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The emergence of functional microcircuits in visual
cortex
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Sensory processing occurs in neocortical microcircuits in which
synaptic connectivity is highly structured1–4 and excitatory neu-
rons form subnetworks that process related sensory information5,6.
However, the developmental mechanisms underlying the forma-
tion of functionally organized connectivity in cortical microcir-
cuits remain unknown. Here we directly relate patterns of
excitatory synaptic connectivity to visual response properties of
neighbouring layer 2/3 pyramidal neurons in mouse visual cortex
at different postnatal ages, using two-photon calcium imaging in
vivo and multiple whole-cell recordings in vitro. Although neural
responses were already highly selective for visual stimuli at eye
opening, neurons responding to similar visual features were not
yet preferentially connected, indicating that the emergence of fea-
ture selectivity does not depend on the precise arrangement of local
synaptic connections. After eye opening, local connectivity reorga-
nized extensively: more connections formed selectively between
neurons with similar visual responses and connections were elimi-
nated between visually unresponsive neurons, but the overall con-
nectivity rate did not change. We propose a sequential model of
cortical microcircuit development based on activity-dependent
mechanisms of plasticity whereby neurons first acquire feature
preference by selecting feedforward inputs before the onset of sen-
sory experience—a process that may be facilitated by early elec-
trical coupling between neuronal subsets7–9—and then patterned
input drives the formation of functional subnetworks through a
redistribution of recurrent synaptic connections.

Intrinsic and experiential factors guide the patterning of neural
pathways and the establishment of sensory response properties during
postnatal development10–12. During this time, neural circuit refinement
is thought to depend on the elimination of initially exuberant projec-
tions, selective formation of new connections or both13,14. However, the
mechanisms governing the emergence of structured connectivity in
local cortical microcircuits, where dendrites and axons overlap exten-
sively, remain uncertain. Moreover, it is not clear whether the organi-
zation of synaptic connections between nearby neurons is established
early and inherently linked to the formation of receptive fields (RFs)
before the onset of sensory experience or whether the mature patterns
of recurrent connectivity appear only after the formation of RFs as a
result of correlated activity induced by feedforward drive from the
sensory periphery. Here we investigate these questions in networks
of layer 2/3 (L2/3) pyramidal cells in mouse primary visual cortex
(V1)—where neighbouring neurons exhibit a diversity of preference
for visual features5,15–17—by determining how local synaptic connec-
tivity relates to visual response properties during development.

Stimulus-selective responses in V1 are observed at eye opening18–22,
but the extent to which detailed RFs are established by this time
remains unclear. To characterize the spatial RF structure of L2/3 neu-
rons in V1 at eye opening (postnatal days (P) 14–15) and in more
mature mice (P28–35), we used in vivo two-photon calcium imaging23

in monocular V1 to obtain spatial RFs by reverse correlation16,17,24 of
static natural images and spiking responses inferred from calcium
signals25 (Methods and Fig. 1a, b), and fitted a two-dimensional
Gabor function to the RFs (Supplementary Fig. 1). At eye opening,
L2/3 neurons exhibited a diversity of RF spatial structures that
resembled those of mature V1 neurons (Fig. 1c and Supplementary
Fig. 1a). The proportion of neurons with significant linear RFs was
similar between the two age groups (P14–15, 60%, 191 of 317; P28–35,
58%, 201 of 348; P 5 0.51, x2 test; Fig. 1d), as was the angle of visual
space subtended by RFs (mean visual angle along the long RF axis 6

s.d.: P14–15, 29.3 6 13.6u; P28–35, 29.4 6 10.3u; P 5 0.12, rank-sum
test; Fig. 1e; see also Supplementary Fig. 1b, c). The similarity of RF
structures was shown by the overlapping distributions of standard RF
measures of nx and ny, which respectively express the width and length
of the fitted Gabor function in units of the underlying grating period
(median nx: P14–15, 0.31; P28–35, 0.32; P 5 0.14; median ny: P14–15,
0.20; P28–35, 0.20; P 5 0.41; rank-sum test; Methods and Sup-
plementary Fig. 1d). For comparison, the orientation tuning of neu-
rons responsive to drifting gratings was slightly but significantly
broader at eye opening than in more mature V1 (median orientation
selectivity index: P13–15, 0.62; P22–26, 0.68; P 5 2.39 3 10234, rank-
sum test; Supplementary Fig. 2a, b). Neuronal responses at eye open-
ing, however, exhibited higher variability to repeated presentation of
the preferred grating stimulus (coefficient of variation (CV)) than in
more mature animals (mean CV 6 s.d.: P13–15, 0.93 6 0.36; P22–26,
0.71 6 0.30; P 5 1.17 3 102304, rank-sum test; Supplementary Fig. 2c),
indicating that responses in immature animals were less reliable des-
pite the presence of clearly defined RFs and orientation selectivity.

