 11, 2018
value (Schoenbaumet al., 2011). Alternatively, the differing ampli-

tudes might reflect the existence of multiple reward prediction

systems (Daw et al., 2005), with the hippocampus contributing a

prediction in some, but not all, instances of reward anticipation.

Spatial maps in CA1 can switch between mutually exclusive

encodings of the same environment depending on which envi-

ronmental features are being attended (Kelemen and Fenton,

2010). In the present experiments, most place cells maintained

fields in the same location after the reward was shifted (condition

AendAmid). Nevertheless, some place cell fields did remap, and it

is known that place cell ensembles can respond dynamically to

shifting reward contingencies (Dupret et al., 2010). In future

studies, it will be interesting to track how reward-associated

cells might interact with the balance of remapping and stability

in place cell populations (Sato et al., 2018).

Although reward-associated cells seemed to form a dedicated

channel for reward-related information in the present experi-

ments, it remains unknown how widely their responses might

generalize to other tasks or reward types. One clue is provided

by the observation that a diverse array of rewards and goals

have elicited a localized increase in spatial field density (Hollup

et al., 2001; Dupret et al., 2010; Dombeck et al., 2010), suggest-

ing that reward-associated cells also formed fields in those

circumstances. If they did, it would be numerically impossible

for each goal type to be encoded by a separate pool of cells,

each occupying 1%–5%of CA1. This suggests that a single pop-

ulation of reward-associated cells would likely encode multiple

goal types, possibly with different subsets being active in each

case, just as different subsets formed fields on tracks A and B.

Additional studies will be required to confirm these predictions,

as well as to test whether responses generalize to non-naviga-

tional paradigms, such as immobilized behavior.

Given their unique physiology, it is striking that, to our knowl-

edge, reward-associated cells have not been described previ-

ously despite decades of research on hippocampal activity in

the context of reward (Poucet and Hok, 2017). One possible

explanation is that their sparsity (1%–5% of recorded neurons)

made them difficult to detect, especially prior to the advent of

large-scale recording technologies.

It is also possible that reward-associated cells are only

activated by specific mnemonic requirements. Previous studies

employing a variety of navigation paradigms have examined the

density of spatial fields near a goal or reward (Fyhn et al., 2002;

Lansink et al., 2009; van derMeer et al., 2010; Dupret et al., 2010;

Danielson et al., 2016; Zaremba et al., 2017), and in some cases,

but not all, an excess density of spatial fields was observed near

that location. If reward-associated cells did contribute to the

excess density, comparing across various task structures

suggests that two features are required to elicit their fields: no

explicit cues for reward and reward locations frequently shifting

to different parts of the environment. While not definitive, these

findings suggest that reward-associated cells are not a general

feature of hippocampal encoding, but instead are only engaged

during particular cognitive demands.

Perhaps the cells with the most similar properties to reward-

associated cells are the ‘‘goal-distance cells’’ recently reported

in bats (Sarel et al., 2017). Goal-distance cells were active in a

sequence that reliably aligned with goal approach regardless



of approach angle. It was unclear, however, whether their re-

sponses would generalize to different goals, since tuning among

the overlapping population of goal-direction cells was largely

goal specific. Though they exhibit intriguing similarities,

comparing the detailed properties of reward-associated cells

and goal-distance cells is made difficult by the diverse experi-

mental paradigms in which they were observed. Whereas free

flight allowed bats to take a variety of approaches to the same

visible goal, virtual navigation in mice produced stereotyped tra-

jectories in which reward expectation could be compared at

several unmarked sites. Future studies could perhaps combine

variants of these methods to better understand how goal-

distance cells and reward-associated cells might be related.

Whatever conditions might elicit the activity of reward-associ-

ated cells, it is clear that they encode a variable of central impor-

tance for goal-directed navigation, and they endowhippocampal

maps with a consistency that was not previously appreciated. In

addition, they provide a novel target for studying the hippo-

campal contribution to reward memory. Further studies will be

required to determine whether reward-associated cells relate

to the encoding, storage, or recall of reward locations and how

they might interface with other brain areas to support navigation.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All experiments were performed in compliance with the Guide for the Care and Use of Laboratory Animals (https://www.aaalac.org/

resources/Guide_2011.pdf/). Specific protocols were approved by the Princeton University Institutional Animal Care and Use

Committee.

Transgenic mice expressing GCaMP3 (Rickgauer et al., 2014) (C57BL/6J-Tg (Thy1-GCaMP3) GP2.11Dkim/J, Jackson Labs strain

028277, RRID: IMSR_JAX:028277) were used to obtain chronic expression of calcium indicator. All mice were heterozygous males.

Optical access to the hippocampus was obtained as described previously (Dombeck et al., 2010). A small volume of cortex overlying

the hippocampus was aspirated and ametal cannula with a coverglass attached to the bottomwas implanted. A thin layer of Kwik-Sil

(WPI) provided a stabilizing interface between the glass and the brain. The craniotomy was centered at the border of CA1 and

subiculum in the left hemisphere (1.8mm from themidline, 3mmposterior to bregma) so that both regions could be imaged in a single

window, though not simultaneously. Thus all imaging fields of view were located within approximately 1 mm of the CA1-subiculum

border. During the same surgery, a metal head plate was affixed to the skull to provide an interface for head fixation.

Mice and their littermates were housed together until surgical implantation of the optical window. At the time of surgery, mice were

aged 7 to 15 weeks. After surgery, mice were individually housed. Cages were transparent in a room on a reverse light cycle, with

behavioral sessions occurring during the dark phase. Mice were randomly assigned to experimental groups. The number of mice

in each experimental group is described in the next section.

