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A controversial issue in neurolinguistics is whether basic neural auditory representations found in
many animals can account for human perception of speech. This question was addressed by
examining how a population of neurons in the primary auditory cortex �A1� of the naïve awake
ferret encodes phonemes and whether this representation could account for the human ability to
discriminate them. When neural responses were characterized and ordered by spectral tuning and
dynamics, perceptually significant features including formant patterns in vowels and place and
manner of articulation in consonants, were readily visualized by activity in distinct neural
subpopulations. Furthermore, these responses faithfully encoded the similarity between the acoustic
features of these phonemes. A simple classifier trained on the neural representation was able to
simulate human phoneme confusion when tested with novel exemplars. These results suggest that
A1 responses are sufficiently rich to encode and discriminate phoneme classes and that humans and
animals may build upon the same general acoustic representations to learn boundaries for
categorical and robust sound classification. © 2008 Acoustical Society of America.
�DOI: 10.1121/1.2816572�

PACS number�s�: 43.64.Sj, 43.71.Qr �WPS� Pages: 899–909
I. INTRODUCTION

Humans reliably identify many phonemes and discrimi-
nate them categorically, despite considerable natural variabil-
ity across speakers and distortions in noisy and reverberant
environments that limit the performance of even the best
speech recognition algorithms.1,2 Trained animals have also
been shown to discriminate phoneme pairs categorically and
to generalize to novel situations.3–10 The neurophysiological
basis of these perceptual abilities in humans and animals
remains uncertain. However, there is experimental evidence
for cortical encoding of phonetic acoustic features regarded
as critical for distinguishing classes of consonant-vowel
�CV� syllables, such as voice-onset time.11–14 Key questions
include the nature and location of the neural representations
of different phonemes and, more specifically, whether the
neural responses of the primary auditory cortex �A1� are suf-
ficiently rich to support the phonetic discriminations ob-
served in humans and animals.

The general issue of the neural representation of com-
plex patterns is common to all neuroscience and has been
investigated in many sensory modalities. In the visual sys-
tem, recent studies have shown that responses of approxi-
mately 100 cells in the inferior temporal cortex are sufficient
to account for the robust identification and categorization of
several object categories.15 In the auditory system, a recent
study has shown that neurometric functions derived from
single unit recordings in the ferret primary auditory cortex
closely parallel human psychometric functions for complex
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sound discrimination.16 An important aspect of our approach
in the present study is the inclusion of temporal features of
the response in the analysis. This is crucial because pho-
nemes are spectro-temporal patterns, and hence analyzing
their neural representation at a single cell or ensemble level
requires consideration of the interactions between the stimuli
and the intrinsic dynamics of individual neurons.

In the present study, we recorded responses of A1 neu-
rons to a large number of American English phonemes in a
variety of phonemic contexts and derived from many speak-
ers. Our results demonstrate that �I� time-varying responses
from a relatively small population of primary auditory corti-
cal neurons ��100� can account for distinctive aspects of
phoneme identification observed in humans,17 and that �II�
well known acoustic features of phonemes are indeed explic-
itly encoded in the population responses in A1.

The analysis of the categorical representation of pho-
nemes across a neuronal population presented in this paper
remains largely model-independent in that only relatively
raw response measures �e.g., peri-stimulus time histograms,
PSTHs� are used in the computations and illustrations. The
one key departure from this rule is necessitated by the desire
to organize the display of the population responses according
to their best frequency, spectral scale, and temporal dynam-
ics. These response properties are quantified using the mea-
sured spectro-temporal receptive field �STRF� model of the
neurons.18,19
© 2008 Acoustical Society of America 899�/899/11/$23.00
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II. EXPERIMENTAL PROCEDURES

The protocol for all surgical and experimental proce-
dures was approved by the Institutional Animal Care and Use
Committee �IACUC� at the University of Maryland and con-
sistent with NIH Guidelines.

A. Surgery

Four young adult, female ferrets were used in the neu-
rophysiological recordings reported here. To secure stability
of the recordings, a stainless steel head post was surgically
implanted on the skull. During implant surgery, the ferrets
were anesthetized with Nembutal �40 mg /kg� and Halothane
�1–2%�. Using sterile procedures, the skull was exposed and
a headpost was mounted using dental cement, leaving clear
access to primary auditory cortex in both hemispheres. Anti-
biotics and analgesics were administered as needed.

B. Neurophysiological recording

Experiments were conducted with awake head-
restrained ferrets. The animals were habituated to this setup
over a period of several weeks, and usually remained relaxed
and relatively motionless throughout recording sessions that
may last 2–4 h. Recordings were conducted in a double-
walled acoustic chamber. Small craniotomies �1–2 mm in
diameter� were made over the primary auditory cortex before
recording sessions. Physiological recordings were made us-
ing tungsten microelectrodes �4–8 M��. Electrical signals
were amplified and stored using an integrated data acquisi-
tion system �Alpha Omega�. Spike sorting of the raw neural
traces was done offline using a custom principal component
analysis �PCA� clustering algorithm. Our requirements for
single unit isolation of stable waveforms included �1� that the
waveform and spike rate remained stable throughout the re-
cording, and �2� that the inter-spike interval for each neuron
was distributed exponentially with a minimum latency of
2 ms.

