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Supplementary Data

1. Testing for biased semantic content in the stories. The stimulus set used in this experiment is 
significantly larger and broader than that used in any previous neuroimaging study of language. 
However, there is the possibility that certain semantic categories are over- or under-sampled in the 
stories, which could potentially affect both the interpretation and generalization performance of the 
estimated voxel-wise models.

To address this issue we tested whether certain semantic categories were significantly over- or under-
sampled in the stories, relative to a large text corpus. (This text corpus was used to construct the 
semantic feature space and it contains billions of words of text.) We identified semantic categories by 
performing Ward agglomerative clustering on the 10,470-word vocabulary in the 985-dimensional 
semantic feature space. Words were clustered into 200 categories so that each category would consist 
of about 50 words. We then computed the frequency with which each category appeared in the text 
corpus and in the stories used in this study. Categories that appeared less than once per 10,000 words in 
the text corpus were excluded as noise. We used a Binomial test to determine whether each category 
was present significantly more or less frequently in the stories than in the large text corpus 
(q(FDR)<0.01, 2-sided test; see Supplementary Table 1 for all significantly over- and under-sampled 
categories).

The Binomial test showed that 79 of the 200 semantic categories are significantly under-sampled in the 
stories, meaning that they appear significantly less frequently in the stories than in the large text corpus. 
Two of these categories are entirely absent from the stories, and the other 77 are under-sampled by 
factors ranging from 35.2x to 1.2x (small factors such as 1.2x can be significant for extremely frequent 
categories, but seem unlikely to have any effect on the results of this experiment). One of the missing 
categories is related to boating and the sea (containing words like “sinking”, “stern”, “boat”, and 
“diving”). The other missing category contains character names from 19 th and 20th century British 
novels that are included in the text corpus (“nickelby”, “poirot”, “marple”).

Many of the categories that are under-sampled in the stories are related to specific sociological and 
historical topics (monarchy, international relations, politics, crime, government) or scientific topics 
(signal processing, mechanical engineering, the internet, mathematics). The absence of these categories 
is not surprising, given that the text corpus (which includes all of Wikipedia) contains many descriptive 
entries, while the stimuli consisted of natural narrative stories. Thus, it seems likely that these topics 
would be under-sampled even in a much larger set of narrative stories.

However, some of the categories that are under-sampled in the stories are more surprising. Words 
describing geography (“woods”, “meadows”, “grove”, “canyon”, “river”) appear 5.2x more frequently 
in the large text corpus than in the stories. Wild animals (“possum”, “elephant”, “wolves”, “turtle”, 
“butterfly”) appear 3.4x more frequently in the large text corpus. Foods (“bacon”, “cooking”, “ate”, 
“wholesome”, “rice”) appear 2.0x more frequently in the large text corpus. Music words (“music”, 
“onstage”, “singer”, “release”, “violin”) appear 1.6x more frequently in the large text corpus. These 
categories would not be out of place in a narrative story, so we expect that a larger set of stories would 
contain more mentions of them.

The Binomial test also showed that 26 of the 200 semantic categories are significantly over-sampled in 
the stories, meaning that they appear significantly more frequently in the stories than in the large text 
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corpus. These categories are over-sampled by factors ranging from 14.6x to 1.4x. Some of these 
categories, such as colloquialisms (e.g. “lookin”, “dunno”; 14.6x) and written-out numbers (e.g. 
“sixteen”, “twenty-three”; 5.6x), likely reflect differences between the spoken language of the stories 
and the written language of the text corpus. Others include articles of clothing (“blouse”, “hat”; 4.1x), 
household words (“laundry”, “upstairs”; 3.0x), words describing personal appearance (“beauty”, 
“spectacles”; 2.0x), words describing (bad) smells (“foul”, “herb”, “cigarettes”; 1.9x), family members 
and family-related events (“son”, “funeral”; 1.9x), and body parts (“fingernails”, “mouth”; 1.5x). None 
of these categories are surprising given the narrative and autobiographical nature of the stories used in 
this experiment.

Based on these results it seems unlikely that under-sampling of some categories in the stories had a 
large effect on the results of this study. Most differences in category frequency are corrected by the 
stimulus whitening that occurs during VM regression. However, stimulus whitening also magnifies 
noise in the estimated response for infrequent categories. Thus, our statistical power to detect 
representations is reduced for severely under-sampled categories, such as words describing geography 
or wild animals. Further experiments will be required to compare the cortical representations of 
categories that were under-sampled in these stories against the representations for other categories.

It is also possible that biases in the content of the stories could have affected the twelve semantic 
clusters that we found based on the fMRI data (Figure 2A). If the words in many of these twelve 
semantic clusters were significantly over-sampled in the stories, then we would not expect these results 
to generalize to other stories. We tested for this possibility by comparing the frequency with which 
words in each cluster appeared in the stories and in the text corpus (Binomial test, 2-sided, 
q(FDR)<0.01). This analysis found that three of the clusters were significantly over-sampled in the 
stories relative to the large text corpus (violent by a factor of 1.8x, social by 1.6x, and mental by 1.5x), 
and that two of the clusters were significantly under-sampled in the stories (visual by 2.0x and 
communal by 1.8x). Once again, these frequency differences are not large, and so will likely be 
corrected by the stimulus whitening that occurs during VM regression. These results do not suggest that 
the clusters we found are dependent on the particular stories that we used in this experiment.