METHOD DETAILS

Behavioral Training
After mice had recovered from surgery for at least 7 days, water intake was restricted to 1 to 2 mL of water per day and was adjusted

within this range based on body weight, toleration of water restriction, and behavioral performance. After several days of water re-

striction, mice began training in the virtual environment, typically one session per day and 5-7 days per week.

The virtual reality enclosure was similar to that described previously (Dombeck et al., 2010; Domnisoru et al., 2013). Briefly, head-

fixed mice ran on a styrofoam wheel (diameter 15.2 cm) whose motion advanced their position on a virtual linear track, and an image

of the virtual environment was projected onto a surrounding toroidal screen. The virtual environment was created and displayed using

the VirMEn engine (Aronov and Tank, 2014). To mitigate the risk of stray light interfering with imaging of neural activity, only the blue

channel of the projector was used, and a blue filter was placed in front of the projector. Visual textures were chosen to be as close to

isoluminant as possible for an unrelated study measuring pupil diameter.

Condition Aend: The virtual trackwas 4m long, with a variety of wall textures and towers that served to provide a unique visual scene

at each point on the track. Textures and tower locations were chosen to replicate as closely as possible a track used in a previous

study (Domnisoru et al., 2013). Whenmice reached a point just before the end (366 cm), a small water reward (4 uL) was delivered via

a metal tube that was always present near the mouth. The reward location in the virtual environment was unmarked, insofar as visual

features at that location were no more salient than at other points on the track. After running to the end of the track, mice were

teleported back to the beginning. To avoid visual discontinuity, a copy of the environment was visible after the end of the track.

After each reward was delivered, the small droplet of water remained at the end of the tube and was available for consumption

indefinitely. When mice licked the reward tube, regardless of whether water was available, each lick was detected using an electrical
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circuit that measured the resistance between the mouse’s head plate and reward tube. The resistance was sampled at 10 kHz, and

licks appeared as brief (10-20ms) square pulses. Before identifying lick onset times, a Haar wavelet reconstruction was performed to

reduce electrical noise. In a few cases, electrical noise was large enough to interfere with lick detection, and these datasets were

excluded from analyses that involved licking.

After at least 5 sessions of training on condition Aend, mice were exposed to a new reward delivery paradigm, either condition

AendAmid or condition AB.

Condition AendAmid: The reward location alternated block-wise between 366 cm and 166 cm (condition AendAmid, Figure 1D). Within

each block, the reward was delivered at either 366 cm (Aend) or 166 cm (Amid). Each session began with a block of context Aend. Block

transitions occurred seamlessly at the teleport, with no explicit cue indicating that the reward location had changed. The reward

locations were not explicitly marked, and there were no visual features common to the two reward locations that distinguished

them from other parts of the track.

Condition AB: Within each block, mice either traversed track A (400 cm, reward at 366 cm) or track B (250 cm, reward at 229 cm).

The two tracks had no common visual textures. Block changes took place during teleportation at the end of the track, creating a brief

visual discontinuity. Each session began with a block of track A.

Block durations: When a new block began, two criteria were chosen to determine when to switch to the next block. One criterion

was a time interval, typically chosen randomly between 5 and 15 min, and the other criterion was a number of traversals, typically

chosen randomly in the range 10 to 20. When either the amount of time or the number of traversals had been reached, the context

changed at the next teleport and a new block began. Across all sessions and mice, the average block duration was 8:4±5:9 min

(mean ± SD) and the average number of rewards was 18:7±13:4.

Imaging windows were implanted in a total of 24 mice. Of these, 3 mice were excluded because of poor imaging quality, 8 were

excluded because of poor behavior in condition Aend (typically earning less than 1 reward per minute), 1 died unexpectedly, and 12

were used in the study. Separate cohorts of mice were used for condition AB (5 mice) and condition AendAmid (7 mice), though one

mouse whose data were used for condition AendAmid had previously been exposed to 10 sessions of condition AB (data from the

condition AB sessions was not used due to a problem with experimental records).

Optical Recording of Activity
While mice interacted with the virtual environment, two-photon laser scanning microscopy was used to identify changes in fluores-

cence of the calcium indicator GCaMP3 caused by neural activity. In most experiments (see exception below), the two-photon

microscope was the same as described previously (Dombeck et al., 2010). Typical fields of view measured 100 by 200 um,

and were acquired at 11-15 Hz. Microscope control and image capture were performed using the ScanImage (Vidrio Technologies)

software package.

In CA1, approximately half of pyramidal neurons were labeled, specifically those located in the dorsal half of the pyramidal layer. In

subiculum, approximately three quarters of cells were labeled, with labeled cells distributed throughout all depths. Most fields of view

in subiculum were located in the most dorsal 100 mm.

To examine the population activity of many simultaneously recorded cells during a single session, additional data were obtained

from CA1 in one mouse with modified experimental parameters: individual blocks and sessions lasted longer, and a larger field of

view was imaged (500 3 500 um) at a faster scan rate (30 Hz). To obtain a larger field of view, a modified version of the two-photon

microscope was used, similar to a design described previously (Low et al., 2014). Compared to the microscope used in other exper-

iments, the most significant change was the incorporation of resonant galvanometer scan mirrors.

This mouse (EM7) was trained on condition AendAmid, and data from only the longest session (number 12, 114 traversals) was used

here. This session provided example data for several figure panels (Figures 3D–3H, 5A, 5B, 5D, 6A, and 6B).

However, data from this mouse was not used in the population analyses. The same field of view was imaged on each day of

behavioral training, but no attempt was made to track single cells. When all recorded cells from this mouse were pooled over

time, reward-associated cells were observed, confirming suitability of the data as representative of the other mice described in

this study. Nevertheless, if this pooled data had been included in the population analyses, it would have introducedmany unidentified

duplicate cells, potentially biasing the results, and not being compatible with some statistical tests.