C. Speech stimuli and data analysis

Stimuli were phonetically transcribed continuous speech
from the TIMIT database.20 Thirty different sentences �3 s,
16 kHz sampling� spoken by different speakers �15 male and
15 female� were used to sample a variety of speakers and
contexts. A large stimulus set was used, that extended the
original set from 30 to 90 sentences, and also increased
speaker diversity to 45 male and 45 female speakers. In all
recordings, each sentence was presented five times.

D. Mean phoneme representation

The TIMIT phonetic transcriptions were used to align
the responses of each neuron to all the instances of a given
phoneme and then averaged to compute the peri-stimulus
time histogram �PSTH� response to that phoneme, as illus-
trated in Fig. 1�A� �10 ms time bins�. We did not attempt to
compensate for the relatively short latency of neural re-
sponses in the ferret, since this was roughly constant and
consistent for all A1 neurons �15–20 ms�. We also computed

the auditory spectrogram of each phoneme using the follow-
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ing procedure: Let S�t , f� be the auditory spectrogram of the
speech stimulus computed using a model of cochlear fre-
quency analysis,21 and let r�t� be the corresponding neural
response. For phoneme k, which occurs at times tk1

,
tk2

, . . . , tkn
, the average spectrogram is

Ŝk�t, f� =
1

n
�
i=1

n

S�tki
+ t, f� �1�

and the average neural response is

r̂k�t� =
1

n
�
i=1

n

r�tki
+ t� . �2�

The total number of occurrences of each phoneme, n, ranged
from 7 �e.g. /+/� to 72 �e.g., /&/� in the chosen sentences.

E. Measurement of neuronal tuning properties

We characterized each neuron by its spectro-temporal
receptive field �STRF�, estimated by normalized reverse cor-
relation of the neuron’s response to the auditory spectrogram
of the speech stimulus.18 Although methods such as normal-
ized reverse correlation can produce unbiased STRF esti-
mates in theory, practical implementation requires some form
of regularization to prevent overfitting to noise along the
low-variance dimensions. This in effect imposes a smooth-
ness constraint on the STRF. The regression parameters were
adjusted using a jackknife validation set to maximize the
correlation between actual and predicted responses.22 Figure
1�B� illustrates the STRF of one such neuron. We measured
several tuning properties from each STRF: Best frequency
�BF� was defined as the largest positive peak value of the
STRF along its frequency dimension. The STRF scale and
rate were estimated from the two-dimensional �2D� modula-
tion transfer function �MTF� �Fig. 1�B��. The MTF is the 2D
Fourier transform of the STRF that is then collapsed along
its temporal or spectral dimensions �known also as the rate
and scale� to obtain the purely spectral �sMTF� or temporal
�tMTF� modulation transfer functions �Fig. 1�B��. The best
scale �related to the inverse bandwidth� of an STRF is de-
fined as the centroid of the sMTF �in “cycles/octave”�,
whereas “speed” or best rate of the STRF is defined as the
centroid of the tMTF �in Hz�, as illustrated in Fig. 1�B�. To
display the neural population responses for each phoneme,
we generated two-dimensional “topographic” plots in which
each row contained the average PSTH response of one neu-
ron, sorted according to neural BF, scale or rate. The distri-
bution of these three tuning properties in our sample was
fairly broad, covering most BFs, best scales, and best rates
�see Appendix�. However, because the parameters were not
distributed exactly uniformly, we interpolated the vertical
axis of the smoothed PSTH �2D disk filter: 60 ms * 6 neu-
rons� to have uniform spacing and then smoothed the PSTH
display with the same 2D filter. We characterized each pho-
neme according to the locus of maximal response within the
neural population along the BF, scale and rate dimensions.
For example, to find the locus along the BF dimension, we
determined the position of the maximum PSTH responses

over time for neurons ordered along the BF axis. The same
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procedure was repeated for PSTHs ordered along the scale
and rate axes to obtain the three coordinates of the locus.

F. Phoneme classification and confusions

To examine the separation or overlap among the repre-
sentations of different phonemes, we trained linear binary
classifiers to discriminate each phoneme from all the others
based on the neuronal population response. Formally, the
neurons project the phoneme acoustic signals into a high
dimensional space �i.e., the total number of neurons � the
number of samples in each PSTH=90�22�. Because of the
different selectivity of each neuron, different phonemes fall
in specific subregions of this space.

A linear Support Vector Machine �SVM35� was trained
to find the optimal hyperplanes for each phoneme, such that
the hyperplane has the maximum distance �or “margin”� to
the closest data points �or “support vectors”� in the two
classes it separates. Using linear hyperplanes is intuitively
appealing because the classifier’s output is a weighted sum

of the neural responses that can be interpreted easily. The
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output of each classifier is a scalar value indicating the dis-
tance of the data point to the hyperplane. Novel sounds are
identified by choosing the classifier that produces the maxi-
mum distance to the boundary. We should emphasize that the
order of the neural responses is not important in any way for
classification.

