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How response variability in sensory neurons is related to trial-by-trial 
variability in perceptual decisions is a fundamental question in sys-
tems neuroscience. To assess functional links between single neurons 
and perceptual decisions, neurophysiologists have measured trial-by-
trial correlations between neuronal activity and perceptual reports for 
weak or ambiguous stimuli. By computing choice probabilities, these 
studies quantify the ability of an ideal observer to predict choices 
from neural responses1. Choice probabilities have been measured 
in multiple cortical areas, including visual motion processing areas 
MT1–6 and MSTd7–9, other areas of visual cortex10–13, and somato-
sensory cortex14,15.

Despite numerous studies, fundamental issues regarding the nature 
and origin of choice probabilities remain unresolved16. First, to our 
knowledge, all reports of significant choice probabilities have come 
from studies of cortical neurons. Thus, it is unclear whether subcorti-
cal neurons, closer to the sensory periphery, may exhibit choice prob-
abilities. In some sensory systems, this question cannot be addressed 
because subcortical neurons do not exhibit the same forms of stimulus 
selectivity seen in cortex (for example, binocular disparity selectiv-
ity in visual neurons). The vestibular system provides an excellent 
model for probing the origins of choice probability because the same 
basic forms of directional selectivity are seen from otolith afferents 
to cortical neurons17.

Second, the factors that drive the expression of choice probability in 
some neurons, but not others, remain unclear. For example, neurons 
in secondary visual cortex show significant choice probabilities during 
disparity discrimination, whereas neurons in primary visual cortex do 
not10. One hypothesis is that choice probabilities appear when sensory 
signals are represented in an appropriate format for mediating the 
trained behavior, but evidence for this idea is lacking18. We examine  

whether choice probabilities correlate with the degree to which ves-
tibular neurons represent translation without being confounded by 
orientation relative to gravity, a fundamental transformation that 
occurs in the vestibular brainstem and cerebellar nuclei19,20.

Third, the empirical relationship between choice probability and cor-
related noise among neurons remains unclear. Noise correlation pro-
vides a measure of shared input to neurons21, and computational studies 
have shown that choice probabilities depend strongly on the structure of 
correlated noise in neural populations16,22,23. Without correlated noise, 
sizeable choice probabilities are observable only with implausibly small 
neuronal pool sizes. We examined whether differences in choice prob-
abilities between subcortical and cortical neurons could be accounted 
for by differences in correlation structure across areas.

We addressed these issues by studying the vestibular nuclei (VTN) 
and cerebellar nuclei (CBN) during a vestibular heading discrimi-
nation task. VTN and CBN represent two important early stages of 
vestibular processing in the CNS17. Both areas, which have strong 
reciprocal connections24, project to the thalamocortical system25 and 
receive projections from the vestibular cerebellum26 and vestibular 
afferents27. It is presently unknown whether VTN and CBN are poly-
synaptically connected with area MSTd28, which was studied pre-
viously during vestibular heading discrimination9.

We compared data from VTN and CBN with data from area MSTd, 
measured under identical conditions. We found robust choice prob-
abilities in subcortical neurons, and our data suggest that the emer-
gence of choice probabilities is coupled with the ability of vestibular 
neurons to represent translation without being confounded by ori-
entation relative to gravity. Our findings have important implications 
for understanding how response variability of sensory neurons relates 
to perceptual decisions.
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Choice-related activity and correlated noise in 
subcortical vestibular neurons
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Functional links between neuronal activity and perception are studied by examining trial-by-trial correlations (choice 
probabilities) between neural responses and perceptual decisions. We addressed fundamental issues regarding the nature and 
origin of choice probabilities by recording from subcortical (brainstem and cerebellar) neurons in rhesus monkeys during a 
vestibular heading discrimination task. Subcortical neurons showed robust choice probabilities that exceeded those seen in cortex 
(area MSTd) under identical conditions. The greater choice probabilities of subcortical neurons could be predicted by a stronger 
dependence of correlated noise on tuning similarity, as revealed by population decoding. Significant choice probabilities were 
observed almost exclusively for neurons that responded selectively to translation, whereas neurons that represented net gravito-
inertial acceleration did not show choice probabilities. These findings suggest that the emergence of choice probabilities in the 
vestibular system depends on a critical signal transformation that occurs in subcortical pathways to distinguish translation from 
orientation relative to gravity.
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RESULTS
Neuronal discrimination thresholds
We recorded from neurons in the VTN and CBN, the latter coming 
mainly from the rostral fastigial nuclei and perhaps portions of the 
anterior interposed nuclei29. Neurons with significant vestibular head-
ing tuning in the horizontal plane (P < 0.05, one-way ANOVA) were 
tested in a fine heading discrimination task, in which animals made 
saccades to indicate whether their perceived direction of translation 
was leftward or rightward relative to straight ahead9 (Fig. 1). Response 
histograms from an exemplar neuron revealed phasic responses to 
the dynamic stimulus (Fig. 1a). Over the narrow range of headings 
tested in the discrimination task (±6.4°), responses were monotoni-
cally tuned, with a preference for rightward motion (Fig. 1b).

To quantify neural sensitivity for discriminating heading, we used 
signal detection theory to transform firing rates into performance of 
an ideal observer9,30. When the difference between two headings was 
substantial (±6.4°), response distributions for leftward and rightward 
headings had little overlap (Fig. 1c), and the ideal observer made few 
errors. In contrast, for a small difference in heading (±1°), response 
distributions overlapped extensively and the ideal observer’s perform-
ance was close to chance.

This intuition is captured by using receiver operating characteristic 
(ROC) analysis9 to construct neurometric curves that were fit with cumu-
lative Gaussian functions (Fig. 1d). The s.d. of the Gaussian was taken 
as the neuronal threshold, which quantifies the precision with which 
an ideal observer can discriminate heading on the basis of the neuron’s 
responses. The example neuron was nearly as sensitive as the animal 
(neuronal threshold, 4.2°; psychophysical threshold, 4.3°; Fig. 1d).

We recorded from 257 neurons (Supplementary Fig. 1). Among 
these, 56 VTN and 91 CBN neurons had significant vestibular heading 
tuning, and 97 cells were tested with enough stimulus repetitions to be 
included in this analysis. Across the population, neuronal thresholds 
averaged 22 ± 3.7 ° for VTN (geometric mean ± s.d., n = 41) and 25.1 ± 
3.4° for CBN (n = 56). These values were slightly, but not significantly 
(P = 0.4, Kruskal-Wallis test), greater than the mean neuronal thresh-
old for area MSTd9 (18.2 ± 3.2°, n = 183; Fig. 2a). When considering 
the 10% of neurons with the lowest thresholds, the mean neuronal 
threshold was significantly lower for MSTd than for the subcortical 
areas (MSTd, 3.0 ± 0.24°; CBN, 5.5 ± 0.5°; VTN, 4.4 ± 0.5°; Wilcoxon 
rank sum tests, P < 0.05).