QUANTIFICATION AND STATISTICAL ANALYSIS

Identification of Cell Activity
All analyses were performed using custom software in MATLAB (Mathworks).

Motion correction of recorded movies was performed using an algorithm described previously (Dombeck et al., 2010). Cell shapes

and fluorescence transient waveforms were identified using a modified version of an existing algorithm (Mukamel et al., 2009). The

principal modification was in using a different normalization procedure: instead of dividing each frame by the baseline, each frame

was divided by the square root of the baseline to yield approximately the same resting noise level in all pixels. This normalization was

used only to identify cell shapes, but not for extracting time courses (see below).

In each movie, the algorithm typically identified 30-150 active spatial components (each referred to as a ‘‘cell’’). All cells were kept

for subsequent analyses, with no attempt to distinguish somata from processes. Time courses were computed as follows. For each
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pixel in each frame, the ‘‘baseline’’ was computed by taking the 8th percentile of values in that pixel in a rolling window of 500 frames.

In each pixel, an additive offset was applied to the entire baseline time course to ensure that the residual fluorescence had a mean of

zero. In each frame, the activity amplitude of all cells was computed by performing a least-squares fit of the cell shapes to the base-

line-subtracted frame, yielding the fractional change in fluorescence, or DF=F. For each cell, the time course was median-filtered

(length 3) and thresholded by zeroing time points that were not part of a significant transient at a 2% false positive rate (Dombeck

et al., 2010).

In some cases, the motion-corrected movie contained a small amount of residual displacement in the Z axis, typically about 1

micron. Though small, this displacement could produce apparent changes in the fluorescence of up to 50%. Because Z displace-

ment was uniform over the entire image, its value could be readily measured at single-frame time resolution, yielding an estimated

Z displacement time course. In the time course of each cell, the amplitude of the Z displacement time course was fitted and

subtracted before the filtering and thresholding steps described above. This prevented artifactual changes in fluorescence from

contaminating true transients.

In the dataset that employed resonant scan mirrors to obtain a wider field of view, the above methods could not be applied. The

field of view was so large that motion offsets were not consistent throughout the image (e.g., the top of the image was displaced right

while the bottom was displaced left), which necessitated a more complex motion correction procedure.

First, whole-frame correction was applied separately to each chunk of 1000 frames using the standard algorithm. To correct for

residual motion within each frame, the correctedmovie was divided into 5 spatial blocks, each of which spanned the entire horizontal

extent of the image. Vertically, blocks were evenly sized and spaced, and adjacent blocks overlapped by 50%. In each of the 5

blocks, motion was identified using the standard algorithm, and these offsets were stored for subsequent correction.

For cell finding, the imaged area was divided into 36 spatial blocks (6 by 6 grid), with all blocks the same size, and each overlapping

neighboring blocks by 10 pixels. Within each block, the motion estimates described above were linearly interpolated to estimate

motion within the block, and this offset was applied to correct each frame. After applying this correction offset, there was no apparent

residual motion within the block. Within each block, the shapes of active cells were identified using constrained nonnegative matrix

factorization (Pnevmatikakis et al., 2016). Because adjacent blocks overlapped, some cells were identified more than once. Two

identified cells were considered duplicates if their shapes exhibited a Pearson’s correlation exceeding 0.8, and the cell with a smaller

spatial extent was removed. Time courses were median-filtered (length 10), and thresholded by zeroing time points below a certain

threshold (4 times the robust standard deviation). All subsequent analysis steps were performed using the same procedures as other

datasets.

Computing Place Fields
The spatially averaged activity was computed by dividing the track into 10 cm spatial bins, averaging the activity that occurred

when the mouse was in each bin and speed exceeded 5 cm/sec, then smoothing over space by convolving with a Gaussian kernel

(SD 20 cm), with the smoothing kernel wrapping at the edges of the track.

Whether a cell exhibited a spatially modulated field was defined by how much information its activity provided about linear track

position (Skaggs et al., 1993). For each cell, the information I was computed as

I=
X
i

oiai log2ðai=aÞ

where oi is the probability of occupancy in spatial bin i, ai is the smoothedmean activity level ðDF=FÞwhile occupying bin i, and a is the

overall mean activity level. This value was compared to 100 shuffles of the activity (each shuffle was generated by circularly shifting

the time course by at least 500 frames, then dividing the time course into 6 chunks and permuting their order). If the observed

information value exceeded the 95th percentile of shuffle information values, its field was considered spatially modulated.

The COM of each spatially modulated cell was computed by transforming the spatially averaged activity to polar coordinates,

where qwas the track position and rwas the average activity amplitude at that position. The two-dimensional center of mass of these

points was computed, and their angle was transformed back to track position to yield the COM location. No special treatment was

given to cells that might have multiple fields.

Because the end of the track was continuous with the beginning, its topology was a circle rather than a line segment. To

accommodate statistical tests and fits designed for a linear topology, COM locations were re-centered on the region of interest.

For Hartigan’s Dip Test, COM locations were centered at 266 cm. For fitting Gaussian distributions to the excess density (see below),

COM locations were centered at the reward location.

Reward-associated cells were typically chosen by identifying with COMs located within 25 cm of both rewards (before or after).

Reward-predictive cells were defined as reward-associated cells with a COM located prior to both rewards. Place cells were defined

as cells with a spatial field that were not reward-associated. It should be noted that in most cases (e.g., Figures 3, 4, 5, and 6) a set of

putative reward-associated cells selected based on COM location likely contained some place cells that coincidentally exhibited

fields near the reward. Though the analysis of Figure 2 showed that reward-associated cells composed a separate class, the identity

of given cell active near reward was ambiguous, since it could not be determinedwhether it came from the population of place cells or

reward-associated cells.
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Computing Activity Correlation across Environments
To identify how similarly the entire recorded ensemble encoded position on track A and track B during condition AB, the population

vector correlation was computed. For each cell, the spatially averaged and smoothed activity was computed as described above.