The similarity of spatial RF properties in immature and older V1
suggests that the organization of feedforward connections26 was largely
established by the time of eye opening. We next tested whether the
synaptic connectivity of neurons in the local cortical network is func-
tionally specific when vision begins. We combined in vivo two-photon
calcium imaging in V1 and subsequent multiple whole-cell recordings
in slices of the same tissue5 (Fig. 2). We first imaged calcium signals at
consecutive depths within L2/3 to characterize the responses to natural
movies and drifting gratings (Methods) of all neurons within a volume
of approximately 285mm 3 285mm 3 40–120mm. We then carried
out simultaneous whole-cell recordings in vitro from two to six neigh-
bouring L2/3 pyramidal neurons separated by less than 50mm (mean
distance 6 s.d.: P13–15, 24 6 9mm; P22–26, 25 6 10mm; Fig. 2a, b).
We recorded from 143 and 140 neurons in total in the slices at P13–15
and P22–26, respectively, which were identified in the in vivo image
stack by image registration based on affine transformation5 (Fig. 2a).
Synaptic connectivity was assessed by evoking action potentials in each
neuron sequentially while searching for the presence of excitatory
postsynaptic potentials in the other neurons (Fig. 2b). This approach
allowed us to relate the probability of finding connections between
pairs of L2/3 neurons to the correlation of their average responses to
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natural movies (signal correlation; Fig. 2c, d, f, h) and to the differences
in their preferred orientation (Fig. 2g, i). We used natural movie signal
correlation for comparison of response similarity not only because it
was a good predictor of the similarity of the neurons’ linear RFs
(Supplementary Fig. 3), but because it also probably captures the simi-
larity of feature selectivity in neurons with nonlinear RFs, which could
not be estimated by reverse correlation.

The overall rate of connectivity was not significantly different
between the two age groups (P13–15, 16.4%, 58 of 353 connections
tested; P22–26, 21.7%, 64 of 295 connections tested; P 5 0.09, x2 test;
Fig. 2e). Among the neurons recorded in vitro, 73% (104 of 143) and
56% (79 of 140) exhibited significant responses to the natural movie
in vivo (Methods). As we reported previously5, among responsive
L2/3 pyramidal cells the connection probability increased steeply with
increasing signal correlation at P22–26 (P 5 4.6 3 1024, Cochran–
Armitage test; Fig. 2f). This was not the case at P13–15 (P 5 0.092),
when a much weaker trend was observed. Specifically, there were twice
as many connections between highly correlated neuronal pairs (signal
correlation, $0.1) in older V1 than at eye opening (P13–15, 19.4%,
19 of 98 tested; P22–26, 41.5%, 22 of 53 tested; P 5 0.0035, x2 test;
Fig. 2f). Therefore, the functional selectivity of synaptic connections
increased in the period after eye opening, as more connections formed
selectively between neurons responding to similar stimulus features.

We further examined the refinement of connection specificity by
relating the connection rate between reliably responsive, orientation-
tuned neurons (P13–15, 43.4%, 62 of 143 neurons; P22–26, 57.9%, 81
of 140; Fig. 2g and Methods) to the difference in their preferred ori-
entation. A significant decreasing relationship between connection
probability and the difference in preferred orientation was present in
more mature V1 but not at eye opening (P13–15, P 5 0.27; P22–26,
P 5 0.034; Cochran–Armitage test; Fig. 2g). Together, these results
indicate that at eye-opening the organization of synaptic connections
between nearby L2/3 pyramidal neurons exhibits only weak functional
specificity. After the onset of visual experience, connectivity increases
specifically between neurons coding for similar visual features.

Previous studies suggest that bidirectional recurrent connections
are overexpressed in some cortical networks2,4 and that they are most
frequent between L2/3 pyramidal cell pairs with similar visual res-
ponses in mature V15. We examined whether a similar organization
of bidirectional motifs is already present at eye-opening. In contrast to
mature mice, visually naive mice did not exhibit a larger proportion of
bidirectionally connected pairs between neurons with highly corre-
lated responses to the natural movie (P13–15, P 5 0.27; P22–26,
P 5 0.01; Cochran–Armitage test; Fig. 2h). Similar trends were found
between neurons preferring similar orientations (P13–15, P 5 0.13;
P22–26, P 5 0.11; Cochran–Armitage test; Fig. 2i). Therefore, this
statistical feature of pairwise connectivity also refines after eye opening,
such that a greater proportion of neurons with similar visual responses
become bidirectionally connected (Fig. 2h, i).

We next tested for developmental changes in recurrent connectivity
between neurons not reliably responsive to visual stimuli, which were
encountered in similar proportions in both age groups (fraction of
neurons not significantly responsive to repeated presentations of the
natural movie: P13–15, 39%, 4,133 of 10,509; P22–26, 44%, 4,691 of
10,662). At P22–26, non-responsive neurons connected to each other
at much lower rates than responsive neurons (P , 0.01, Tukey’s HSD
multiple-comparison test among proportions; Fig. 3a). At P13–15,
however, responsive and non-responsive neurons formed recurrent
connections at similar rates (P . 0.05; Fig. 3a). These data suggest
that connections between L2/3 neurons not driven effectively by visual
stimuli are selectively eliminated after eye opening (P , 0.01; Fig. 3a).
This nonspecific-connection scheme at eye opening is consistent with
the statistics of population activity during visual stimulation, which
showed a twofold-higher total pairwise firing rate correlation at P13–
15 than at P22–26 (median correlation: P13–15, 0.044; P22–26, 0.021;
P , 102307, rank-sum test; Fig. 3b). Higher activity correlations at eye
opening may allow connections to be maintained between neurons not
reliably driven by visual stimuli. These connections are then lost as
activity in the V1 network becomes progressively less correlated.