G. Statistical analysis

The significance of correlations between the pattern of
phoneme confusion predicted by the neural classifier and
confusion observed for human perception17 was ascertained
by a randomized t test. Random correlations were computed
between neural and perceptual confusion matrices after ran-
domly shuffling phoneme identity �20 000 shuffles�. The sig-
nificance of the correlation between the actual confusion ma-
trices was taken as the probability that such a correlation

FIG. 1. Neuronal responses to phonemes in continuous
speech. �A� The spectrograms of all /�/ vowel exem-
plars were extracted and averaged to obtain one grand
average auditory spectrogram �bottom left�. In this and
following average spectrogram plots, red areas indicate
regions of higher than average energy and blue regions
indicate weaker than average energy. The correspond-
ing PSTH response to /�/ was computed by averaging
neural spike rates over the same time windows �bottom
right�. �B� The spectro-temporal receptive field �STRF�
of a neuron as measured by normalized reverse corre-
lation. Red areas indicate stimulus frequencies and time
lags correlated with an increased response, and blue
areas indicate stimulus features correlated with a de-
creased response. The neuron’s BF was defined to be
the excitatory peak of the STRF �red arrow�. The modu-
lation transfer function �MTF� is computed by taking
the absolute value of the 2D Fourier transform of the
STRF. We then collapse along the temporal or spectral
dimensions �known also as the rate and scale� to obtain
the purely spectral (sMTF) or temporal (tMTF) modu-
lation transfer functions. The best scale �proportional to
the inverse of bandwidth� of a STRF was defined as the
centroid of the sMTF �in “cycles/octave”�, whereas
“speed” or best rate of the STRF is defined as the cen-
troid of the tMTF �in Hz�. The choice of centroid for
best-scale parameter results in a compressed range but
it does not affect the ordering of neurons along this
dimension. �C� Average auditory spectra of three pho-
nemes �/Å/, /b/, /m/�. Below each spectrogram is the
PSTH response of five example neurons �labeled N1–
N5�. �D� The STRFs of these neurons indicate a diver-
sity of spectro-temporal tuning properties.
could be produced by the randomly shuffled matrices.

esgarani et al.: Classification of phonemes in auditory cortex 901

ect to ASA license or copyright; see http://asadl.org/terms



H. Measuring the acoustic distance among phonemes

The average auditory spectrogram of each phoneme was
computed as described above.21 The acoustic similarity be-
tween any pair of phonemes was then defined as the Euclid-
ean distance between their average spectrograms.

III. RESULTS

A. Diversity of single-unit responses to phonemes

Physiological responses were recorded from 90 single
units in A1 of four ferrets �Mustela putorius� during the
monaural presentation of continuous speech stimuli �see Fig.
1�A��. The recorded neurons were broadly distributed in their
spectral tuning and dynamic response properties as shown by
population range of their best frequency �BF�, best scale, and
best rate �documented in the scatter plots in Fig. 6 in the
Appendix�. These neural tuning properties are based on mea-
surements of the spectro-temporal receptive fields of the neu-
rons �STRFs� as depicted in Fig. 1�B� and described in detail
earlier in Sec. II. Figure 1�C� illustrates the PSTH responses
of five single units �N1–N5� to three different phonemes
�vowel /Å/, fricative /b/ and nasal /m/� whose average auditory
spectra are depicted in Fig. 1�C�. The spectro-temporal re-
ceptive fields �STRFs� of the five selected neurons are shown
in Fig. 1�D�.

Each phoneme activates these five neurons differentially,
depending on the match between the neuron’s STRF and the
spectro-temporal structure of the stimulus. For instance, the
vowel /Å/ drives N1 very effectively because of the low BF
of the neuron ��700 Hz�. By contrast, the fricative /b/ maxi-
mally activates N4 and N5, which have the highest BFs ��3
and �7 kHz, respectively�. Finally, the response pattern of
the nasal /m/ is unique in that it causes a depression of re-
sponses in N2 and N3, reflecting the energy dip midway
through the phoneme over all frequencies, but especially in
the middle frequencies ��0.5–4 kHz�.23,24 In this manner,
each phoneme evokes a unique response pattern across the
population of A1 cells that differs from the evoked responses
elicited by other phonemes.