Since track B was shorter than track A, only the first 250 cm of track A was used. The average activity values of every cell at every

position were treated as a single vector, and the Pearson’s correlation was computed between the vector for track A and the vector

for track B.

Fitting COM Density in Condition Aend and Condition AB
The density of COMs on each track was fit with a mixture distribution that combined a uniform distribution and a Gaussian distribu-

tion, i.e.

DðxÞ=au

1

L
+agP

�
xjm; s2

�

where DðxÞ is the total COM density at track location x, au is the fraction of cells that are uniformly distributed, L is the track length,

ag = 1� au is the fraction of cells that compose the excess density near reward, and Pð,jm;s2Þ is the probability density function

for a Gaussian distribution with mean m and variance s2. A maximum likelihood fit to the observed COMs was used to estimate

the a coefficients as well as the parameters of the Gaussian.

The four Gaussian fit parameters (one pair for each track; fmA;s
2
Ag and fmB;s

2
Bg) were then used to generate the joint probability

densities that would be predicted by hypotheses H1 and H2 for COM locations on the two tracks. Based on these, a mixture distri-

bution was fitted to the observed COMs:

Dðx; yÞ=au

1

LALB

+aH1DH1ðx; yÞ+aH2DH2ðx; yÞ

where Dðx; yÞ is the probability of observing a cell with a COM on track A at location x and a COM on track B at location y, au was the

fraction of cells that remapped according to a uniform distribution, aH1 and aH2 were the respective fractions of cells that remapped

according to H1 and H2, and LA and LB were the lengths of track A and B, respectively. Again a maximum likelihood fit was used to

estimate the fraction of cells in each component of the mixture distribution, with the following constraint applied:

au +aH1 +aH2 = 1:

The H1 and H2 distributions were

DH1ðx; yÞ= 1

2

�
1

LB

P
�
xjmA;s

2
A

�
+

1

LA

P
�
yjmB;s

2
B

��

and

DH2ðx; yÞ=Pðx; yjm;SÞ
with

m=

�
mA

mB

�
; S=

�
s2
A 0
0 s2

B

�
:

The shape of the H1 and H2 distributions are shown in rough schematic form in Figure 2E. The confidence interval for the param-

eters of the fit was generated by 1,000 bootstrap resamplings of the observed COM locations.

Identification of Slowing, Walking Bouts, and Rest Events
Different behavioral states were defined based on movement speed, as detailed below. Graphical illustrations of these states are

shown in Figure S5A.

Instantaneousmovement speedwas computed as follows. The time course of positionwas resampled to 30Hz, and teleports were

compensated to compute the total distance traveled. This trace was temporally smoothed using a Gaussian kernel (SD 2 samples),

then the difference between adjacent time points was computed and smoothed in the same way to yield instantaneous move-

ment speed.

Pre-reward walking bouts began at the moment speed dropped below a mouse-specific threshold for the last time prior to

reward delivery. Thresholds were chosen manually by examining typical running speed from sessions late in training. This threshold

distinguished ‘‘running’’ from ‘‘walking,’’ with the moment of transition defined as ‘‘slowing.’’ If speed did not fall below threshold at

least 5 cm before reward, the mouse was not considered to have slowed prior to reward. This threshold was applied because brief

(<5 cm) walking bouts occurred throughout the track at approximately uniform density (not shown), and they might have spuriously

overlapped the reward zone even if the mouse was not aware of the current reward location.

Mice sometimes walked slowly at locations that were not immediately prior to the reward, and these unrewarded walking bouts

were defined slightly differently. First, candidate bouts were identified as times during which speed was lower than half the threshold.
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The beginning of the bout was defined as the moment when speed fell below threshold, and they ended when speed rose above half

the threshold for the last time prior to rising above the full threshold. If the mouse traversed at least 15 cm during this period, it was

considered a walking bout. Walking bouts beginning less than 25 cm after reward were excluded to avoid the periods when mice

ramped up their speed prior to running to the next reward. Walking bouts that did or did not span the non-current reward location

were categorized separately.

Rest events were defined similarly to walking bouts, with three additional or modified criteria: speed fell to 1 cm/sec or lower at

some point during the bout, distance advanced less than 15 cm during the bout, and the bout did not span either reward site.

For comparing the activity during rest events or walking bouts to running, periods of running were defined as the interval

between 2 and 5 s prior to a walking bout, and only at time points during which speed was at least 20% over threshold.

Percentile Correlation
For each cell, the degree of correlation between activity and speed was quantified with a shuffle test. Values of the spatially binned

speed and activity (as depicted in Figures 3F and 3G) were treated as vectors, and the Pearson’s correlation between them was

computed. Equivalent values were also computed for a shuffle distribution, in which activity was randomly assigned to different tra-

versals. If activity tended to occur only after the mouse slowed, the observed correlation would be lower than the shuffle distribution.

Importantly, the percentile correlation was not treated as a p value. Applying a statistical test of significance to the entire population

would require a correction factor for multiple comparisons, a more stringent test that might exclude many cells. Instead, the

percentile correlation was treated as a general score, with the null expectation that, for example, 5% of cells would exhibit a value

of 5th percentile or less.

The polarity (positive or negative) of the observed correlation was not considered, since it was not necessarily informative about

whether the activity of a cell was related to slowing. The correlation could be negative even for a cell that was not related to slowing,

and it could be positive for a cell that was precisely aligned to slowing.