Only the most sensitive VTN and CBN neurons had thresholds 
that rivaled psychophysical performance (Supplementary Fig. 2a).  

Thus, the average neuronal-to-psychophysical threshold ratios were 
>>1 (Supplementary Fig. 2a). These large neuronal-to-psychophysical  
ratios are at least partially attributable to the fact that heading stimuli 
were not tailored to the tuning curves of individual neurons9.

Neural heading discrimination thresholds depend critically on two 
factors9: the slope of the cell’s tuning curve around straight ahead 
and firing rate variability. Neuronal thresholds were strongly corre-
lated with tuning curve slope (ANCOVA, P < 0.001; Fig. 2b), and this 
dependence was similar across areas (interaction, P = 0.08). There were 
no significant differences in tuning slope between VTN, CBN and 
MSTd (Wilcoxon rank sum tests, P > 0.13). Neuronal thresholds did 
not correlate significantly with response variance (ANCOVA, P = 0.1; 
Fig. 2c), but variance was greater for both VTN and CBN neurons as 
compared with MSTd neurons (Wilcoxon rank sum tests, P < 0.001), 
with no significant difference between VTN and CBN (P = 0.3).

We explored these issues further by fitting wrapped Gaussian func-
tions31 to population heading tuning curves. Average tuning curves 
were similar between areas (Fig. 2d), especially when spontaneous 
activity was subtracted (Fig. 2e). Tuning curve amplitudes for VTN 
(mean 26 spikes per s) and CBN (25.1 spikes per s) were modestly, 
but significantly, greater than the amplitude for MSTd (21.1 spikes 
per s, P < 0.05, bootstrap), with no significant difference between 
VTN and CBN (P > 0.05). Tuning bandwidths for VTN (68.8°) and 
CBN (68.1°) were significantly greater than the bandwidth (59.9°) for 
MSTd (P < 0.05). Note that the modestly greater tuning amplitudes 
in VTN and CBN versus MSTd were somewhat counteracted by the 
broader bandwidths in VTN and CBN such that tuning curve slopes 
were similar across areas (Fig. 2b).

In contrast with these subtle differences in tuning curves, spontane-
ous activity was much greater in both VTN and CBN than in MSTd 
(Wilcoxon rank sum tests, P < 0.001; Fig. 2d), with no significant 
difference in mean Fano factor between areas (MSTd, 1.38; CBN, 1.43; 
VTN, 1.34; Kruskal-Wallis test, P = 0.12). Thus, differences in neural 
sensitivity between areas are mainly driven by differences in sponta-
neous activity, which translate directly into differences in response 
variance (Fig. 2c) by virtue of the similar Fano factors.

Relationship between neural activity and choices
For headings close to straight ahead, monkeys make both left-
ward and rightward judgments in response to an identical sensory 
stimulus, and neural responses vary considerably from trial to trial.  
If neural activity in VTN and CBN is functionally linked to perceptual 
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decisions, then trial-to-trial fluctuations in behavioral reports and 
neuronal responses should be correlated1, as has been observed previ-
ously in area MSTd9. To quantify the relationship between neuronal 
activity and choice, we grouped responses according to the animal’s 
decision (leftward or rightward). This is perhaps best illustrated for 
the ambiguous straight-forward stimulus (0° heading), which yields 
chance performance (50% correct). Although the sensory stimulus 
was identical for each trial, the neuron generally fired more strongly 
when the monkey made rightward decisions, in favor of the neuron’s 
preferred heading (Fig. 1e). This choice-related difference in activity  
was quantified by ROC analysis to compute choice probability, which 

measures how well an ideal observer can predict the monkey’s choice 
from the firing rate of the neuron. For this example neuron, the 
choice probability was 0.76, which is significantly greater than chance  
(permutation test, P < 0.001). Values of choice probability >0.5 indi-
cate greater neural activity when the monkey chooses the neuron’s 
preferred heading. In contrast, choice probability values <0.5 denote 
the counterintuitive situation in which greater activity accompanies 
choices toward the neuron’s nonpreferred heading.

At the population level, choice probabilities averaged 0.61 ± 0.02 
(mean ± s.e.m.) for VTN and 0.59 ± 0.01 for CBN neurons. Both values  
were significantly greater than chance (P < 0.001) and significantly  

a b c

0.7

1.0 1.5 2.00.5

Time (s)

0

0.6

0.5

0.4

C
ho

ic
e 

pr
ob

ab
ili

ty

1.0

1.0 1.5 2.0

0.50 50

0.5

Acceleration
Velocity

0

Time (s)

0.5

A
cc

el
er

at
io

n 
(m

 s
–2

)

0

–0.5

–1.0

0.25

0

–0.25

–0.50

R
esponse (spikes s

–1)

V
elocity (m

 s
–1)

25

0

–25

–50

100

VTN

CBN

MSTd

1.0 1.5 2.00.50

Time (s)

N
eu

ro
na

l t
hr

es
ho

ld
 (

°)

80

60

40

20

10

Figure 3 Time courses of response amplitude, neuronal thresholds and choice probabilities. (a) Average evoked responses at the preferred heading (with 
spontaneous activity subtracted) for 41 VTN neurons (red), 56 CBN neurons (blue) and 183 MSTd neurons (black). The stimulus motion profile is also 
shown (solid gray curve represents velocity, dashed gray curve represents acceleration). (b,c) Average neuronal threshold and choice probability as a 
function of time. Each point represents data computed in a 400-ms analysis window that was shifted by a multiple of 100 ms. Error bars denote s.e.m.

b c

400

100

10

1

Response variance
(spikes2 s–2)

10 100 4001

N
eu

ro
na

l t
hr

es
ho

ld
 (

°)

400

100

10

1
0.01

Tuning curve slope
(spikes s–1 deg–1)

0.1 1 3

a 25.1

22

18.2

0.55

1 10

Neuronal threshold (°)

100
0.3

0.4

0.5

0.6

0.7

0.8

C
ho

ic
e 

pr
ob

ab
ili

ty

0.9

400

0.61 0.59

VTN

CBN

MSTd

ed

100 50

25

0

50

0

Heading relative to preferred direction (°)
F

iri
ng

 r
at

e 
(s

pi
ke

s 
s–1

)