B. Population responses to phoneme classes

To appreciate the unique response patterns evoked by
different phonemes and, in particular, in order to highlight
the acoustic features enhanced in the neural representation, it
is best to view the ordered activity of the entire population
simultaneously. This ordering depends entirely on the neu-
ronal tuning properties to be emphasized. For instance, in-
spired by the tonotopic organization of the auditory pathway,
the most common way to organize neural PSTHs has been by
frequency according to the BF of the units.25,26 However,
unlike the receptive fields of fibers in the auditory nerve, A1
neurons exhibit systematic variations of tuning along mul-
tiple feature axes, including bandwidth, asymmetry, and tem-
poral dynamics.14,27,28

Here we consider the ordered representation of phoneme
responses along BF and two other dimensions derived from

the STRF: best scale and best rate �see Sec. II and Fig. 1�B��.
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Best scale is inversely proportional to bandwidth and indi-
cates how wide a range of sound frequencies are integrated
into the neural response. Best rate indicates the dynamic
agility of a neuron’s responses and hence reflects the tempo-
ral modulation of the stimulus spectrum that best drives the
neuron. The coordinates of each cell along these three di-
mensions can be estimated using a variety of techniques and
stimuli. The most common techniques include tuning curves
or iso-response functions measured from tones28 and STRFs
measured from ripples.29 We use the speech-based STRFs to
estimate these parameters for each cell.18

1. Encoding of vowels

Population responses to 12 American-English vowels
are summarized in Fig. 2. Panels in the top row �Fig. 2�A�-I�
display the average auditory spectrogram of each vowel
computed from all of its samples encountered in the speech
database �see Sec. II for details�. The vowels are organized
according to their articulatory configurations along the Open/
Closed and Front/Back axes,23 as illustrated at the top of Fig.
2: /o/, /Å/, /Ä/, /#/, /æ/, /�/, /e/, /./, /i/, /(/, /&/, /'/. The three
middle vowels �/�/, /e/, /./� are tightly clustered near the
midpoint of the Front/Back and Open/Closed axes, and are
difficult to order accurately along this one-dimensional rep-
resentation of the vowels.

The averaged spectra �top row� reveal that Mid/Back
vowels �/o/, /Å/, /Ä/, and /#/� have relatively concentrated
activity at low to medium frequencies ��0.4–2 KHz�,
whereas Front vowels sometimes have two peaks spaced
over a larger frequency range ��0.3 and �4 KHz�. This is
consistent with the known distribution of the three formants
�F1, F2, and F3� in these vowels,23 namely, that they have F1
and F2 that are closely spaced, creating compact single broad
peak spectra at intermediate frequencies �reminiscent of the
center-of-gravity hypothesis of Chistovich and
Lublinskaya30�. As the vowels become more “Front”ed, the
single peak broadens and splits �/æ/ to /./�. Continuing this
trend, Front/Closed vowels �/i/, /(/, /&/, /'/� exhibit relatively
narrow and well separated formant peaks with F1 at low and
F2 at high frequencies.

These averaged phoneme spectra are broadly reflected in
the response distributions ordered along the BF axis; neurons
with BFs matching regions of high energy in a phoneme
spectrum tend to give strong responses to that phoneme �Fig.
2�A�-II�. However, notable differences of unknown signifi-
cance exist such as the relative weakness of the low BF
peaks in /e/ and /./, and of the high BF peak in /i/�. More
striking, however, are the response distributions along the
best scale axis, which roughly indicates the inverse of the
vowels’ spectral bandwidths �Fig. 2�A�-III�. Here, consistent
with the bandwidths of the spectral peaks discussed earlier,
Central/Open vowels tend to evoke maximal responses in
broadly tuned cells commensurate with their broad spectra
�low scales �1 Cyc /Oct� while Closed vowels evoke maxi-
mal responses in narrowly tuned cells �scales �1 Cyc /Oct�,
as indicated by the blue and red boxes in Fig. 2�A�-III,
respectively.31 Response distributions in the best rate panels
�Fig. 2�A�-IV� reveal a trend in the dynamics of the vowels

as one moves along the Front/Back axis. Specifically, Front
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FIG. 2. Population response to vowels. �A� I. Average auditory spectrogram of 12 vowels organized approximately according to their open-closed and
front-back articulatory features. The arrows at top indicate the degree of these features, with arrow “tips” representing minima �mid or central� and midpoints
representing maxima. For example /#/ is maximally open, but is neutral �central� on the front/back axis. Note also that the axes are presumed to loop around
the page from right to left �dashed ends joining� creating a circular representation �II, III, IV�: Average PSTH responses of 90 neurons to each vowel. Within
each heat map, each row indicates the average response of a single neuron to the corresponding phoneme. Red regions indicate strong responses, and blue
regions indicate weak responses. The average PSTH responses are sorted by neurons’ best frequency �II�, best scale �III� and best rate �IV� to emphasize the
role of that parameter in the encoding of each vowel. �Details of the analysis and generation of these plots are given in Sec. II�. �B� I. Each vowel is plotted
at the centroid frequency, rate and scale of its average neuronal population response. The centroid values are calculated from the average PSTH responses
sorted by the corresponding parameter �2A�. “Open” vowels are shown in red, “Closed” vowels in blue, “Front” vowels with light font and “Back” vowels
with dark. To visualize the contribution of each tuning property to vowel discrimination, the location of each vowel is also shown collapsed in 2–D plots of

�II� scale-rate, �III� rate-BF and �IV� scale-BF. All other details of the analysis and generation of these plots are given in Sec. II �Experimental Procedures�.
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vowels �/./, /i/, /(/, /&/� evoke relatively stronger responses in
the slower cells �with best rates ��12 Hz�, as compared to
the more Back vowels �/'/, /o/, /Å/� as highlighted by the
green boxes in Fig. 2�A�-IV. The remaining more Central
vowels �/Ä/, /#/, /æ/, /�/, /e/� exhibit all dynamics. This re-
sponse pattern may reflect the longer durations required to
complete the articulatory excursions toward or away from
Closed vowels towards the front of the vocal tract.