Density of Slowing-Correlated Cells
The aim of this test was to determine whether slowing-correlated cells occurredmore frequently than chance among the populations

of place cells and reward-associated cells. Only cells with a spatial field during both contexts in condition AendAmid were included,

and each cell was assigned to a spatial bin based on it how remapped (50 cmbin width, bin edges offset by 16 cm to align with reward

location). The following analysis was performed separately for cells that were slowing-correlated during Aend (Figure 3I) and during

Amid (Figure S3E).

To estimate the density of slowing-correlated cells in each bin, the numerator was the number of slowing-correlated cells, and the

denominator was the number of cells with sufficient activity (a transient onset within 100 cmbefore reward on at least ten trials). Under

the null hypothesis, the density of slowing-correlated cells would be 0.05 in each bin. Because in some bins the numerator and

denominator were very small (e.g., 1=3), the maximum likelihood estimate of density (e.g., 0.33) would not reflect the high level of

uncertainty. Therefore the estimated density was taken as the lower bound of the 95% confidence interval for a binomially distributed

variable (e.g., 0.0084). The densities of each bin were then smoothed with a Gaussian kernel (SD 0.8 bins), with the convolution wrap-

ping at the edges of the track. Regions in which this spatially smoothed lower bound estimate exceeded 0.05 were assumed to

contain a greater fraction of slowing-correlated cells than predicted by the null hypothesis.

Nonparametric Analysis of Remapping among Slowing-Correlated Cells
This analysis had the same aim as computing the density of slowing-correlate cells, but it was nonparametric in the sense that it did

not use the COM location, nor did it explicitly calculate the density. All cells were included that exhibited a spatially modulated field

during the context under consideration (Aend or Amid). For each cell, activity on each traversal was spatially binned (10 cm bin width),

averaged across traversals, and the average was normalized to have a sum of 1. To ensure this reflected the steady-state activity

within each block, the first three traversals after block transitions were excluded. The averages of all slowing-correlated cells

were combined by taking the mean across cells in each spatial bin. To estimate the baseline fluorescence level for comparison,

the same procedure was applied to all cells with a spatial field that were not slowing-correlated.

Slowing Correlation Index
The SCI was used to distinguish, on a sliding scale, whether a cell’s activity was better aligned to distance from reward or distance

from slowing onset (an example computation is illustrated in Figure S4A). It was applied to Aend and Amid separately, and only for cells

with a COM located within 50 cm before reward which were active within 100 cm before reward on at least 10 trials. For each cell,

transients that occurred within 100 cm of reward were identified and their locations were noted. To create a smoothed version of

activity, each transient was replaced with a Gaussian curve (fixed height, SD 10 cm) centered on its peak location, the Gaussian

curves were summed, and activity on each trial was spatially binned (5 cm bin width). The binned activity on each trial was considered

as a vector, and Pearson’s correlation was computed for each pair of trials. The mean of all pairwise correlations was used to sum-

marize the degree to which activity was aligned across trials, with a higher mean correlation indicating better alignment.

To identify whether activity was better aligned to distance from reward or distance from slowing onset, the activity was skewed in a

trial-specific fashion. For a skew value a in the interval [0,1], activity on each trial was shifted forward by a times the distance the
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mouse slowed before reward. Thus a skew value of 0 was the observed activity, with the reward location perfectly aligned across

trials, and for a skew value of 1 the onsets of slowing were perfectly aligned across trials. If, for example, activity always occurred

10 cm after slowing onset, a skew value of 1 would cause activity to be perfectly aligned on all trials, yielding a high mean correlation.

This procedure was applied for 101 evenly spaced skew values in [0,1], and the mean correlation was computed for each skew. The

skew value that yielded the largest correlation was the SCI for that cell.

Under the null hypothesis, activity was aligned to distance from reward but not related to slowing onset. To identify whether

activity was better aligned with slowing than expected by chance, the observed SCI was compared to a shuffle distribution

(n = 500). For each shuffle, activity was randomly permuted among trials with at least one transient, thus breaking up any

relationship between slowing onset and activity. The distribution of shuffle SCI values was compared to the observed SCI,

and a p value was assigned based on how many shuffle values were exceeded by the observed value. For example, if the

observed SCI was 0.8, and 498 of 500 shuffle SCI values were strictly less than 0.8, the p value was 2/500 = 0.004. No attempt

was made to correct for multiple comparisons. Instead, like the percentile correlation score, the p value was treated as a metric

which, under the null hypothesis, would be less than 0.05 for 5% of cells, and would be the same for both place cells and

reward-predictive cells.

The distribution of SCI values, and their associated p values, was compared for place cells and reward-predictive cells

during condition Aend-Amid. To determine whether a significantly greater fraction of reward-predictive cells than place cells exhibited

a p value less than 0.05, Fisher’s exact test was applied. The categories were place cells versus reward-predictive cells, and p < 0.05

versus p P 0.05.

Analysis of Simultaneous Activity
The purpose of this analysis was to determine whether place cell and reward-predictive cell activity was significantly correlated,

either positively or negatively. Only condition AendAmid was considered, since it provided the highest confidence that a given

cell was reward-predictive rather than being a place cell that coincidentally remapped to the reward location. For each context

(Aend or Amid), the full population of reward-predictive cells was compared to reward-adjacent place cells, defined as place cells

with a COM located within 50 cm just before reward. After activity was resampled to 10 Hz relative to slowing onset as described

above (‘‘Combining speed and activity across trials’’), activity traces for each walking bout were averaged across all reward-

predictive cells and reward-adjacent place cells.

In Figure 4A, representative pre-reward walking bouts were chosen as follows. For each bout, the fraction of place cell activity was

computed by dividing the sum of average place fluorescence by the sum of average reward-predictive cell fluorescence. Represen-

tative bouts were chosen by taking evenly spaced percentiles of this index within each session: 5, 15, 25, ., and 95th percentile.