To obtain a mechanistic insight into the refinement of local recur-
rent connectivity after eye opening, we constructed a network model of
the neocortex based on activity-dependent synaptic plasticity27. The
model consisted of a recurrently connected cortical network of 18 excit-
atory and 5 inhibitory integrate-and-fire neurons (Methods). Cortical
neurons received feedforward input from 500 presynaptic neurons, a
subset of which exhibited spatially correlated activity during each
iteration of the simulation (Fig. 4a). The weights of both recurrent
and feedforward synapses were updated by a voltage-based spike-
timing-dependent plasticity (vSTDP) learning rule27. Initially, neurons
were seeded with RFs (Methods) and the weights of the recurrent
network were drawn randomly from a uniform distribution (Fig. 4b,
upper panels). Excitatory neurons in the recurrent network with the
same RFs developed strong, mostly bidirectional connections (93.2%;
proportions taken across 50 simulations; Fig. 4b, c). There was a strong
decrease in connectivity between neurons that were not responsive to
feedforward input (from 20.5% near the beginning of the simulation to
0.6% at the end; Fig. 4d) but not between neurons that were both
responsive to feedforward input (decrease from 26.0% to 20.7%), con-
sistent with experimental observations (Fig. 3a). To compare the
model’s behaviour further with our experimental data, we froze the
feedforward and recurrent weights at three time points and measured
the signal correlation between all responsive neuronal pairs. Higher
signal correlations between neurons indicated a higher rate of connec-
tivity at later but not earlier stages of network development (Figs 4e and
2f). The model also predicted the increase in bidirectional connec-
tions between neurons with high signal correlations at later stages of
development (Figs 4e and 2h). These simulations suggest that feed-
forward connection patterns determine the structure of recurrent con-
nectivity by activity-dependent mechanisms of synaptic plasticity.
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Figure 1 | Responses of L2/3 pyramidal cells in mouse visual cortex are
highly feature selective at eye opening. a, Example of OGB-labelled region at
P14 (left; scale bar, 30mm) with calcium transients of two cells obtained with
two-photon microscopy (bottom; scale bars, 20 s, 10% DF/F) in response to
natural image sequences. b, Linear receptive fields (RFs) of the neurons in

a obtained by regularized reverse correlation (Methods). Scale bars, 20u. c, RFs
of neurons from two mice at different ages. a.u., arbitrary units; red indicates
ON subfield; blue indicates OFF subfield. d, e, Fraction of neurons with
significant RFs (d, x2 test) and RF size (e, rank-sum test) at eye opening and in
more mature V1. Error bars, s.d.; P14–15, n 5 4 mice; P28–35, n 5 5 mice.
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Our results indicate that RFs exist before mature patterns of recur-
rent connectivity. However, transient electrical coupling via gap junc-
tions between clonally related neurons contributes to shared feature
selectivity and raises the possibility that intracortical connectivity may
precede and instruct RF formation7,9,28. We extended our network
model earlier in time to examine the mechanisms by which gap-
junction coupling may influence the emergence of RFs and recurrent
connectivity. In this model, early recurrent connectivity in the cortical

network was provided by electrical gap junctions (Fig. 4f, g) and
recurrent excitatory chemical synapses did not exist, approximating
the organization of the mouse neocortex in the first postnatal week7.
Early feedforward connections were randomly assigned (Fig. 4f, g) and
their weights were updated according to the vSTDP rule. Cell pairs
were more likely to stabilize the same set of feedforward inputs (that is,
develop the same RF) if they had been connected by gap junctions
(gap-junction coupled, 31.6%, 79 of 250 pairs; not gap-junction
coupled, 4.1%, 305 of 7,400 pairs; P , 0.001, x2 test; 50 simulations;
Fig. 4h). We then removed the gap junctions, which disappear by the
second postnatal week in mouse V17, and assigned random recurrent
synaptic connections to neurons in the cortical network (Fig. 4f, g).
Neurons sharing the same RF formed strong synaptic connections
(Fig. 4c, g). Therefore, the functional specificity of recurrent connec-
tions was influenced indirectly by early gap-junction motifs (Fig. 4i), as
electrically coupled neurons were first likely to develop the same RFs
before becoming synaptically connected.

Separate simulations initiated with chemical connections revealed
that early modifiable bidirectional chemical connections had no influ-
ence on either the formation of RFs or recurrent connectivity at the end
of the simulation (probability of developing same RF: not connected,
5.5%, 270 of 4,918 pairs; bidirectional chemical connections, 3.8%, 11
of 288 pairs; P 5 0.22, x2 test; 50 simulations; Fig. 4h, i). Therefore,
early initial biases in cortical connectivity may only influence func-
tional circuit development if they exist as strong and stable connections
when feedforward inputs are being selected. Although the absolute
connectivity rates found experimentally were not perfectly replicated
in the model (compare Fig. 2f with Fig. 4e), the connection probability
between cells with similar visual responses was higher when assessed
deeper in the acute slice, where connections are more likely to be
preserved during cutting (supplementary fig. 6 of ref. 5).

We found that the functional specificity of local connections in
mouse V1 was not apparent at eye opening despite the occurrence
of highly selective responses to visual features. Although the overall
rate of synaptic connectivity did not change after eye-opening, con-
nections redistributed according to the following rules: more connec-
tions were added preferentially between neurons responding most
similarly to visual stimuli, whereas connections were eliminated
between cells not reliably responsive to visual stimulation. This result
is surprising given existing theories of neural circuit formation, which
suggest either that connections are initially exuberant and are subse-
quently ‘pruned’10,13 or that synapse number increases after the onset
of sensory experience11,14. Instead, in local L2/3 networks we find a
balanced restructuring of connectivity after eye opening. It remains
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to be seen whether similar mechanisms contribute to the elabora-
tion of long-range connections in visual cortex of rodents and other
mammals22,29,30.

Functionally specific connection patterns between L2/3 pyramidal
cells seem to be instructed by feedforward input (for example from layer 4
or the visual thalamus) only after RF formation. Our network model
suggests that correlated firing driven by feedforward activity increases
the functional specificity of recurrent connections by activity-dependent
mechanisms of synaptic plasticity, which leads to the preferential
formation of synapses between any neurons sharing similar RFs. The
model can additionally explain how electrically coupled neurons early in
development first develop similar feature selectivity and then preferential
recurrent connectivity7,9,28 (Fig. 4g–i).