–180 –90 0 90 180 –180 180–90 900

VTN

CBN

MSTd

Figure 2 Summary of neural sensitivity, choice probability and tuning curves. (a) Scatter  
plot of choice probabilities against neuronal thresholds. Data are shown separately  
for VTN (red), CBN (blue) and MSTd (black). Solid lines indicate linear fits (type II  
regression, applied to threshold values ≤ 200). Filled symbols represent choice probability  
values that are significantly different from 0.5 (P < 0.05, permutation test). Symbol  
shapes denote data from different animals: upward triangles represent monkey M  
(n = 7), circles represent monkey W (n = 31), squares represent monkey Y (n = 49) and  
downward triangles represent monkey O (n = 10). Also shown are marginal distributions  
of neuronal thresholds and choice probabilities. Filled and open bars indicate neurons  
with significant and nonsignificant choice probabilities, respectively. Arrows indicate the mean values. (b,c) Relationship between neuronal threshold and 
local tuning curve slope (b) or response variance (c). Tuning curve slope was calculated by linear regression, over the narrow range of headings tested in 
the discrimination task. Response variance was computed only from the 0° heading data. (d,e) Population heading tuning curves from VTN (red, n = 70), 
CBN (blue, n = 107) and MSTd (black, n = 342) neurons before (d) and after (e) subtraction of spontaneous activity. Responses from each neuron were 
shifted along the horizontal axis to align the peaks of all tuning curves (at 0°) before averaging. Error bars denote s.e.m.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



92  VOLUME 16 | NUMBER 1 | JANUARY 2013 nature neurOSCIenCe

a r t I C l e S

greater than the mean value for area MSTd (0.55 ± 0.01, P < 0.001, 
Wilcoxon rank sum tests; Fig. 2a). Previous work has shown that 
choice probabilities are inversely correlated with neuronal thresh-
olds1,8,9, such that more-sensitive neurons tend to show greater choice 
probabilities. VTN and CBN neurons both exhibited this relation-
ship (VTN, R = −0.41, P = 0.008; CBN, R = −0.48, P < 0.001; type II  
regression; Fig. 2a). Notably, the slope of the relationship between 
choice probability and neuronal threshold was steeper for VTN and 
CBN than for MSTd (P = 0.03, interaction effect, ANCOVA), whereas 
the slopes were not significantly different between VTN and CBN  
(P = 0.8). Indeed, regression slopes for subcortical neurons were roughly 
double those for MSTd neurons (VTN, slope = −0.13, 95% confidence 
interval = [–0.25, −0.06]; CBN, slope = −0.12, 95% confidence inter-
val = [–0.18, −0.06]; MSTd, slope = −0.07, 95% confidence interval =  
[–0.09, −0.04]). Thus, VTN and CBN neurons tend to have greater 
choice probabilities than MSTd neurons of comparable sensitivity.

Time course of neural thresholds and choice probabilities
The analyses summarized above were based on firing rates computed 
from the middle 400 ms of the 2-s stimulus period (around peak stimu-
lus velocity). However, the motion stimulus had a Gaussian velocity 
profile, and population responses in all three areas roughly followed 
this profile (MSTd data are re-plotted from refs. 8,9; Fig. 3a). By repeat-
ing our analyses for numerous 400-ms time windows that were spaced 
100 ms apart, we computed the time course of neuronal threshold and 
choice probability. For all three areas, thresholds were smallest around 
the time of peak responses and were greatest during early and late time 
windows, when firing rates were low (Fig. 3b). Minimum thresholds 
were reached slightly earlier in VTN and CBN than in MSTd (Fig. 3b), 
likely reflecting the fact that population responses peaked somewhat 
earlier in VTN and CBN (Fig. 3a and Supplementary Fig. 3).

Although neuronal thresholds were very similar across areas, the 
time course of choice probability revealed that VTN and CBN cells 
exhibited larger choice probabilities than MSTd neurons through-
out the stimulus period (Fig. 3c). Choice probabilities in VTN and 
CBN rose significantly above chance earlier during the response and 
reached substantially larger magnitudes than choice probabilities 
in MSTd (P < 0.001, Wilcoxon rank sum tests). Toward the end of 
the stimulus epoch, when mean responses declined, VTN and CBN 
choice probabilities decreased and became similar to those in MSTd 
(P = 0.9, Wilcoxon rank sum tests). Because the relative values of 
choice probability and neuronal threshold across areas were fairly 
consistent over time, the following analyses focus on a 400-ms time 
window centered on peak stimulus velocity.

Choice probabilities correlate with translation coding
A critical question is whether choice probabilities are related to the 
nature of the information that is coded by sensory neurons. We examined  
whether choice probabilities are correlated with an important func-
tional property of vestibular neurons, their ability to resolve the 
gravito-inertial acceleration ambiguity. All linear accelerometers, 
including the otolith organs in the inner ear, are unable to distinguish 
orientation relative to gravity from inertial accelerations; instead, they 
signal the net gravito-inertial acceleration.

This sensory ambiguity is partly resolved at the level of VTN and 
CBN neurons, some of which selectively respond to translation and 
ignore changes in head orientation relative to gravity19. If choice prob-
abilities reflect a functional linkage of vestibular neurons to head-
ing perception, then we hypothesize a correlation between choice 
probability and the selectivity of VTN and CBN neurons for transla-
tion. To test this hypothesis, we further characterized 17 VTN and 
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23 CBN neurons using sinusoidal (0.5 Hz) translation, sinusoidal 
tilt relative to gravity and combinations of the two stimuli19 (Fig. 4).  
Tilt amplitude was chosen such that the horizontal component of 
linear acceleration resulting from gravity equals that produced by 
translation (see Online Methods). Thus, neurons that respond like 
otolith afferents should respond similarly during translation and tilt 
(Fig. 4a,b), confounding the two variables. In contrast, neurons that 
respond selectively to translation, but not tilt, should be ideal for 
mediating heading perception.

Although net acceleration was the same during translation and tilt, 
translation-coding VTN and CBN neurons, such as cell 1 (Fig. 4a,b), 
responded robustly during translation, but not during tilt. When trans-
lation and tilt combined such that the horizontal component of net lin-
ear acceleration was either nulled (tilt − translation; Fig. 4c) or doubled 
(tilt + translation; Fig. 4d), translation-coding neurons such as cell 1 
responded as though stimulated by translation alone. Such cells can 
reliably represent heading without being biased by spatial orientation 
relative to gravity. In contrast, neurons similar to cell 2 responded simi-
larly during tilt and translation (Fig. 4a,b). When tilt and translation 
were combined, responses of such cells followed the net gravito-inertial 
acceleration (Fig. 4c,d), similar to primary otolith afferents19.

A regression analysis was used to compute partial correlation 
coefficients that describe how well each neuron’s responses could be 
predicted by net acceleration or translation. Fisher’s r-to-z transform 
was used to normalize the partial correlation coefficients19, which 
were then plotted against each other (Fig. 5a). Almost all of the VTN 
and CBN cells with significant choice probabilities fell in the upper-
left region (Fig. 5a), indicating that their responses were signifi-
cantly better correlated with translation. In contrast, most neurons 
with insignificant choice probabilities fell into the lower-right region, 
indicating a better correlation with net acceleration.