Figure 2�B� provides a compact summary of the popu-
lation response to vowels. Each vowel is placed at the locus
of maximum response in the neural population along the BF,
best scale, and best rate axes. To highlight more clearly
which of the three features best segregates them, the 3D
display is projected onto each of the three marginal planes
�Figs. 2�B�-II and 2�B�-IV�. It is readily evident in these
displays that the Open and Closed vowels separate along the
scale axis above and below 1 Cyc /Oct �horizontal dashed
lines in Figs. 2�B�-II and 2�B�-IV�. They are also distin-
guished by BF, with the Open vowels clustering in the range
1.0–4.5 KHz �vertical dashed lines in Fig. 2�B�-III�. Finally,
the best rate axis segregates the Front/Back vowels �as dis-
cussed earlier�, with Central and Back vowels located at high
rates ��12 Hz�, and Front vowels below it. It remains to be
confirmed, however, whether these locations, which reflect
the vowels’ overall spectro-temporal similarity, can explain
the perceptual confusion among them32.

2. Encoding of consonants

Population responses to 15 consonants are shown in Fig.
3 in the same format already described for vowels. Three
properties are commonly used to organize and classify con-
sonants: place of articulation, manner of articulation, and
voicing.23,24,33 Here we examined how these three properties
are encoded in the responses of the neuron population.

The distributions of the responses to the consonants
sorted along the BF axis �Fig. 3�A�-II� approximate the fea-
tures of their averaged spectra �Fig. 3�A�-I�, which in turn
are known to be closely related to place of articulation cues.
For instance, the difference between the more forward places
of constriction for /s/ compared to /b/ is mirrored by the
downward shift of the highpass spectral edge. Similarly the
high-frequency noise burst at the onset of the forwardly con-
stricted /t/ contrasts with the lower-frequency distribution of
the other plosives �/p/ and /k/�. However, there are also some
notable differences in detail between the two sets of plots.
There is generally a slight delay of about 20 ms in the neural
responses relative to the spectrograms �presumably due to
the latency of cortical responses�. In addition, however, there
are substantial differences between the responses and spec-
trograms in certain phonemes. For example, high BF re-
sponses to /f/ in Fig. 3�A�-II are strong despite their relative
weakness in the spectrograms. Similarly, the low BF re-
sponses to /v/ are not consistent with the spectrogram. In
other consonants, there are differences in the “timing” of
certain frequency regions such as the rapid onset of high
frequencies in the spectrogram of /t/ relative to its more de-
layed response, or in the continuity of the spectral regions in

/b/, /d/ and /G/. The origin of all these differences is unclear
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and may reflect the nonlinearity of neural responses and/or
our limited sampling of the neural population �90 neurons�.

Response distributions along the best scale and best rate
axes �Figs. 3�A�-III and 3�A�-IV� capture well the essential
manner of articulation cues that supply the information nec-
essary to discriminate plosives, fricatives, and nasals in con-
tinuous speech. For example, the broad distinction between
“plosives” and “continuants” �e.g. /p/, /t/, /k/, /b/, /d/, /+/
versus /s/, /b/, /z/, /n/, /m/, /G/� is evident in the distribution of
responses along the scale and rate axes �Figs. 3�A�-III and
3�A�-IV�. Thus, plosives with their sudden and spectrally
broad onsets display relatively strong activation in broadly
tuned �low scales �1.1 cyc /oct� and fast �rates �12 Hz�
cells �regions outlined in red in Figs. 3�A�-III and 3�A�-IV�
compared to the more suppressed responses to longer dura-
tion unvoiced fricatives and nasals �outlined in blue in Fig.
3�A�-IV�. Note also the brief suppressed response preceding
the onset of all plosives due to the �silent� voice-onset-time
�VOT� in all panels within the red box �Figs. 3�A�-III and
3�A�-IV�.