Our data suggest that functionally organized connectivity between
L2/3 pyramidal neurons is not necessary for establishing elemental RF
properties at eye opening. Instead, it may contribute to the amplifica-
tion of visually driven responses and thereby increase the robustness
and reliability of cortical representation of sensory input with age
(Supplementary Fig. 2c), which may be facilitated by the preferential
formation of bidirectional connections between neurons with similar
stimulus preferences (Fig. 2h, i). The role of inhibition for the matura-
tion of visual responsiveness remains to be determined.

In conclusion, the patterning of recurrent cortical connectivity
through the feedforward-driven, activity-dependent redistribution of
connections may be a fundamental rule by which neurons link
together into assemblies that process related information.

METHODS SUMMARY
Responses to different visual stimuli in anaesthetized mouse V1 L2/3 cells were
measured using in vivo two-photon calcium imagining as previously described5,25.
Receptive fields were obtained by reverse correlation using a regularized pseudo-
inverse method24. Synaptic connections were assayed by in vitro whole-cell recor-
dings of a subset of neurons imaged in vivo and re-identified as previously
described5,25. The incidence, strength and short-term dynamics of synaptic con-
nections were related to visual response properties across age (Figs 2 and 3 and
Supplementary Fig. 4). The network model consisted of 23 recurrently connected
integrate-and-fire type neurons (18 excitatory, 5 inhibitory) receiving 500 feedfor-
ward inputs with neuronal dynamics and plasticity modelled as in ref. 27.

Full Methods and any associated references are available in the online version of
the paper.
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Figure 4 | Feedforward input structure determines the functional
organization of recurrent connectivity. a, Sketch of the network model of
functional microcircuit development based on vSTDP (see text for details). At
the start of the simulation, cortical neurons were randomly connected but
received spatially clustered input from a subset of presynaptic neurons. Both
feedforward and recurrent connections were updated according to the vSTDP
rule (Methods). b, Synaptic weight matrices of feedforward (left, reordered for
display purposes) and recurrent (right) connections from an example network
at the beginning and end of the simulation. Recurrent synaptic connections
were classified as weak (light grey), unidirectional (white) or bidirectional
(black). c, Probability of observing weak, unidirectional or bidirectional
connections, at the end of the simulation, between neurons that start with the
same RF. d, Connection probability of responsive (R R R) and non-responsive
(N R N) neuronal pairs during and at the end of the simulation. e, Relationship

between connection probability and feedforward input-driven signal
correlation at three time points in the simulation. f, Sketch of different stages of
the network model extended to earlier developmental times. GJ, gap junction.
g, Synaptic weight matrices from the example gap-junction network model.
The recurrent network is initially connected with gap junctions (yellow) in the
absence of chemical synapses. With time, neurons selected a spatially clustered
set of feedforward inputs (RFs). Gap junctions were then removed and
recurrent chemical connections were randomly assigned. The simulation was
then continued as in a and b. h, Probability of developing RFs from the same set
of feedforward inputs for pairs with no recurrent connections, gap junctions or
early bidirectional connections (data from separate simulations) at the start of
the simulation. i, Probability of developing shared connections depended on
the starting connectivity. Data in c–e, h and i are from 50 network simulations.
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METHODS
Animals and surgical procedures. All experimental procedures were carried out
in accordance with institutional animal welfare guidelines and licensed by the UK
Home Office. Experiments were performed on C57Bl/6 mice aged P13–15 and
P22–35. Mice were initially anaesthetized with a mixture of fentanyl (0.05 mg
kg21), midazolam (5.0 mg kg21), and medetomidine (0.5 mg kg21). At the time
of imaging, the injectable anaesthetic had mostly worn off and light anaesthesia
was maintained by isoflurane (0.3–0.5%) in a 3:2 mixture of O2:N2O delivered via a
small nose cone. Surgery was performed as described previously15. Briefly, a small
craniotomy (1–2 mm) was carried out over primary visual cortex and sealed after
dye injection with 1.6% agarose in HEPES-buffered artificial cerebrospinal fluid
(ACSF) and a cover slip.
In vivo two-photon calcium imaging. For bulk loading of cortical neurons, the
calcium-sensitive dye Oregon Green BAPTA-1 AM (OGB-1 AM, Molecular Probes)
was first dissolved in 4ml DMSO containing 20% Pluronic F-127 (Molecular Probes),
and further diluted (1/11) in dye buffer (150 mM NaCl, 2.5 mM KCl and 10 mM
HEPES, pH 7.4) to yield a final concentration of 0.9 mM. Sulphorhodamine 101 (SR
101, 50mM, Molecular Probes) was added to the solution to distinguish neurons and
astrocytes31. The dye was slowly pressure-injected into the monocular region of right
visual cortex at a depth of 170–200mm with a micropipette (3–5 MV, 3–10 p.s.i.,
2–4 min) under visual control by two-photon imaging (310 water immersion objec-
tive, Olympus). Activity of cortical neurons was monitored by imaging fluorescence
changes with a custom-built microscope and a mode-locked Ti:sapphire laser (Mai
Tai, Spectra-Physics) at a wavelength of 830 or 930 nm through a 340 water immer-
sion objective (0.8 NA, Olympus). Scanning and image acquisition were controlled by
custom software written in LABVIEW (National Instruments).

Visual stimuli were generated using the MATLAB (Mathworks) Psychophysics
Toolbox32,33, and were displayed on an LCD monitor (60-Hz refresh rate) posi-
tioned 20 cm from the left eye, roughly at 45u to the long axis of the animal,
covering ,105u3 85u degrees of visual space. At the beginning of each experi-
ment, the appropriate retinotopic position in visual cortex was determined using
small grating stimuli at 12–24 neighbouring positions. The monitor was reposi-
tioned such that the preferred retinotopic position of most imaged neurons was
roughly in the middle of the monitor.