This observation is clarified by plotting choice probability as a func-
tion of the difference in z score between the translation and net accel-
eration models (Fig. 5b). Pooling data from VTN and CBN together, 
there was a highly significant correlation between choice probability and 
translation coding (R = 0.47, P < 0.001, Spearman correlation), which 

also reached significance for each subcortical area separately (VTN,  
R = 0.54, P = 0.03; CBN, R = 0.55, P = 0.01). In contrast, there was no sig-
nificant correlation between neuronal thresholds and the z score differ-
ence between models (Spearman correlation: VTN, R = −0.26, P = 0.31;  
CBN, R = −0.08, P = 0.7; pooled, R = −0.17, P = 0.3; Fig. 5c). Thus, 
the larger choice probabilities of translation-coding neurons cannot be 
simply explained by differences in neuronal sensitivity.

Noise correlations are greater in subcortical neurons
Previous work has suggested that the magnitude of choice probabili-
ties is determined largely by the strength of correlated noise among 
neurons13,16,23. To test whether the large choice probabilities found 
in subcortical neurons can be attributed to noise correlations, we 
recorded simultaneously from pairs of VTN and CBN neurons while 
fixating monkeys were translated along 26 directions spaced evenly 
in three dimensions (Fig. 6a)32–35. The heading tuning profiles of an 
example pair of CBN cells (Fig. 6b,c) revealed that both neurons were 
significantly tuned (ANOVA, P < 0.001 and P = 0.006, respectively), 
with similar heading preferences given by [azimuth, elevation] =  
[−161°, 7°] and [–183°, 32°], respectively. The similarity of tuning 
for such a pair of neurons, known as signal correlation (rsignal), was 
quantified as the Pearson correlation coefficient of mean responses 
from the three-dimensional heading tuning profiles (Fig. 6d).

As in cortical areas, the spike counts of subcortical neurons in 
response to an identical stimulus varied from trial to trial, as illustrated 
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Figure 6 Measuring noise correlation (rnoise) and signal correlation (rsignal)  
between pairs of single neurons. (a) Schematic illustration of the elevation 
and azimuth variables in the heading tuning protocol. (b,c) Example 
heading tuning profiles for a pair of simultaneously recorded CBN 
neurons. Grayscale maps (Lambert cylindrical equal-area projections) 
show mean firing rate as a function of azimuth and elevation angles.  
The tuning curves along the margins of each grayscale map illustrate 
mean ± s.e.m. firing rates plotted as a function of either elevation  
or azimuth (averaged across azimuth or elevation, respectively).  
(d) Comparison of the mean responses of the two neurons across all 
heading directions. The Pearson correlation coefficient of the mean 
responses quantifies signal correlation, rsignal = 0.63. (e) Normalized 
responses from the same two neurons were weakly correlated across trials. 
Each datum represents z scored responses from one trial. The Pearson 
correlation coefficient of the data quantifies noise correlation,  
rnoise = 0.19. Dashed lines represent unity-slope diagonals.
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are also shown (right panels). Arrows and numbers mark the mean values 
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monkey V, n = 28) and lines represent type II linear regression fits.
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for the example pair of neurons (Fig. 6e and Supplementary Fig. 4).  
Each data point in this plot represents a normalized spike count from 
each neuron for a single trial. Spike counts for each heading were z 
scored to remove the effect of stimulus variations, allowing us to pool 
data across headings to gain statistical power (see Online Methods). 
Noise correlation (rnoise), which quantifies correlated neuronal vari-
ability across trials, was then computed as the Pearson correlation 
coefficient of the z scored spike counts. For the example pair of neu-
rons (Fig. 6d,e), rsignal = 0.63 (P < 0.001) and rnoise = 0.19 (P = 0.008). 
The significant positive noise correlation indicates that, when one 
neuron fired more spikes than average, the other neuron also tended 
to fire above average. Across the population, noise correlations aver-
aged 0.004 ± 0.02 (mean ± s.e.m.) for VTN (n = 47) and 0.03 ± 0.03 
for CBN (n = 63), and these values were not significantly different 
from zero (P = 0.17 and P = 0.91, respectively; t test).

In cortical areas studied previously, including MSTd, rnoise gener-
ally shows a strong dependence on tuning similarity (rsignal)34,36–40. 
Similarly, there was a strong and significant correlation between rnoise 
and rsignal in VTN and CBN (P < 0.001, ANCOVA; Fig. 7). Notably, 
a substantial number of VTN and CBN pairs had large noise correla-
tions (|rnoise| > 0.4), but the population mean was not significantly 
different from zero (P > 0.17, t test) because rnoise was equally likely 
to be positive or negative (see also ref. 41). Moreover, the linear rela-
tionship between rnoise and rsignal was steeper for VTN and CBN than 
for MSTd (ANCOVA, P = 0.03, interaction effect), even though the 
mean noise correlation was not significantly different among areas 
(Wilcoxon rank sum tests, P > 0.32; Fig. 7). Thus, the difference in 
average choice probability between VTN and CBN and MSTd cannot 
simply be a result of differences in average noise correlations, but may 
instead result from differences in the slope of the relationship between 
rnoise and rsignal, as discussed below.

A few additional differences between properties of rnoise in VTN 
and CBN versus cortex should be noted. First, we found no significant 
dependence of rnoise on the distance between neurons in a pair for 
VTN and CBN (Spearman rank correlation, P > 0.05; Supplementary 
Fig. 5a). This is different from what we observed in MSTd34 and from 
observations in other cortical areas39,42. Second, unlike in MSTd, 
where the mean rnoise was lower in trained than untrained animals34, 
no significant effect of training was seen in VTN and CBN (ANCOVA, 
P = 0.11; Supplementary Fig. 5b).

Population decoding predicts choice probabilities
We considered the possibility that the greater choice probabilities 
observed for subcortical neurons, relative to MSTd, could be attrib-
uted to differences in the structure of interneuronal correlations 

between areas (slope of rnoise versus rsignal). To test this hypothesis 
quantitatively, we simulated population responses on the basis of 
measured response statistics from our sample of neurons (see Online 
Methods). Correlated noise was introduced into simulated population 
responses by constructing a covariance matrix based on the observed 
relationships between rnoise and rsignal.

We decoded the simulated population responses using an empirical 
linear decoder based on the Support Vector Machine (SVM)43. This 
decoder was chosen because it does not make particular assumptions 
about the statistics of neural activity or correlated noise. Instead, 
it learns the structure of spike count statistics in the training data 
and acquires the optimal parameters to classify whether popula-
tion responses are elicited by a leftward or rightward heading. We 
trained the linear classifier to discriminate heading on the basis of 
two sets of training data: responses pooled across all leftward head-
ings and responses pooled across all rightward headings (see Online 
Methods). The trained decoder was then applied to a set of test tri-
als in which the ambiguous straight-forward heading was presented 
and classifier output was taken as the decision regarding perceived 
heading. Thus, classifier output was used to compute a predicted 
choice probability for each simulated neuron. In addition, neuronal 
thresholds were computed by applying ROC analysis to the responses 
of each simulated neuron. This allowed us to predict the relationship 
between choice probability and neuronal threshold for VTN, CBN 
and MSTd on the basis of our measurements of tuning curves and 
correlation structure.