Finally, the third cue of voicing is associated with the
harmonic structure of voiced spectra near the low to mid-
frequency range �0.2–1 kHz�, and to a lesser extent the weak
energy at low BFs near the fundamental of the voicing. Only
this latter cue seems to distinguish consistently the voiced
�/b/, /d/, /g/, /v/, /ð/, /z/, /m/, /n/, /G/� from unvoiced �/p/, /t/,
/k/, /f/, /s/, /b/� consonants in our data as indicated by the
green outlined region of Fig. 3�A�-II. However, such a strong
low BF response as an indicator of “voicing” is missing in
many of the vowel responses discussed earlier �e.g., the
Open/Back vowels in Fig. 3�A�-II�. Instead, its presence
seems to correlate with the low F1 of the Closed vowels
there. Therefore, our data suggest that the low-frequency
voicing is reliably represented only in consonant responses,
and perhaps in vowels where the F1 is low enough to am-
plify it.34 However, there may well be a different and sepa-
rate representation of voicing in the auditory cortex, for ex-
ample, in terms of the pitch it evokes, or the harmonicity of
its spectral components.35

Figure 3�B� illustrates the locus of the population re-
sponse to each consonant in a plot of best frequency, best
rate and best scale similar to that used with vowels earlier.
The lower panels of Fig. 3�B� are projections of the three-
dimensional �3D� plot onto its three marginal planes. Mem-
bers of the three groups of consonants—plosives �red�, frica-
tives �blue�, and nasals �green�—are loosely grouped
together in this parameter space. For instance, plosives tend
to drive broadly tuned �scale �0.9 Cyc /Oct� and fast
�rates�12 Hz� cells �Figs. 3�B�-II�. Rate is also a distin-
guishing feature between plosives on the one hand, and na-
sals and �most� fricatives on the other �above and below
12 Hz, respectively�. Similarly, phoneme groups roughly
segregate along the BF axis, with unvoiced fricatives occu-
pying the highest frequencies ��4 kHz�, unvoiced plosives
falling between 2 and 4 kHz, and other voiced phonemes
falling below 2 kHz �Figs. 3�A�-III and 3�A�-IV�. As with

vowels, this plot of the neural loci of consonants reveals the
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ysis a
relative distances among them and perhaps explains the pat-
tern of perceptual confusion observed between them, as we
shall elaborate next.
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C. Phoneme confusions

Average phoneme responses give useful insights into the
mean representation of each phoneme, but they fail to indi-
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nemes, given the natural acoustic variability among samples
of the same phoneme during continuous speech. To delineate
perceptual boundaries implied by the responses to the pho-
nemes, we trained a linear classifier for each phoneme to
separate it from all others, based on the PSTHs of the neural
population.36 To determine the identity of a novel phoneme,
the population response was applied to all the classifiers,
each computing the likelihood of its designated phoneme.
The classifier indicating the maximum likelihood was taken
as the identity of the input phoneme. To train and test the
classifiers, we divided the speech data into 100 train and test
subsets. In each subset, 90% of the data was randomly cho-
sen for training and the remaining 10% was used for testing.
The classification accuracy and the confusion matrices re-
ported here are the average results from these 100 subsets.

Once trained, each linear classifier can be viewed as a
mask that selects, by multiplication with the population re-
sponse, the neurons and response latencies that most effec-
tively distinguish the associated phoneme from all others.
Figure 4 displays the masks computed for the unvoiced con-
sonants /p/, /t/, /k/, /f/, /s/, /b/. The masks are ordered in the
same way as the PSTHs in Fig. 3�A� �i.e., by BF, best scale,
and best rate�. In the masks, black regions signify neurons
and response latencies for which a strong response provides
evidence for presence of the phoneme, and white regions
signify strong responses that provide evidence against that
phoneme. The masks in Fig. 4 differ from the mean neural
responses in Fig. 3�A� in that they emphasize the unique

FIG. 4. Phoneme classification based on the population response. Classifi-
cation masks for three unvoiced plosives �/p/, /t/, /k/� and three unvoiced
fricatives �/f/, /s/, /b/� sorted by neurons’ best frequency �A�, best scale �B�
and best rate �C�. Gray scale indicates the importance of the presence �black
regions� or absence �white regions� of neural response for the classification
of that phoneme. The output of each phoneme classifier is a scalar, com-
puted as the sum of the population PSTH multiplied by the mask. Thus the
order of the mask/PSTH is irrelevant to the output of the classifier.
features of each phoneme. For example, the mean responses
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to /b/ �Fig. 3�A�-II� indicate strong responses in high and
medium BF neurons, but in the masks the mid-BF neurons
�2 kHz� are given higher weights. This differential weighting
reflects the fact that both /b/ and /s/ evoke strong responses
from high BF neurons, but only /b/ evokes responses from the
mid-BF neurons. Similarly, the /p/, /t/, /k/ masks reflect only
the features that distinguish these phonemes from each other.
The BF masks �Fig. 4�A�� emphasize the low �750 Hz�, high
��2 kHz�, and medium �0.3–1.5 kHz� spectral regions for
the /p/, /t/, /k/ bursts, respectively. Note also how the rate
masks �Fig. 4�C�� distinguish plosives /p/, /t/, /k/ from the
long fricatives /s/, /b/ by enhancing the regions outlined in the
rectangle, namely the slow rates of the fricatives ��11 Hz�
relative to the faster rates of the plosives. It should be noted
that the classifier performance does not depend in any way
on the order of the neural responses, which is solely used for
analysis and display purposes.