Imaging frames of 256 3 256 pixels were acquired at 7.6 Hz while different
visual stimuli, including naturalistic images and movies, and drifting gratings
(see below) were presented. After each recording, the focal plane and imaging
position was checked and realigned with the initial image if necessary. In com-
bined in vivo functional imaging and in vitro connectivity assaying experiments, to
obtain visually evoked responses from all neurons in a cortical volume of approxi-
mately 285mm 3 285mm 3 40–120mm, images were recorded at 7 to 18 cortical
depths with a spacing of 7mm, starting at ,110mm below cortical surface, a depth
that corresponds to superficial L2/3 in mouse V1.

Image sequences were aligned for tangential drift and analysed with custom
programs written in MATLAB and LABVIEW. Recordings with significant brain
movements, vertical drift or both were excluded from further analysis. Cell out-
lines were detected using a semi-automated algorithm based on morphological
measurements of cell intensity, size and shape, and were subsequently confirmed
by visual inspection. After erosion of the cell-based regions of interest (to minimize
influence of the neuropil signal around the cell bodies), all pixels within each
region of interest were averaged to give a single time course (DF/F), which was
additionally high-pass-filtered at a cut-off frequency of 0.02 Hz to remove slow
fluctuations in the signal. Spike trains were inferred from calcium signals using a
fast non-negative deconvolution method which approximates the maximum
a-posteriori spike train for each neuron, given the fluorescence observations34.
This method yields spike probabilities (or inferred firing rate) linearly related to
the number of action potentials per imaging frame25.
Receptive field measurement. Receptive field data were acquired from four mice
at eye opening (P14–15) and five mature mice (P28–35). Naturalistic image
sequences (between 1,440 and 2,700 individual images) were presented on the
monitor during two-photon calcium imaging. Images were shown at 2-s intervals
(0.5-s presentation time, interleaved by a 1.5-s grey screen) for a total presentation
time of between 0.83 and 1.5 h. After the onset of each natural image, 15 imaging
frames were recorded at 7.6 Hz before the next image was presented. For each cell
in the imaged region, the response to an image was calculated in the following way.
Spike probabilities were inferred from calcium signals using the fast non-negative
deconvolution method described above. For each visual stimulus, k 5 1, …, N, and
each cell, i 5 1, …, C, the response to the stimulus can be expressed as r(k, i, j)
where j 5 1, …, 15 are the 15 imaging frames. An average population response
was calculated: R(j) 5

P
k,ir(k, i, j)/NC. If the imaging frame, J, denotes the

frame during which the peak average population response occurred (such that
R(J) 5 maxj{R(j)}), then the response of cell i to stimulus k was defined asPJz1

j~J{1r(k, i, j)/3.

To estimate linear RFs, a regularized pseudo-inverse method24 was used for
reverse correlating neuronal responses with images of natural scenes. This algo-
rithm regularizes the inverse problem by introducing a two-dimensional smooth-
ness constraint on the linear RF; namely, the constraint is that the Laplacian of the
RF should be close to zero at all points (+2RF 5 0). This method introduces a
regularization parameter, l, which balances the emphasis to be placed on fitting
the data and the emphasis to be placed on the smoothness constraint.

Because this method introduces this free parameter, we performed the following
analysis to choose the regularization parameter. For each cell and each regulariza-
tion parameter, the naturalistic images and associated responses were separated
into training (75% of the data) and test (remaining 25% of the data) data sets.
Training data sets were chosen randomly and the remaining 25% of the data was
placed into the test data set. Linear RFs were then calculated using the training
data, and a sigmoid nonlinearity, described by the equation

P(x)~
A

1z exp ({axzb)

(where A is the amplitude, a determines the slope and b determines the offset of
the sigmoid), was then fitted to the training data to convert the linear predictions
made by the RF into neuronal spike probabilities. Response predictions to the
naturalistic images of the test data set were then made and the correlation coef-
ficient between the actual and predicted responses was taken as a measure of RF
prediction performance. This procedure was carried out for each cell and each
regularization parameter 100 times. For each cell, the regularization parameter
that maximized the RF prediction performance was chosen.

To assess whether the RF for a particular cell was significant, the response vector
to the naturalistic image sequence was randomly shuffled and the reverse correla-
tion was performed again, using the same regularization parameter, l. This pro-
cedure was repeated 99 times to produce 100 shuffled RFs, RFshuffled. From these
shuffled RFs, the mean, mshuffled, and standard deviation, sshuffled, across all pixels
were calculated. An RF was defined to be significant if there were pixels that had
absolute values greater than mshuffled 1 6sshuffled.

To fit the Gabor function, we used only the RFs determined to be significant by
the previous analysis. The RF was parameterized in MATLAB by fitting a two-
dimensional Gabor function using the Levenberg–Marquardt algorithm. The
Gabor function is described by

G(x,y)~A exp {
x’2

2s2
x
{

y’2

2s2
y

 !
cos (2pfx’zQ)

where

x’~(x{cx) cos (h){(y{cy) sin (h)

y’~(x{cx) sin (h)z(y{cy) cos (h)

These equations describe an underlying two-dimensional cosine grating parame-
terized by h (orientation), f (spatial frequency) and Q (phase), which is enveloped
by a two-dimensional Gaussian function parameterized by A (amplitude), cx and
cy (centre of the Gaussian), and sx and sy (standard deviations of the Gaussian
perpendicular to and parallel to the axis of the grating, respectively). Gabor fits
were individually inspected to make sure they matched the RF (some Gabor fits
were excluded at this point because they did not provide a good match to the RF:
P14-15, 3 of 191 (1.6%); P28-35, 6 of 201 (3%)).