The relationship between predicted choice probabilities and neuro-
nal thresholds is shown in Figure 8a for one iteration of the simulation 
for each brain area (200 simulated neurons per area). The classifier 
achieved performance levels of 76% correct for VTN, 73% for CBN 
and 79% for MSTd (tenfold cross-validation, pooled across all nonzero 
headings). The results of this simulation (Fig. 8a) captured the key 
features seen in the real data (Fig. 2a): higher choice probabilities for 
VTN and CBN, as compared with MSTd, and a steeper slope of the 
relationship between neuronal threshold and choice probability.

As expected22,23, decoder performance depended quantitatively on 
the size of simulated neural populations. The predicted psychophysical  
threshold of the decoder (Fig. 8b) declined with the number of 
 neurons in the simulation, and decoder performance became  
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Figure 8 Predicted relationship between choice probabilities and neuronal 
thresholds, derived from decoding simulated population responses.  
(a) Predicted choice probabilities against neuronal thresholds for a 
simulated population of 200 neurons from each area. Data are shown for 
one instantiation of the simulation. Solid lines indicate linear fits (type II 
regression, fit to threshold data ≤200). (b) The predicted psychophysical 
threshold (from decoding) plotted as a function of the number of neurons 
in the simulated neural populations. Data points represent averages across 
30 iterations of the simulation, with each iteration based on a different  
re-sampling (with replacement) of neurons from the original data sets. 
Error bars denote s.d. Data are shown for VTN (red), CBN (blue) and  
MSTd (black). Dashed vertical line denotes the population size used in a.  
(c) Average slope of the type II linear regression fit to the choice 
probability versus neuronal threshold relationship as a function of 
population size. Each data point represents mean (± 95% confidence 
interval) values obtained from 30 iterations of the simulation. (d) Average 
choice probability (± s.d.) as a function of population size for each area.
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comparable to that of most animals (Supplementary Fig. 2c) for 
populations larger than ~100 neurons. The slope of the relationship 
between neuronal threshold and choice probability also decreased 
with population size (Fig. 8c), reaching a plateau for populations 
larger than ~200 cells (Supplementary Fig. 6). As a result, the mean 
predicted choice probability for each area also declined with popula-
tion size (Fig. 8d). This is expected because the contribution of each 
neuron becomes smaller as more cells are included in the popula-
tion22,23. Critically, for all population sizes examined, the simulation 
predicted a steeper choice probability versus threshold relationship 
for VTN and CBN than for MSTd, and the difference was significant 
for population sizes greater than ~50 neurons (Wilcoxon rank sum 
test, P < 0.05; Fig. 8c). Thus, the qualitative match between model pre-
dictions and real data (Fig. 2a) was fairly robust to population size.

These results (Fig. 8) were derived from a decoder that was not privy 
to the structure of interneuronal correlations among the simulated neu-
rons. Results from a variant of the SVM decoder that knew the correla-
tion structure (Supplementary Fig. 7) were qualitatively similar, except 
that predicted psychophysical thresholds continued to decline with pop-
ulation size (Supplementary Fig. 7b). Qualitatively similar results were 
also obtained when using a standard maximum likelihood decoder44,45 
that assumes independent Poisson statistics (Supplementary Fig. 8). 
Thus, our main simulation results (Fig. 8a) appear to be fairly robust 
to assumptions regarding interneuronal correlations and whether they 
are known to the decoder. However, considerable further research is 
needed to understand how different types of correlation structures, as 
well as different possible types of suboptimality in decoding, may affect 
the choice probabilities that are expected.

We did not attempt to fit the simulation results (Fig. 8) to empiri-
cal data. The parameters of the simulation were determined from the 
tuning properties and spiking statistics of recorded neurons, and the 
weights in the decoder were optimized only to maximize heading 
discrimination performance. Overall, these results suggest that the 
stronger choice probabilities observed in VTN and CBN, relative to 
MSTd, can be accounted for by the stronger dependence of rnoise on 
rsignal in these subcortical areas.

DISCUSSION
We explored the relationships between neuronal sensitivity, choice 
probabilities and correlated noise to better understand how sensory 
signals are processed to generate perceptual decisions. Our findings 
can be summarized as three main points. First, subcortical neu-
rons exhibited robust correlations with perceptual decisions, thus 
establishing that choice probabilities are not only the province of 
cerebral cortex. Indeed, choice probabilities were found to be larger 
for brainstem and cerebellar neurons than for cells in area MSTd 
having comparable sensitivity. Second, strong choice probabilities 
were observed for VTN and CBN cells that selectively encode self-
translation, but not for neurons that signal net gravito-interial accel-
eration, which is presumably less useful for heading perception. This 
suggests that functional coupling between vestibular neurons and 
perception emerges from a critical signal transformation that con-
verts signals into a format more appropriate to drive heading percep-
tion. Third, the dependence of noise correlation on signal correlation 
was substantially steeper for VTN and CBN neurons than for MSTd 
cells. Simulations based on the measured tuning properties and cor-
relation structure of each area were able to replicate the pattern of 
choice probabilities and neuronal thresholds across areas. This find-
ing implies that differences in the strength of choice-related modula-
tions across brain areas are attributable, at least in part, to differences 
in the structure of interneuronal noise correlations. These findings 

have important general implications for understanding how sensory 
neural responses are coupled to perceptual decisions.

Neuronal sensitivity
Similar to cortical neurons during fine discrimination tasks4,8,9,46,47, 
the average VTN or CBN neuron in our sample was much (~sixfold)  
less sensitive than the animal. Neuronal thresholds were slightly 
greater in VTN and CBN than in MSTd as a result of greater response 
variability that arises from higher spontaneous activity in subcorti-
cal neurons. The lowest thresholds were observed for neurons with 
preferred directions roughly orthogonal to straight ahead, as expected 
because these neurons operate around the steep portion of their tun-
ing curves4,8,9,48.

To the best of our knowledge, only one study has previously char-
acterized direction discrimination thresholds in the vestibular brain-
stem and cerebellum49, and that study reported substantially greater 
neuronal thresholds relative to those that we observed (VTN, 72.3° 
versus 22°; CBN, 58.8° versus 25.1°). Several differences between 
the previous study49 and ours likely account for this discrepancy. 
First, we used transient stimuli with a dominant frequency of 0.5 Hz, 
whereas the previous study49 used 2-Hz sinusoidal stimuli. Second, 
the previous study and ours used different motion platforms, which 
likely have different vibration characteristics. Third, parameters of 
the ROC analysis were different. We considered only a narrow range 
of headings (±6°) and capped neuronal thresholds at 300°, whereas 
the previous study49 used a broader range (±20°) and did not cap the 
thresholds. To compare more directly, we re-analyzed the previous 
study’s data49 using parameters comparable to those that we used here. 
This yielded thresholds of 38 ± 3.1° for VTN and 32.8 ± 3.1° for CBN, 
which are much closer to the values that we obtained.