The extent to which the neural phoneme representations
can account for the perception of individual phoneme exem-
plars can be assessed by studying the pattern of pair-wise
confusions by the classifier. Figure 5�A� shows the confusion
matrix measured from classifications of the neural data. La-
bels along each row indicate the phoneme presented, and
columns report the probability of the phoneme output by the
classifier.17,37 The classifier was trained on two sets of data.
In a small set of 20 neurons, we succeeded in measuring
responses to 330 s of speech �90 sentences� to be used in the
training; these are shown in Fig. 5. In a larger set, training
was based on responses from all sampled neurons in which
at least 90 s of speech stimuli �30 sentences� were presented;
these results are shown in Fig. 7 of the Appendix. In an ideal
case in which all phonemes were accurately identifiable, we
would expect to see a diagonal confusion matrix. Off-

FIG. 5. Neural and human phoneme confusions, and phonemes acoustic
similarity. Consonant confusion matrices from neural phoneme classifiers
�left panels� and human psychoacoustic studies �Ref. 17� �middle panels�.
Gray scale indicates the probability of reporting a particular phoneme �col-
umn� for an input phoneme �row�. �Right panels� The acoustic similarity
between phoneme pairs defined as the Euclidian distance between their av-
erage auditory spectrograms. �A� Confusion matrices and phonemic dis-
tances for unvoiced consonants. Dashed lines separate the plosives /p/, /t/,
/k/ from fricatives /f/, /s/, /b/. �B� Confusion matrices and phonemic dis-
tances for voiced consonants. Dashed lines separate the plosives /b/, /d/, /+/
from fricatives /v/, /ð/, /z/ and the nasal consonants /m/ and /n/ from the rest.
diagonal values represent misidentification. The phonemes
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are arranged based on voiced-unvoiced and plosive, fricative,
nasal consonant categories to facilitate comparison with a
previous study of human perception17,37 �replicated in Fig.
5�B��. The dashed boxes delineate the three major phoneme
categories: plosives, fricatives, and nasals. In both neural and
perceptual data, phonemes within each category—plosives
�/p/, /t/, /k/�, fricatives �/f/, /s/, /b/�, and nasals �/m/, /n/�—tend
to be more confusable within the group than across catego-
ries. The correlation coefficient between the complete neural
and perceptual matrices is 0.78 �p=0.0002, randomized t
test�. Ignoring the confusions between voiced and unvoiced
consonants improves the similarity to 0.86, with a correlation
of 0.95 for only the unvoiced consonants and 0.71 for their
voiced counterparts. At least some of the difference between
confusion matrices reflects noise due to limited sampling of
neural responses, and/or limited data for training the pho-
neme classifiers. For example, when we computed the same
confusion matrix for the entire population of 90 neurons
�trained only on 90 s of speech�, the correlation between
neural and human confusion matrices fell to 0.70 �p
=0.001�, a change that may reflect the added dimensions and
free parameters as new neurons are included in the analysis,
while the amount of training data decreases at the same time.
�Appendix; Fig. 7�.

Alternatively, we explored the sensitivity of the classifi-
cation in Fig. 5 to the number of neurons included �using the
same training material�. As expected, the results indicate that
percentage of correct classification �averaged across all con-
sonant phonemes� improves as the number of randomly se-
lected neurons is increased �Appendix; Fig. 8�. More detailed
exploration of this issue should take into account the differ-
ential contribution of specific neurons to different phonemes,
e.g., high BF neurons to the classification of /s/ and /b/.

Finally, we also explored the extent to which both the
neural and human confusion matrices are a reflection of the
acoustic similarity �or “distances”� among the phonemes at
the level of the auditory spectrograms �see Sec. II�. Figure 5
illustrates that such a phoneme “similarity matrix” funda-
mentally resembles the human and neural confusion matrices
�with correlation coefficients of 0.66 and 0.93, respectively�.
In fact, the neural matrix encodes remarkably well the details
of the phoneme acoustic similarity, such as the confusions
between /v/ and the nasals /m/, /n/, and also between /ð/ and
the voiced consonants /b/, /d/, /+/.

IV. DISCUSSION

Neuronal responses to continuous speech in the primary
auditory cortex of the naive ferret reveal an explicit multidi-
mensional representation that is sufficiently rich to support
the discrimination of many American English phonemes.
This representation is made possible by the wide range of
spectro-temporal tuning in A1 to stimulus frequency, scale
and rate. The great advantage of such diversity is that there is
always a unique subpopulation of neurons that responds well
to the distinctive acoustic features of a given phoneme and
hence encodes that phoneme in a high-dimensional space.

As an example, consider the perception of the plosive

consonant /k/ in a CV syllable, which is identified by a con-
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junction of several acoustic features: an initial silent voice-
onset time �VOT�, an onset burst of spectrally broad noise,
and the direction of the following formant transitions.23 Each
of these features can be encoded in the cortical responses
along different dimensions. Thus, neurons selective for broad
spectra respond selectively to the noise burst. Rapid neurons
respond well following the VOT, whereas directional neu-
rons selectively encode the vowel formant transitions. In this
manner, /k/ is encoded robustly by a rich pattern of activation
that varies in time across the neural population. This neu-
ronal activation pattern constitutes the phoneme representa-
tion in A1 and presumably forms the input to a set of neural
“phoneme classifiers” in higher auditory areas. If one acous-
tic feature is distorted or absent, the pattern along the other
dimensions �and hence the percept� remains stable.