To quantify the shapes of RFs, the dimensionless measures nx 5 sxf and ny 5 syf
were used35. These values express the size of the Gaussian envelope in terms of the
wavelength of the underlying cosine grating. For instance, nx 5 1 indicates that the
standard deviation of the Gaussian perpendicular to the grating is equal to half a
cycle of the underlying cosine grating. To get a measure of the size of the RF (Fig. 1
and Supplementary Fig. 1), the visual angle subtended by the Gabor fit along the
axis perpendicular to the direction of the cosine grating was calculated. That is, if
the eye of the mouse is at (0, 0, 0) in space, the centre of the monitor is at (0, 0, d)
(where d is the shortest distance to the mouse eye from the screen), the centre of
the Gabor fit to the RF is at (cx, cy, d), and the angle of orientation of the cosine
grating on the screen is h, then the visual angle, a, subtended by the Gabor was
calculated as

a~ arccos
u.v

jjujj jjvjj

� �

where u 5 (cx 2 sxcos(h), cy 1 sxsin(h), d) and v 5 (cx 1 sxcos(h), cy 2 sxsin(h),
d). Receptive field similarity was calculated as the pixel–pixel correlation
coefficient.
Natural movie signal correlation. Natural movies consisted of 40-s sequences of
either moving scenes in a mouse cage or compilations of The Life of Mammals
(BBC), adjusted to 70% mean contrast, continuously looped six times. Visual

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2013



responsiveness to natural movies was determined by the following procedure. For
all stimulus repetitions, inferred spike trains were moving-average-filtered with a
time window of three frames (,0.394 s). The smoothed firing rates at correspond-
ing points of the stimulus were then treated as groups and tested for differences by
one-way analysis of variance. Neurons with a P value less than 0.01 (that is, those
that exhibited consistently increased firing during at least one period of stimulus
presentation) were considered significantly visually responsive. For pairs of sig-
nificantly responsive neurons, the signal correlation was calculated as the
Pearson’s correlation coefficient of the averaged responses to the stimulus.
Orientation tuning. To measure the orientation preference and selectivity of
neurons, square-wave gratings (0.035 cycles per degree, 2 cycles per second,
100% contrast) drifting in eight different directions were randomly interleaved,
with the grating standing still for 1.4–1.9 s before moving for 0.9–1.5 s (six repeti-
tions per grating). Responsive neurons that exhibited consistently increased firing
during at least one time point of presentation of each grating were identified by
one-way analysis of variance. Among cells responsive to grating stimuli (P , 0.05),
the mean inferred firing rate during the presentation of a drifting grating was taken
as the response to each stimulus. From each trial, we obtained one orientation
tuning curve, and neurons were defined as reliably responsive if the mean cross-
correlation between all pairs of curves obtained from different trials was greater
than 0.1. Responses from different trials were then averaged to obtain the average
orientation tuning curve for each neuron. This orientation tuning curve was then
Fourier interpolated to 360 points, and the preferred direction was determined by
the angle at which the interpolated tuning curve attained its maximum. The
preferred orientation was taken as preferred direction modulo 180u. Orientation
selectivity index (OSI) was calculated as (Rbest 2 Rortho)/(Rbest 1 Rortho), where
Rbest is the interpolated response to the preferred direction and Rortho is the average
of interpolated responses to the directions orthogonal to the best-responding
direction. When relating connection probability to orientation selectivity, neurons
were defined as orientation selective if OSI . 0.4. To quantify neuronal response
reliability, we calculated the coefficient of variation (s.d. divided by mean) from
responses to the optimal grating direction.
In vitro whole-cell recording. We carried out imaging experiments followed by
whole-cell recordings in vitro at P13–15 and P22–26, using an approach described
previously5. After two-photon calcium imaging of visual responses in vivo, small
volumes of red fluorescent microspheres (Lumafluor) were injected into the
imaged region to facilitate identification of the region in the slice tissue. The mouse
brain was then rapidly removed to and dissected in ice-cold ACSF containing
125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 1.25 mM NaH2PO4, 2 mM CaCl2,
26 mM NaHCO3, 25 mM dextrose; 315–325 mOsm, bubbled with 95% O2/5%
CO2, pH 7.4. Visual cortex slices (300mm) were cut coronally (HM 650 V
Vibration Microtome, MICROM) and were incubated at 34 uC for 30 min before
they were transferred to the recording chamber. The slice containing the imaged
region was identified by the presence of OGB-1 green fluorescence and the red
microsphere injection site. To reveal the relative locations of cells, a detailed
morphological stack of the slice was acquired with a custom-built microscope
and a mode-locked Ti:sapphire laser (Chameleon, Coherent), at a wavelength of
830 nm, through a 316 water immersion objective (0.8 NA, Nikon). Scanning and
image acquisition were controlled by custom software written in LABVIEW.

Whole-cell recordings from two to six cells were carried out in regions identified
by visually comparing image stacks obtained in vivo and in vitro, using red fluor-
escent microspheres and the pial surface as reference. Recordings were carried out
in ACSF at 28 uC, using Multiclamp 700B amplifiers (Axon Instruments), and data
was acquired using custom software running in IGOR PRO36 (WaveMetrics Inc.)
or MATLAB. Recording pipettes were filled with internal solution containing
5 mM KCl, 115 mM K-gluconate, 10 mM K-HEPES, 4 mM MgATP, 0.3 mM
NaGTP, 10 mM Na-phosphocreatine, 0.1% w/v biocytin, 40mM Alexa Fluor
594; 290–295 mOsm, pH 7.2. Junction potential was not corrected for. The chlor-
ide reversal potential was about 285.2 mV. Cells were approached under visual
guidance using laser-scanning Dodt contrast. After breakthrough, the presence of
synaptic connections was tested by evoking five spikes at 30 Hz in each cell,
repeated 30 to 120 times, while searching for postsynaptic responses.