Our results are directly comparable to neuronal thresholds from 
area MSTd9, as identical stimuli and analyses were used. In both this 
study and a previous one9, stimuli were not tailored to the tuning 
preferences of each neuron, as has been done in previous studies of 
visual cortex30. Because we recorded from every neuron that was 
sensitive to translation in the horizontal plane, our data represent a 
largely unbiased sampling of the vestibular-only cell population in 
VTN and CBN. It will be of great interest to characterize direction 
discrimination thresholds of otolith afferents and compare these to 
our data from VTN and CBN.

Choice probabilities
We found robust trial-by-trial correlations between responses of VTN 
and CBN neurons and monkeys’ perceptual decisions about heading. 
To the best of our knowledge, significant choice probabilities have not 
been reported for neurons outside of cerebral cortex. Perhaps surpris-
ingly, average choice probabilities in VTN and CBN were larger than 
average choice probabilities reported for most cortical areas, with 
mean choice probability values of 0.61 ± 0.02 for VTN and 0.59 ± 0.01  
for CBN. Moreover, the most sensitive VTN and CBN neurons 
showed choice probabilities as large as 0.8–0.85. By comparison, the 
original study of choice probabilities in visual area MT found a mean 
value of 0.56 for coarse visual direction discrimination1, and other 
MT studies have reported mean choice probabilities of 0.55 for fine 
direction discrimination4, 0.52 for speed discrimination3 and 0.59 
for disparity discrimination5. Previous studies of area MSTd have 
found mean choice probabilities of 0.55 for fine vestibular heading 
discrimination8,9. To the best of our knowledge, only one previous 
study2, involving perception of bistable structure-from-motion dis-
plays, found an average choice probability (0.67) larger than what we 
observed in VTN and CBN.
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A fundamental question involves the factors that determine the 
magnitude of choice probability effects across different brain areas. 
There is some evidence that choice probabilities increase from 
peripheral to more central stages of sensory processing. For exam-
ple, binocular disparity-selective neurons in secondary visual cor-
tex show significant choice probabilities, whereas equally sensitive 
neurons in primary visual cortex do not10. Similarly, choice-related 
effects in the somatosensory system appear to increase from primary 
somatosensory cortex to higher levels of processing15. One possibility 
is that choice probabilities emerge when sensory signals are repre-
sented in a format that is useful for the task at hand. In this respect, 
the vestibular system provides a unique opportunity to study the 
origins of choice probability because vestibular neurons have similar 
spatio-temporal properties all the way from vestibular afferents to 
the cortex. In contrast, neural correlates of heading or depth percep-
tion cannot be studied in the visual periphery of primates because 
neurons in the retina or thalamus do not exhibit tuning for optic flow 
or binocular disparity.

We found that VTN and CBN neurons that encode translation 
showed significant choice probabilities, whereas neurons that rep-
resent net gravito-inertial acceleration did not. This finding sug-
gests that a critical signal transformation in sensory pathways can 
lead to the emergence of choice probabilities. Specifically, we suggest 
that the transformation of vestibular signals from representing net 
gravito-inertial acceleration to representing translation19,20 is the 
critical step that places these signals in a format that is useful for 
heading perception. All primary otolith afferents suffer from the 
linear acceleration ambiguity problem19; thus, their responses would 
be inappropriate for driving heading perception. We therefore predict 
that otolith afferents would not exhibit significant choice probabili-
ties in our task.

Our results also have relevance to the important issue of whether 
choice probabilities arise through a bottom-up or top-down  
mechanism13,16. In a bottom-up scheme, trial-to-trial variability in a 
population of neurons drives fluctuations in perceptual decisions. In a 
top-down scheme, feedback from decision-making centers (or a featu-
ral attention signal) modulates the responses of sensory neurons13. 
Our finding that only translation-coding neurons showed choice 
probabilities (Fig. 5) is consistent with a bottom-up mechanism. The 
logic is that, once the signals carried by VTN and CBN neurons are 
transformed to represent translation, fluctuations in neural activity 
become linked to fluctuations in perceptual reports.

Alternatively, these results (Fig. 5) could be consistent with a top-
down scheme provided that decision-related signals or featural atten-
tion signals selectively target translation-coding neurons in VTN and 
CBN. Although plausible, this possibility appears less likely given that 
there is only weak clustering of heading tuning in VTN and CBN 
(Supplementary Fig. 9). Without robust clustering, it may be difficult 
to target top-down signals to the appropriate neurons. If choice proba-
bilities are generated by top-down feature-based attention signals, why 
should such attention signals propagate as far back as the brainstem? 
Such an interpretation would imply that subcortical areas participate 
in a network loop that implements decision making by altering the 
sensory information that reaches decision-making areas.

Effect of noise correlations on choice probabilities
Correlated noise among neurons is important for determining the 
information capacity of a population code50. In general, correlated 
noise could either decrease or increase the amount of information 
represented by a population of neurons, depending on how correlated 
noise is structured relative to signal correlations23,39,40,50. Weak, but 

significant, noise correlations have been measured in a number of 
cortical areas21,22,40, and the structure of noise correlations can be 
modified by task demands37, attention36 and learning34.

Correlated noise should have a profound effect on choice probabili-
ties, particularly for large neuronal populations16. Without correlated 
noise, sizeable choice probabilities are possible only when decisions 
are based on implausibly small pools of neurons23. In contrast, when 
neurons share correlated noise, they may exhibit significant choice 
probabilities even when they do not contribute at all to decisions22. 
Thus, we hypothesize that differences in choice probability across 
brain areas are mainly driven by differences in the structure of cor-
related noise, but this hypothesis had not been tested previously.

We found a robust correlation structure in VTN and CBN. Critically, 
our simulations demonstrate that it is not the average noise correla-
tion value that determines choice probabilities, as mean noise cor-
relations were not significantly different from zero in VTN, CBN or 
MSTd. Rather, the key factor appears to be the relationship between 
rnoise and rsignal (Fig. 7). For a given pool size, a steeper relationship 
between rnoise and rsignal led to a greater average choice probability 
and a steeper relationship between choice probability and neuronal 
threshold (Fig. 8 and Supplementary Fig. 6). Indeed, our simulations, 
which were constrained by measured data, demonstrate that differ-
ences in choice probabilities across areas can be largely accounted for 
by variations in correlation structure.