The overall null hypothesis was that place cell and reward-predictive cell activity was independent. This was tested with three spe-

cific null hypotheses of increasing strictness. Under the first null hypothesis, the activity of reward-predictive cells and place cells was

independent at each time point. This hypothesis was tested by comparing single time points of average place cell and average

reward-predictive cell activity. The Pearson’s correlation was computed and the standard p value was used (Figures 4C and 4D).

Under the second null hypothesis, the activity of reward-predictive cells and place cells was independent, but their time courses

bore some relationship to slowing onset that might explain the time point-by-time point correlation. For example, they might have

both decreased at the onset of slowing. This was tested by randomly reassigning average place cell activity to different walking

bouts, then computing the Pearson’s correlation on single time points. The correlations from the shuffle distribution were compared

to the observed correlation (Figure 4E, top).

The third null hypothesis introduced an additional assumption: that average activity traces within the same session were more

similar than traces from different sessions, perhaps because of some session-specific modulation. Again, average place cell activity

was randomly reassigned to different walking bouts, but now only within the same session. Correlations from the shuffle distribution

were compared to the observed correlation (Figure 4E, bottom).

One additional potential explanation for the residual correlation was considered. Because activity was read out using calcium

indicator fluorescence, it was likely that actual spiking activity ceased before the fluorescence level decreased to baseline. To remove

this artifact, a simple ‘‘deconvolution’’ was performed on each cell prior to averaging. For each transient (i.e., continuous period of

above-baseline fluorescence), only the initial rise in fluorescence was kept. Put another way, as soon as fluorescence began to

decrease, all subsequent time points were set to zero. Remaining non-zero valueswere set to 1, effectively binarizing the time course.

This analysis likely removed some periods of spiking, and was thus a conservative test of independence, insofar as it could only

remove, but not add, activity that would be correlated between place and reward-predictive cells. After binarizing activity in each

cell, the same procedure was performed as when testing the third null hypothesis (Figure 4F, bottom).

Time of Activity Relative to Slowing
Activity was binned on each trial (200 ms width) relative to slowing time, averaged across trials, and smoothed by convolving

with a Gaussian kernel (SD 0.1 s). The point when this trace assumed its maximum was taken as the time of peak activity for

each cell. For Figure 5C, cells were only included if they were active in the 10 s prior to slowing on at least 5 traversals of each

context.
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Combining Speed and Activity across Trials
Image acquisition rates varied across datasets (typically near 12 Hz), and within each dataset the estimate of instantaneous speed

(described above) was subsampled to match the frame rate to be sure speed was precisely aligned to activity. To combine across

datasets, speed and activity time courses were resampled to 10 Hz (MATLAB ‘‘resample’’ command).

For Figure 6C, a subset of bouts was chosen to ensure the average speed profiles were as similar as possible for bouts before the

current and non-current reward. For condition AendAmid, a bout before the non-current reward was excluded if normalized speed fell

below 0.3 in the time interval [–2 �0.5] seconds relative to slowing, or if it rose above 0.8 in [3 4]. For condition AB, a bout before the

non-current reward was excluded if normalized speed fell below 0.6 in the time interval [–2�1] seconds relative to slowing, or if it fell

below 0.2 in [0 1] or below 0.01 in [2 3]; and bouts before the current rewardwere excluded if normalized speed fell below 0.5 in [–2�1]

or rose above 2 in [–2 �1]. These parameters were chosen manually to maximize similarity of speed profiles, thus providing a

controlled comparison of activity levels.

Control for Selection Bias When Classifying Reward-Predictive Cells
Reward-predictive cells were defined based on exhibiting an average activity location prior to the current reward, a definition that

might bias the population to exclude cells that were active prior to the non-current reward. To overcome this bias, a collection of

putative reward cells was selected based on being slowing-correlated (see above), a definition that would not tend to include or

exclude cells that were active on other parts of the track. Nevertheless, slowing-correlated cells were biased to include cells that

were frequently active near the current reward site. Therefore, for the analysis of Figure S6, the activity of these cells was only

compared on the other part of the track. For example, if putative reward-predictive cells were selected for being slowing-correlated

when mice approached the reward at 366 cm, only their activity preceding 166 cm was used: their activity when approaching the

current reward was measured during Amid, and their activity when approaching the non-current reward was measured during