The paired-pulse ratio (PPR) was calculated as the amplitude of the second
evoked excitatory postsynaptic potential (EPSP) divided by that of the first one.
After connectivity mapping, step currents from 250 pA to 700 pA were injected in
50-pA increments if the input resistance was smaller than around 400 MV, and, if
necessary (as indicated by early ceasing of firing due to inactivation of voltage-
gated sodium channels), currents from 2125 pA to 350 pA were injected in 25-pA
increments for neurons with larger input resistance. Pyramidal neurons were
identified from several parameters: their morphology in Alexa-594-filled image
stacks (Fig. 2a); regular-spiking pattern on current injection; spike half-width
(.1 ms); and, in the presence of connections, depolarizing postsynaptic potentials
(Fig. 2b). To match the same neurons imaged in vivo and recorded from in vitro,

we performed three-dimensional image registration of in vivo and in vitro image
stacks by affine transformation using custom-written MATLAB software sub-
sequent to the experiment.

Connection probabilities were calculated as the number of connections detected
over the number of potential connections assayed. Probabilities of unidirectional
and bidirectional connections were calculated as the numbers of unidirectionally
and, respectively, bidirectionally connected pairs divided by the total number of
pairs. To relate connectivity to functional properties, the asymptotic Cochran–
Armitage test for trend was used to test for the significance of linear trends37. Pairs
in which a high-quality recording was achieved in only one cell (for example when
the other cell was too depolarized or unhealthy, or the seal resistance was less than
1 GV) connectivity was assayed only in the direction from the unhealthy cell to the
healthy cell, given that spikes could be evoked in both cells. Data from these pairs
were included in the analysis of connection probability, but not in the analysis of
the probability of finding bidirectional or unidirectional pairs. Only neuronal pairs
in which both neurons were located at .60-mm depth from the slice surface and
with an intersoma distance of ,50mm were included in the analysis.

The strength and short-term plasticity of synapses were also measured because
these synaptic parameters affect the efficacy of presynaptic firing on postsynaptic
partners. In P13–15 mice, connections between L2/3 pyramidal cells were signifi-
cantly stronger (median EPSP amplitude: P13–15, 0.41 mV; P22–26, 0.20 mV;
P 5 2.9 3 1024, rank-sum test; Supplementary Fig. 4a) and PPR was significantly
lower (median PPR: P13–15, 0.87; P22–26, 1.13; P 5 6.2 3 1024, rank-sum test;
Supplementary Fig. 4b) than in P22–26 mice, in line with previous reports38.
However, in neither age group was there significant correlation between EPSP
amplitude or PPR, on the one hand, and signal correlation or difference in pre-
ferred orientation, on the other (Supplementary Fig. 4c-f). Part of the connectivity
data was published previously in ref. 5.
Neuron model. In the network model, the dynamics of the membrane potential,
u(t), of model neurons is described by the adaptive exponential integrate-and-fire
model39:

C
du
dt

~{gL(u{EL)zgLDTe(u{VT)=DT {wadzzzI

Here C is the membrane capacitance, gL is the leak conductance, EL is the resting
potential and I is the stimulating current. The exponential term describes the
activation of sodium current. The parameter DT is called the slope factor and
VT is the threshold potential. A hyperpolarizing adaptation current is described
by the variable wad, which has dynamics

twad

dwad

dt
~a(u{EL){wad

where twad is the time constant of the adaption of the neuron and a is a parameter.
Upon firing, the variable u is reset to a fixed value, Vreset, whereas wad is increased
by an amount b. An additional current, z, which is set to a value Isp immediately
after a spike occurs and otherwise decays with a time constant tz, such that

tz
dz
dt

~{z

was used to account for spike afterpotential40. Refractoriness is modelled with the
adaptive threshold, VT, which starts at VTmax after a spike and decays to VTrest with a
time constant tVT , such that

tVT

dVT

dt
~{(VT{VTrest )

Parameters for the neuron model were taken from ref. 39, and tz was set to 40 ms in
agreement with refs 36, 41 and was kept fixed throughout all simulations. We
made the following choices: C 5 281 pF, gL 5 30 nS, EL 5 270.6 mV, DT 5 2 mV,
VTrest 5 250.4 mV, twad 5 144 ms, a 5 4 nS, b 5 0.0805 pA, Isp 5 400 pA, tz 5 40
ms, tVT 5 50 ms, VTmax 5 230.4 mV.
Plasticity model. Our plasticity model exhibits separate additive contributions to
the plasticity rule, one for long-term depression (LTD) and another one for long-
term potentiation42 (LTP). Synaptic weights had hard bounds imposed at wmin and
wmax. For the LTD part, we assumed that presynaptic spike arrival at synapse i
induces the depression of the synaptic weight wi by an amount
2ALTD[�u2(t) 2 h2]1. The brackets […]1 indicate rectification, that is, any value
�u2 , h2 does not lead to a change43. The quantity �u2(t) is an exponential low-
pass-filtered version of the postsynaptic membrane potential, u(t), with time
constant t2, such that

t{

d�u{(t)
dt

~{�u{(t)zu(t)

Because the presynaptic spike train is described as a series of short pulses at time tn
i ,

Xi(t) 5
P

nd(t 2 tn
i ), where i is the index of the synapse and n is the index that
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counts the spike, the depression—that is, the change in wi due to LTD (indicated
by the superscript minus sign)—is given by

dw{
i

dt
~{ALTD(��u)Xi(t)½�u{{h{�z

if wi . wmin, where ALTD(��u) is an amplitude parameter that is under the control of
homeostatic processes44 and ��u is the running average of depolarization of the
postsynaptic neuron, averaged over a time scale of 1 s. The time scale of 1 s is
not critical (100 s or more would be more realistic for homeostasis), but is con-
venient for the numerical implementation.