In closing, our findings demonstrate that subcortical neurons 
exhibit robust correlations with perceptual decisions and suggest that 
choice probabilities emerge when sensory signals are represented in 
a format that is useful for driving behavior. Moreover, the vestibular 
system is ideally suited to further exploration of the relationships 
between sensory neural activity and perceptual decisions.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METhODS
Subjects and apparatus. Five rhesus monkeys (Macaca mulatta, 4–9 kg) were 
chronically implanted with an eye coil, head-restraint ring and a plastic recording 
grid35,51. All procedures were approved by the Institutional Animal Care and Use 
Committee at Washington University and were performed in accordance with 
institutional and US National Institutes of Health guidelines. Motion stimuli were 
delivered using a 6 degrees of freedom motion platform (Moog 6DOF2000E), 
as described previously35.

electrophysiological recordings. We recorded extracellular activity of single 
neurons in VTN and CBN using tungsten microelectrodes (FHC, 5–7-MΩ 
impedance). We used the location of the abducens nuclei (mapped in prelimi-
nary experiments) to guide electrode penetrations into the CBN and VTN29,49,51 
(Supplementary Fig. 1). We mainly targeted neurons in the medial vestibular 
nuclei and neurons in the rostral fastigial nucleus of the cerebellum, although 
some penetrations may have extended into the anterior interposed nuclei. For 
most recording sessions (110 of 215), two microelectrodes were placed inside a 
single guide tube (41 cell pairs) or placed in two different guide tubes (69 cell 
pairs) separated by 0.8–2.8 mm. The distance between simultaneously recorded 
neurons was estimated from the horizontal distance between guide tubes and 
from recording depths.

experimental protocols. Each cell was tested for eye movement–related responses 
while animals pursued a target that moved in one of the four cardinal directions: 
left, right, up or down (Gaussian velocity profile, 9° amplitude, 2-s duration, five 
repetitions). Firing rates during pursuit were used to determine if the neuron was 
tuned for direction of smooth pursuit (P < 0.05, one-way ANOVA). Only neurons 
without eye movement tuning, known as vestibular-only cells, were tested further 
with a three-dimensional heading tuning protocol, in which translational motion 
stimuli were presented along 26 directions sampled evenly around a sphere35. 
Animals were simply required to maintain visual fixation on a head-fixed target 
during this protocol. The duration of the heading stimulus was 2 s, the displace-
ment was 13 cm and the velocity profile was Gaussian with a peak velocity of  
~30 cm s−1, corresponding to a biphasic acceleration profile with peak accelera-
tion of ~0.1g = 0.98 m s−2. Responses were computed as mean firing rates over 
the middle 1-s period of the stimulus35, or within at least five consecutive 400-ms 
bins, 25 ms apart. Only neurons with significant heading tuning in the horizontal 
plane (P < 0.05, one-way ANOVA, n = 147 of 257) were further tested using the 
heading discrimination task.

discrimination task. Four animals were trained to perform a fine heading dis-
crimination task around psychophysical threshold9. During neural recordings in 
the discrimination task, seven logarithmically spaced headings (±6.4°, ±2.6°, ±1°, 
0° relative to straight ahead) were presented in a block of randomly interleaved 
trials while animals maintained fixation on a head-fixed target (2° × 2° fixation  
window). The range and spacing of headings were chosen to obtain near-maximal 
psychophysical sensitivity while allowing neural sensitivity to be reliably esti-
mated for most neurons. The motion trajectory (30 cm displacement) was 2 s in 
duration and followed a Gaussian velocity profile (peak velocity, 45 cm s−1), with 
a corresponding biphasic linear acceleration profile (±0.1g = ±0.98 ms−2). The 
Gaussian velocity profile was 50% broader in the discrimination task than in the 
fixation task described above, such that the peak accelerations were comparable 
and the discrimination task had a greater peak velocity and displacement.

At the end of each discrimination trial, the fixation point disappeared, two 
choice targets appeared, and the monkey made a saccade to the left or right 
target to report his perceived heading (leftward or rightward relative to an inter-
nal standard of straight ahead). Correct choices were rewarded with a drop of 
liquid. For the ambiguous straight-forward heading direction (0°), rewards were 
delivered randomly on half of the trials. If fixation was broken at any time during 
the 2-s motion stimulus, the trial was aborted and data were discarded. If neural 
isolation was lost before completion of at least ten repetitions, that neuron was 
excluded from quantitative analysis. In our sample, 66% (n = 97 of 147) of the 
cells were held long enough to be tested with at least ten repetitions of each 
distinct stimulus.

measuring selectivity for translation versus net gravito-inertial acceleration. 
We tested whether VTN and CBN neurons signal translation of the head or 

whether they simply respond to net linear acceleration, such as that produced 
when the head is tilted relative to gravity. To distinguish these possibilities19,20,25, 
four stimulus conditions were randomly interleaved: translation only, tilt only, 
and two combinations of translation and tilt (tilt − translation and tilt + transla-
tion). The tilt stimulus consisted of a 0.5-Hz sinusoidal rotation from an upright 
position with a peak amplitude of  ±4.6° (peak velocity of ±14.4° s−1). This stimu-
lus reorients the head relative to gravity, such that otolith afferents are stimulated 
by a ±0.08g linear acceleration component in the stereotaxic head-horizontal 
plane. The amplitude of translation was adjusted to match the interaural com-
ponent of acceleration induced by the head tilt (±0.08g, requiring a translational 
displacement of ±8 cm). During combined tilt/translation stimuli, translational 
and gravitational accelerations are combined in either an additive or subtractive 
manner, depending on the relative phases of the two stimuli. As a result, the net 
gravito-inertial acceleration in the horizontal plane was either doubled (tilt + 
translation) or nullified (tilt − translation), even though the actual translation of 
the head remained the same. Each cell was tested with this tilt/translation protocol 
along either the interaural/roll axis or the naso-occiptal/fore-aft axis, whichever 
produced a larger response modulation during translation.

tilt/translation analysis. Responses to sinusoidal stimuli were quantified using 
instantaneous firing rate, computed as the inverse of the interspike interval19. 
Instantaneous firing rates were overlaid from multiple stimulus cycles, and 
response amplitude and phase were determined by fitting a sinusoid (clipped off 
at zero response) to both response and stimulus profiles. Response amplitude 
refers to one-half of the peak-to-trough modulation. Phase was expressed as the 
difference between peak response and peak stimulus velocity (rotation and tilt) 
or acceleration (translation). To determine whether neural responses correlated 
best with translation or net acceleration, linear regression analysis was used to 
simultaneously fit responses to all of the tilt/translation conditions with either a 
net acceleration model or a translation-coding model19,52. To determine how well 
each of the two models fit the data, we computed partial correlation coefficients 
that were normalized using Fisher’s r-to-z transform19,20,53.