Aend. This ensured that the activity being compared was independent of the activity used for cell selection.
e7 Neuron 99, 179–193.e1–e7, July 11, 2018
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Figure S1. Reward-associated cells were found in both CA1 and subiculum in condition
AendAmid, Related to Figure 1.
(A) Scale diagram of track A in side view (left) and perspective rendering from inside the track (right).
(B-D) Analyses were performed separately for CA1 (left panels) and subiculum (right panels).
(B) Density of spatial field COMs. Black line shows observed density, gray patches show density of a fitted
mixture distribution consisting of a uniform distribution (light gray) and a Gaussian distribution (dark gray,
mean 355 cm, s.d. 24 cm for CA1, mean 356 cm, s.d. 28 cm for subiculum).
(C) COM location during Amid for cells with a COM located within 25 cm (before or after) reward during
Aend. Same graphical conventions as in Figure 1F. Although very few place cells in the subiculum were
located near 366 cm, there was still a population of reward-associated cells whose fields remapped to be
consistently active near reward.
(D) COM locations of cells with a spatial field during both Aend and Amid. Same graphical conventions as
in Figure 1G.
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Figure S2. Analysis of COM density in condition AB, Related to Figure 2.
(A) Scale diagram of track B in side view (top) and perspective rendering from inside the track (bottom).
(B-D) Red lines indicate reward location.
(B) During condition AB, COMs were located at excess density near reward on both track A (left) and
track B (right). Black outlines show observed COM density, and solid patches show fit density of uniform
distribution (light gray) and the excess density near reward modeled as a Gaussian (dark gray). Inset
numbers show fit coefficients of the mixture distribution. Numbers at bottom show parameters of Gaussian
fit.
(C) Among cells with a spatial field on both tracks, the excess density was entirely explained by H2 rather
than H1 (see Results and STAR Methods). Each column shows analysis of COMs from a different cell group.
First row: observed COM locations. Second row: observed COM density, binned in 12.5 cm bins, smoothed
with a Gaussian kernel (15 cm radius). Third row: Density of fit mixture distribution. Fourth row: fit
coefficients of mixture distribution. The fit to all CA1 neurons (second column) seemed to indicate some
cells remapped according to H1 (2.5%). However, this was an artifact caused by the density near the reward
being poorly fit by a Gaussian. After excluding the region within 50 cm of both rewards (yellow patches in
third column), there was no contribution from H1 (0.0%). Since the two hypothesis made nearly identical
predictions about COM density in this region, excluding it did not bias the fit.
(D) The observed distribution of COM locations (black outline) was modeled as a collection of place cells
and reward-associated cells (colored patches) based on the results of the H1-H2 fits (see STAR Methods).
The excess COM density near reward was entirely composed of reward-associated cells. The fitted model
was further decomposed into populations of cells with a spatial field on one track or on both tracks.
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Figure S3. Slowing preceded licking during reward approach, and most slowing-correlated
cells were reward-predictive cells during context Amid, Related to Figure 3.
(A) Speed (black) and cumulative lick rate (green) sampled at 10 Hz for a representative pre-reward walking
bout. Dashed line indicates speed threshold. Red line indicates reward delivery.
(B) Scatter plot of speed vs cumulative lick rate (same data as panel A).
(C) Density of speed vs cumulative lick rate for all pre-reward walking bouts with at least 5 licks during
condition AendAmid. Values were collected in the time interval from 2 seconds prior to slowing until reward
delivery. In nearly every case, speed was significantly reduced prior to the first lick, showing that slowing
preceded licking.
(D-F) Same analysis as main Figure 3I,J applied to cells that were slowing-correlated during blocks of context
Amid.
(D) COM locations of cells with spatially-modulated fields in both Aend and Amid (gray points, same data
as Figure 1G). Cells are highlighted (maroon circles, 103 cells) if they were slowing-correlated during Amid

(see Results for definition).
(E) Lower bound of estimated density of slowing-correlated cells (see STAR Methods). Dashed lines indicate
approximate boundaries of regions used to define reward-predictive cells (purple) and place cells that were
stable across conditions (blue).
(F) Upper: average fluorescence activity of 142 slowing-correlated cells (6 mice, maroon trace) during Amid

blocks, and all spatially-modulated cells recorded simultaneously (6,935 cells, gray trace), plotted as a
function of track position. Red line indicates Amid reward location. As expected, slowing-correlated cells
exhibited increased activity just prior to the reward (arrowhead). Lower: same averaging procedure applied
to same cells, but during the interleaved Aend blocks from the same sessions. Red lines indicate reward
location for Aend (solid) and, for comparison, Amid (dashed). Bands indicate standard error of the mean.
Despite some residual above-baseline fluorescence at the Amid reward site (hollow arrowhead), the majority
of slowing-correlated cell activity shifted to the Aend reward site (solid arrowhead), consistent with few if
any place cells being slowing correlated.
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Figure S4. The slowing correlation index (SCI) reveals that more reward-predictive cells than
place cells were aligned with slowing, Related to STAR Methods and Figure 3.
(A) Illustration of how the SCI is computed for one cell. Observed activity (left panel) is taken in the 100
cm preceding reward (red line). Data is smoothed and skewed for many skew values ranging from 0 to 1
(upper panels, see STAR Methods). At each skew, the correlation is computed for every pair of trials and
averaged over all pairs (lower middle panel). The skew that yielded the largest average correlation is taken
as the SCI (dashed line). The observed SCI is compared to a shuffle distribution to yield a p-value (lower
right panel).
(B) Examples of reward-predictive cells with various SCI values. Each cluster of panels corresponds to one
cell. Upper panels: location of average activity, same conventions as Figure 1E. Lower left panels: locations
of trial-by-trial slowing and activity for each context (Aend upper, Amid lower), same conventions as left
panel in A. Lower right panels: mean pairwise correlation vs skew, dashed line indicates observed SCI. Left
cell: low and not significant SCI for both contexts. Middle cell: mid-range SCI, significantly aligned to
slowing in context Aend. Right cell: high SCI significantly aligned to slowing in context Aend.
(C) Equivalent analysis and examples for place cells. Same conventions as in B.
(D) SCI values for all reward-predictive cells (purple) and reward-adjacent place cells (blue). Counts of cells
with p-value less than 0.05 are indicated by darker colors. Counts are shown separately for Aend (left) and
Amid (right). Integrating data over both conditions, a greater fraction of reward-predictive cells than place
cells had p < 0.05 (22.8% vs 12.9%), a statistically significant difference (p = 0.012, two-tailed Fisher’s exact
test).
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Figure S5. Analysis of walking bouts and rest events, Related to STAR Methods and Figure
6.
(A) Schematic illustrating how movement speed (black trace) was used to define walking and rest events
(colored patches). For detailed definitions, see STAR Methods.
(B-D) Rest events did not indicate anticipation of reward
(B) Locations where pre-reward walking bouts (top) or rest events (bottom) were initiated, plotted separately
for blocks of Aend (left) or Amid (right). To ensure mice were familiar with the structure of reward delivery
and did not slow because they expected reward at other locations, data was only included from session 7 or
later of training on condition AendAmid, and walking bouts from the first three traversals of each block were
excluded.
(C) Number of licks during the first 5 seconds after the walking bout or rest event began.
(D) Overall duration in which mice were stopped (i.e. speed was slower than 1 cm/sec).
(E-F)Walking bouts occurred most frequently at the current reward site, but sometimes at the non-current
reward site. The first three traversals of each block were excluded, and for condition AendAmid data are only
shown for session 7 or later.
(E) Starting locations for all walking bouts during condition AendAmid (thick black trace), grouped by
whether they spanned the current reward (pink), non-current reward (blue-green), or no reward (gray).
(F) Equivalent analysis for condition AB. Since the two rewards were delivered on different tracks, there
was not an obvious definition of the “non-current reward location”. Nevertheless, mice running on track A
exhibited an increased frequency of slowing in the 150-200 cm range, presumably since this was close to 229
cm (location of track B reward). To ensure these walking bouts were considered related to the non-current
reward location, the definition was expanded to include bouts that spanned any point in the 50 cm preceding
229 cm.