For the LTP part, we assumed that each presynaptic spike at the synapse wi

increases the trace, �xi(t), of some biophysical quantity, which decays exponentially
with a time constant tx (refs 45, 46), such that

tx
d�xi(t)

dt
~{�xi(t)zXi(t)

where Xi(t) is the spike train defined above. Potentiation—the change in wi due to
LTP (indicated by the superscript plus sign)—is given by

dwz
i

dt
~ALTP�xi(t)½u{hz�z½�uz{h{�z

if wi , wmax. Here ALTP is a free amplitude parameter fitted to electrophysiology
data27 and �uz(t) is another low-pass-filtered version of u(t), similar to �u{(t) but
with a shorter time constant, t1. Thus, positive weight changes can occur if the
momentary voltage, u(t), surpasses a threshold, h1, and, at the same time, the
average value, �uz(t), is greater than h2.

The final rule used in the simulation was

dwi

dt
~{ALTD(��u)Xi(t)½�u{{h{�z

zALTP�xi(t)½u{hz�z½�uz{h{�z
combined with hard bounds wmin # wi # wmax. For network simulations,
ALTD(��u)~ALTD��u2=u2

ref , where u2
ref is a reference value. We made the

following parameter choices for simulations: h2 5 270.6 mV, h1 5 245.3 mV,
ALTD 5 14 3 1025 mV21, ALTP 5 8 3 1025 mV22, tx 5 15 ms, t2 5 10 ms,
t1 5 7 ms.
Network simulation. In all simulations, 500 presynaptic Poisson neurons with
firing rates vpre

i (i 5 1, …, 500) were connected to 18 postsynaptic excitatory neu-
rons. The input rates vpre

i followed a Gaussian profile, that is,
vpre

i ~A exp ({(i{m)2=2s2), with variance s 5 10 and amplitude A 5 30. The
centre, m, of the Gaussian shifted randomly every 100 ms between ten equally
distributed positions, each position occurring with equal probability. Circular
boundary conditions were assumed, that is, neuron i 5 500 was considered to
neighbour neuron i 5 1. Five inhibitory neurons were each driven by 14 excitatory
neurons and projected onto 11 excitatory neurons. These connections were chosen
randomly and were fixed with a weight equal to 1. Feedforward connections onto
the inhibitory neurons were drawn from a uniform distribution on the interval
[0, 0.5] and were fixed for the duration of the simulation. The reference value was
set to u2

ref 5 70 mV2. Parameters for the feedforward connections were chosen as
for the plasticity model. The excitatory recurrent connections were plastic under
the same rule and with the same parameters as the feedforward connections, but
the amplitudes ALTP and ALTD were reduced by a factor of 100.

In the first set of simulations, feedforward weights were initialized with RF
(weights taken from previous test simulations took values between 0 and 3, which
were also the hard bounds). At the beginning of the simulation, recurrent excit-
atory connection weights were drawn randomly from a uniform distribution on
the interval [0, 0.75] (hard bounds were set to 0 and 0.75). At each time point
during the simulation, noise current (Gaussian white noise) was independently
injected into each cell in the recurrent network. In this and all subsequent net-
works, the model was run for 20 s of simulated time to allow the homeostatic
dynamical variables to settle before the recurrent synaptic weights were reinitia-
lized. The simulations were then run for another 1,000 s.

To calculate signal correlations in the network at three different time points (at
the reinitialization of recurrent excitatory chemical synapses, 1 s of simulation

time later and at the end of the simulation), the weights were frozen and the same
stimuli were played to assess the firing rate correlations across neurons. Two
neurons were considered to be bidirectionally connected if both synaptic weights
between them were .0.6, and were considered to be unidirectionally connected if
only one of the synaptic weights was .0.6.

Responsiveness was determined in the following way: the feedforward weights
onto each neuron were summed, to produce a single value for each cell. These
values were then plotted on a histogram, which displayed a bimodal distribution. A
threshold value was chosen between the two peaks of this bimodal distribution, to
separate the cells into responsive and non-responsive. Feedforward weights were
manually checked to make sure no cells with clear RFs were missed. Neuronal pairs
whose RFs had a correlation coefficient of .0.85 were defined to have the same RF.

The recurrent gap-junction network began such that neurons 1 and 2, 3 and 4,
and 5 to 7 were electrically coupled together in the stated combinations, and was
run in this state for 200 s. There were no chemical synapses during this time. The
gap-junction model was taken from ref. 47. The current from neuron i to neuron j
was defined as Iij(t) 5 a

P
id(t 2 ti) 2 ggap[uj(t) 2 ui(t)], where we chose ggap 5 2nS

and chose a such that the spikelet was about 2 mV. The network was in this state for
200 s of simulation time (after the initial 20-s settling time), at which point gap
junctions were removed and replaced with recurrent excitatory chemical connec-
tions with weights drawn randomly from a uniform distribution on the interval
[0, 0.75]. After this time point, Gaussian white noise current stimulation was again
provided to each cell in the recurrent network. The network was then run for
another 800 s.

The comparison chemical network was run in the same manner as the gap-
junction network except that a recurrent chemical network, with weights drawn
randomly from a uniform distribution on the interval [0, 0.75], replaced the recur-
rent gap-junction network during the first 200 s, and there was no replacement of
the recurrent weights after this 200 s.
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