We have focused here on describing a few prominent
features of the response distributions that correspond to well-
known distinctive acoustic features of the consonants
considered.24 There are clearly many other aspects and more
details of the responses that reflect intricate articulatory ges-
tures, contextual effects, or speaker-dependent variability
that can only be reliably considered with a much larger
sample of responses. One example is the distribution of the
directionality index of the responses in the neighborhood of a
consonant,38 an attribute that would indicate whether the for-
mants are upward or downward sweeping, or if they are con-
verging towards or diverging away from a locus frequency.

Humans confuse the phonemes of their native tongue
when placed in unusual or noisy contexts. Typically, pho-
nemes that share some acoustic features tend to be more
confusable than those that do not. This was confirmed by the
similarity we found between the acoustic distance and the
human confusion matrices. Similarly, since A1 responses in
our naive ferrets also preserve the relative acoustic distances
between the phonemes �as they would presumably for other
complex sounds�, we are led to the conjecture that human
phoneme perception can �in principle� be explained in large
measure by basic auditory representations such as the audi-
tory spectrogram and the cortical spectro-temporal analysis
common to many mammalian �and also avian�
species.6,9,10,39,40

The representation of phonemic features across a popu-
lation of filters tuned to BF, scale and rate suggests a strategy
for improved speech recognition systems, and further study
may reveal additional strategies for speech processing. How-
ever, many questions about the neural representation of pho-
nemes still remain unanswered; for example, how can one
extrapolate from such neurophysiological findings to the hu-
man perceptual ability to perceive phonemes categorically
�also found in monkeys,11 cats,8 chinchillas,3 birds9 and
rats,41�, and to shift categorical boundaries arbitrarily be-
tween phoneme pairs?

While the human ability to discriminate native pho-
nemes is the result of many years of training, naïve ferrets
lack such a history. Hence ferret perception of clean pho-
nemes may be comparable to humans perception of noisy
phonemes. In both cases, confusion patterns would reflect
the acoustic distances between the phonemes. However, if

ferrets were trained to actively discriminate phonemes, it is
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likely that dimensions useful for this specific discrimination
would be emphasized, creating the heightened sensitivity
necessary to perform the task. This is presumably what hap-
pens in humans as they learn the phonemes of a given lan-
guage, and what the classifier essentially simulates in our
analysis when it learns the masks and boundaries that enable
robust phoneme discriminations. Therefore, from a neural
perspective, one may view the masks as either a subsequent
layer of synaptic weights or as pattern of behaviorally driven
plasticity of A1 receptive fields—the end result of perceptual
learning in which neurons adapt their tuning along the di-
mensions appropriate for the phoneme discrimination task.
This same general principle would apply to the discrimina-
tion between members of any set of complex sound, using
frequency, rate and scale as well as additional cortical re-
sponse dimensions, such as pitch, spatial location, and loud-
ness.
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APPENDIX

Here we provide additional information regarding: �A�
uniformity of the sampling of the neural parameters; �B� the
phoneme confusions from an SVM recognizer using a larger
number of neurons, but with significantly fewer speech re-
sponses on which to train the classifier; �C� an exploration of
the recognition accuracy with fewer numbers of neurons.

1. Joint distribution of neural parameters

To ensure that the response patterns in Figs. 2�A� and
3�A� are representative of the neural population in the cortex,
we examined the uniformity of the coverage of the param-
eters of neural STRFs in our sample of 90 neurons. Specifi-
cally, the joint distributions of the different neural receptive
field parameters �best frequency, best scale, and best rate� are
shown in the three panels of Fig. 6, revealing fairly uniform
coverage over all frequencies, bandwidths, and different dy-
namics �see Sec. II for further details�.

2. Phoneme confusions from 90 neurons

Phoneme confusions derived from responses of the en-
tire population of 90 neurons, but using only 90 s of speech,
are displayed in Fig. 7. The correlation coefficient between
the neural and human phoneme confusion �0.70; p=0.001� is
still reasonable but is significantly less than that of the pat-
terns in Fig. 8 �see method for more details�.

3. Dependence of phoneme classification accuracy to
the number of neurons

The number of neurons is a crucial variable in determin-
ing the accuracy of the phoneme classification as illustrated
in the results of Fig. 8. Here the classification accuracy was
computed as a function of the number of neurons used in
training the classifier. For each condition, 100 random sub-
sets of neurons were taken and the classification accuracy

FIG. 8. Dependence of phoneme classification accuracy to the number of
neurons. Classification accuracy as a function of the number of neurons used
by the classifier. The dashed line indicates chance performance �7% for 14
phonemes� �see Sec. II for details�.
was averaged over all subsets. Note that the accuracy based
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on the 20 neurons in this plot is still only at 37% �7% is
chance performance�. Presumably, adding more neurons in-
creases the performance.
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