10



0

A

B

C

D

mean reward-predictive 
cell activity (% dF/F)

condition ABcondition AendAmid

1

0

1

0

20

0

18

949 pre-reward bouts
136 bouts spanning!
non-current reward

1,617 bouts
195 bouts

107 cells!
4 mice

156 cells!
5 mice

time relative to slowing (sec)

average lick rate (Hz)

0-2 2 4 0-2 2 4

average movement speed (relative to threshold)
0 1 0 1

0 6 0 6

0

20

0

20

0

50

0

16

0

4

0

3

0

16

0

16

time relative to slowing (sec)
0-2 2 4 0-2 2 4

mean reward-predictive 
cell activity (% dF/F)

mean speed!
(relative to threshold)

mean reward-predictive 
cell activity (% dF/F)

mean place cell 
activity (% dF/F)

11



Figure S6. Reward-predictive cells being more active during pre-reward walking bouts could
not be explained by speed, licking, overall activity, or selection bias, Related to Figure 6.
(A-D) All plots compare activity or speed when mice walked before the current reward location (pink) or
non-current reward location (blue-green). Error bars or bands indicate standard error of the mean when
averaging across bouts. Activity of cells was first averaged within each bout, meaning error bars for activity
overestimate the true uncertainty. For condition AendAmid, data are only shown for day 7 of training or
later and the first three traversals of each block were excluded. Speed data only includes sessions in which
reward-predictive cells were recorded.
(A) Mean speed (top) and reward-predictive cell activity (bottom) of slowing bouts as a function of time
relative to slowing.
(B) Activity of reward-predictive cells when bouts were subdivided based on movement speed (top) or lick
rate in the first 5 seconds after slowing (bottom).
(C) Activity of all cells that exhibited a spatially-modulated field in at least one context and were not classified
as reward-predictive cells. Only includes sessions in which reward-predictive cells were also recorded. Though
overall activity levels differed slightly between approaching current or non-current reward, they could not
account for the difference in activity of reward-predictive cells.
(D) Activity of putative reward-predictive cells, analyzed to avoid selection bias (see STAR Methods). In
condition AendAmid, activity was much greater when approaching the current reward, confirming that the
effect shown in Figure 6 could not be attributed to selection bias. In condition AB, the putative reward-
predictive cells might have included many place cells that were spuriously slowing-correlated on track B, and
thus remapped randomly on track A, contributing a uniform positive offset in the pink trace.
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Figure S7. Reward-predictive cells being more active during pre-reward walking bouts could
not be explained by the conjunction of speed and lick rate, Related to Figure 6.
(A) Each bout was categorized based on the average lick rate (y-axis) and average speed (x-axis) in the
first 5 seconds. Top panels: Average reward-predictive cell activity during bouts in each category. Bottom
panels: number of bouts in each category. Separate plots are shown for pre-reward walking bouts (left) and
walking bouts spanning the non-current reward (right). Data are only shown for day 7 of training or later
and the first three traversals of each block were excluded.
(B) Equivalent analysis for condition AB, except that all training days and traversals were included.
(C) Scatter plot of reward predictive-cell activity during pre-reward walking bouts (x-axis) and walking
bouts spanning the non-current reward (y-axis). Error bars indicate standard error of the mean. Each point
is the average of bouts from one category (i.e. a single bin from panel A), allowing a direct comparison
of reward-predictive cell activity when controlling for the conjunction of lick rate and walking speed. In
nearly every case, activity was greater when walking before the current reward than the non-current reward,
confirming the result of Figure 6.
(D) Equivalent analysis of data in panel B.

14


	NEURON14296_proof_v99i1.pdf
	A Dedicated Population for Reward Coding in the Hippocampus
	Introduction
	Results
	Moving Reward Location within One Environment
	Switching between Two Environments
	Correlation of Reward-Predictive Cells with Reward Anticipation
	Sequential Activation of Reward-Predictive Cells
	Reward-Predictive Cell Sequences Did Not Encode Reward Anticipation Behaviors

	Discussion
	Supplemental Information
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Mice

	Method Details
	Behavioral Training
	Optical Recording of Activity

	Quantification and Statistical Analysis
	Identification of Cell Activity
	Computing Place Fields
	Computing Activity Correlation across Environments
	Fitting COM Density in Condition Aend and Condition AB
	Identification of Slowing, Walking Bouts, and Rest Events
	Percentile Correlation
	Density of Slowing-Correlated Cells
	Nonparametric Analysis of Remapping among Slowing-Correlated Cells
	Slowing Correlation Index
	Analysis of Simultaneous Activity
	Time of Activity Relative to Slowing
	Combining Speed and Activity across Trials
	Control for Selection Bias When Classifying Reward-Predictive Cells