Behavioral and neuronal sensitivity. Behavioral performance was quantified by 
plotting the proportion of rightward choices as a function of heading direction 
and fitting the data with a cumulative Gaussian function9 
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P(r) denotes the proportion of rightward choices, h is the heading direction,  
µ is the mean of the Gaussian (corresponding to the point of subjective equality) 
and σ is the s.d. Psychophysical threshold was defined as the s.d. of the Gaussian 
fit, σ, which corresponds to 84% correct (assuming no bias).

For the analysis of neural responses, we used mean firing rates calculated 
during the middle 400-ms interval of each stimulus presentation (in Fig. 3, the 
center location of this window was varied). To characterize neuronal sensitivity, 
we used ROC analysis to compute the ability of an ideal observer to discrimi-
nate between two oppositely directed headings (for example, −6.4° versus +6.4°; 
Fig. 1c) based solely on the firing rate of the recorded neuron and a presumed 
‘anti-neuron’ with opposite tuning30. ROC values were plotted as a function of 
heading, resulting in a neurometric function that was also fit with a cumulative 
Gaussian function (Fig. 1d). Neuronal threshold was defined as the s.d. of the fit-
ted Gaussian. For a handful of insensitive neurons, threshold values were capped 
at an upper limit of 300°.

To quantify the relationship between neural responses and perceptual deci-
sions, we computed choice probabilities using ROC analysis1. For each heading, 
neuronal responses were sorted into two groups based on the choice that the 
animal made at the end of each trial: preferred choices refer to decisions that 
favor the preferred heading of the recorded neuron, whereas null choices refer 
to decisions in the opposite direction. ROC values were calculated from these 
response distributions, yielding a choice probability for each heading, as long 
as the monkey made at least three choices in favor of each direction. In addi-
tion, we also computed a single ‘grand’ choice probability for each neuron by 
combining responses across all heading directions that met this criterion. Grand 
choice probability was computed by z scoring the data for each heading and then 

(1)(1)
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combining them into a single pair of distributions for preferred and null choices. 
ROC analysis on this pair of distributions yielded the grand choice probability. 
The statistical significance of choice probabilities (relative to the chance level of 
0.5) was determined by permutation test (1,000 permutations).

noise and signal correlations. Noise correlation (rnoise) was computed as 
the Pearson correlation coefficient (ranging from −1 to 1) of the trial-by-
trial responses of two simultaneously recorded neurons40 during the three- 
dimensional heading tuning protocol (passive fixation). The response in each 
trial was taken as the number of spikes during the middle 400 ms of the stimulus 
duration. For each heading, responses were z scored by subtracting the mean 
response and dividing by the s.d. across stimulus repetitions. This operation 
removed the effect of heading on the mean response, such that noise correlation 
measures only correlated trial-to-trial fluctuations around the mean response. 
To avoid artificial correlations caused by outliers, we removed data points with 
z values more than three s.d. from the mean response40. We then pooled data 
across different heading directions to compute rnoise. To remove slow fluctua-
tions in response that could arise from changes in cognitive or physiological state  
(for example, fluctuations of arousal), we re-normalized the z scored responses 
in blocks of 20 trials34,40.

Signal correlation (rsignal) was computed as the Pearson correlation coefficient 
(ranging from −1 to 1) between tuning curves for two simultaneously recorded 
neurons. Tuning curves were constructed by plotting mean firing rates as a func-
tion of heading.

Population decoding and simulations. To simulate population responses and 
apply decoding techniques to predict choice probabilities, we generated simu-
lated population responses based on the measured spiking statistics of recorded 
neurons. The tuning curve, F(θ), for each simulated neuron was obtained from 
the measured mean responses of a real neuron during the discrimination task. 
For each heading and simulated trial, a response of the ith neuron was generated 
by randomly drawing a value from a Gaussian distribution having the same mean 
and variance, Vi(θ), as the measured data 

R F x Vi i i i( ) ( ) ( )q q q= +

where x is a vector of independent random deviates (one per neuron) with zero 
mean and unit variance. This produces simulated population responses in which 
each neuron’s noise is independent. To generate correlated noise among neurons, 
we multiplied the vector of independent deviates, x, by the square root of the cov-
ariance matrix22,23. In the covariance matrix, the correlation coefficient between 
neurons i and j was assigned according to 

r k ri j i jnoise signal( , ) ( , )= × +a

where rsignal represents the signal correlation between heading tuning curves for 
a pair of neurons. The slope k and offset α were acquired from a type II linear 

(2)(2)

(3)(3)

regression fit to the measured relationship between rnoise and rsignal in each brain 
area. Equation (2) then becomes 

R F y Vi i i( ) ( ) ( )q q q= +

where y represents the product of the square root of the covariance matrix with 
the independent vector of random deviates, x. For each simulation, we generated 
200 trials of responses for each neuron and each heading.

SVm decoder. To decode heading from a population of neurons, we implemented 
a linear decoding method43 that uses a SVM to determine the optimal weighting 
of each neuron’s response. This approach does not make specific assumptions 
regarding the spiking statistics of neurons (for example, Poisson) or about the 
pattern of noise correlations43,54,55. Given a sample of population activity for 
the jth trial, Rj, the SVM assigns a category label Cj ∈ [–1, +1] to the population 
response, where +1 corresponds to a rightward choice and −1 corresponds to a 
leftward choice. The category label is computed as 

C wR bj j= +sgn( )

where sgn() is the signum function, w is a vector of decoding weights for each 
neuron, and b is a vector of bias terms. These parameters define a hyperplane that 
separates the population response into two classes corresponding to rightward 
and leftward perceived headings. To train the SVM, we pooled data from all left-
ward headings into one class and from all rightward headings into another class. 
Results were similar when only data from the largest headings (±6.4°) were used 
to train the classifier. Using tenfold cross-validation56, there were 200 × 90% ×  
3 × 2 = 1,080 training trials for each simulation.

Once we acquired the weight vector, w, and the bias vector, b, from the train-
ing data set, we applied the decoder to the subset of trials corresponding to the 
ambiguous straight-forward heading. We decoded responses to 20 simulated 
trials for each training set, and we used tenfold cross-validation such that 200 
total trials were decoded. The choice of the decoder on each simulated trial was 
used to compute choice probabilities for each simulated neuron. This allowed us 
to make quantitative predictions of choice probabilities for neural populations 
of different sizes.

(4)(4)

(5)(5)

51. Meng, H., Green, A.M., Dickman, J.D. & Angelaki, D.E. Pursuit-vestibular interactions 
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52. Green, A.M., Shaikh, A.G. & Angelaki, D.E. Sensory vestibular contributions to 
constructing internal models of self-motion. J. Neural Eng. 2, S164–S179 (2005).
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(2009).

54. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 
(1995).

55. Vapnik, V. The Nature of Statistical Learning (Springer, 2000).
56. Ron, K. A study of cross-validation and bootstrap for accuracy estimation and model 
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