2. The effect of subject handedness on PrAGMATiC prediction performance. A wealth of evidence 
suggests that handedness is related to language laterality in the brain: among ambidextrous individuals 
15% are right-lateralized for language, while among strongly right-handed individuals only 4% are 
right-lateralized (Knecht et al., 2000). PrAGMATiC assumes that functional selectivity and distribution 
of cortical areas within each hemisphere is identical across subjects, but this assumption would be 
flawed if some subjects' language systems are organized differently than others.

To test whether subject handedness has any effect on the results of this study we first obtained a 
handedness score for each subject using the Edinburgh handedness inventory (Oldfield, 1971). For the 
seven subjects in this study the handedness scores ranged from +10 (ambidextrous with a slight dextral 
bias) to +100 (entirely dextral). Two subjects were rated as “ambidextrous”  (having a laterality 
quotient less than 48) while the other five subjects were rated as dextral. We then computed a 
PrAGMATiC generalization score for each subject by subtracting the average prediction performance 
of the subject's own voxel-wise models from the average prediction performance of the PrAGMATiC 
model that was trained on the other six subjects. If this score is high (or close to zero), then the 
semantic map for the subject in question is highly predictable from the other subjects. If this score is 
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low, then the semantic map is not predictable from the other subjects. Finally we computed the 
correlation between handedness and PrAGMATiC generalization scores. If the ambidextrous subjects 
are organized very differently, they should have lower PrAGMATiC generalization scores than the 
other subjects, and the correlation between dextrality and PrAGMATiC generalization score should be 
positive. However, we did not find a significant correlation between dextrality and PrAGMATiC 
generalization scores (Pearson's r = -0.20, p-value = 0.66 for the left hemisphere; r = -0.06, p-value = 
0.90 for the right). This result suggests that semantic maps in the ambidextrous subjects are not 
organized very differently from semantic maps in the dextral subjects.

3. Controlling for emotional and physiological responses. The principal components analysis (Figure 
2) and PrAGMATiC results (Figure 3, Extended Data Figures 6-12) suggest that violent, emotional, and 
social concepts are represented in many areas of the cortex. One alternative explanation for these 
results is that emotionally charged narratives evoked emotional responses and physiological arousal. 
Physiological arousal might alter heart rate or blood pressure, affect blood flow, and bias measured 
BOLD responses. Arousal might also have an indirect effect by altering attention or global 
attentiveness. If arousal or emotional response is correlated with certain semantic domains (such as 
violence), then it is possible that some fraction of the responses that we interpret as semantic selectivity 
are actually driven by arousal.

To test whether emotional or physiological responses could explain the semantic maps that we report 
here, we compared the original principal components (PCs) of the estimated voxel-wise models with 
PCs obtained from data that had been corrected for physiological and emotional responses. We used 
standard methods to remove all BOLD variance related to physiological factors from each voxel 
(Verstynen & Deshpande, 2011). Complete physiology data (photoplethysmograph and breath belt) 
were only available for five of the seven subjects (subjects 2 & 4-7), so this analysis was restricted to 
only those five subjects. We found that physiological factors explained a large fraction of the variance 
in only a small number of voxels. These voxels were located mainly within the sylvian fissure, within 
the central sulcus, and within the calcarine sulcus. We subtracted these physiological effects from the 
data before performing further analyses.

In order to model emotional responses we asked five raters to code the emotional content of the stories. 
Each rater listened to each of the stories while continuously rating emotional content on 6 different 
scales (anger, happiness, surprise, amusement, pity, and embarrassment). This procedure was then 
repeated using the same stories, but with a different set of 6 scales (excitement, relief, disgust, 
irritation, fear, and cuteness). Ratings were temporally smoothed with a Gaussian kernel (s.d. = 2.0045 
seconds or 1 TR), and then averaged across raters.

Next, we re-estimated the semantic VM weights using the physiology-corrected data with the emotion 
ratings included as nuisance regressors (along with the previously used nuisance regressors for 
phonemes, word rate, and phoneme rate). Then we performed PCA on the resulting semantic VM 
weights using the same procedure that was used to generate the results shown in Figure 2 of the main 
text. For purposes of comparison, we also performed PCA on the original semantic VM weights 
(without removing physiological responses or including emotion regressors) using data from only the 
five subjects used here (i.e. excluding subjects 1 and 3).

If physiological or emotional responses influenced our estimates of semantic selectivity, then the PCs 
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obtained after removing variance related to emotional or physiological arousal should be substantially 
different than the original PCs. However, the corrected PCs and original PCs are almost identical. The 
correlation between the first arousal-corrected PC and the first original PC is 0.994, the second PC is 
0.990, the third PC is 0.988, and the fourth PC is 0.955. This high degree of correlation suggests that 
the semantic models are almost entirely unaffected by emotion or physiological arousal.

There is still a chance that semantic models are affected by factors that are not directly related to the 
semantic content of speech, such as emotional prosody. However, we do not currently have a reliable 
computational method for extracting prosodic features from narrative speech, so we cannot test this 
hypothesis here.

4. Comparing voxel-wise model prediction performance to other feature spaces. In the main text 
we state that the semantic voxel-wise models accurately predict BOLD responses to natural speech 
throughout the semantic system (Figure 1, Extended Data Figure 1). However, there are two potential 
issues that could influence our interpretation of these results. First, it is possible that similar 
performance could be achieved using a much simpler model that is not based on word co-occurrence 
statistics. This would suggest that semantic domains are not as important a factor in representation as 
we had thought. Second, it is possible that the performance we find depends on specific details of the 
training corpus or procedure we used to construct our semantic feature space. This would suggest that 
our results are not generalizable.

To test for these possibilities we compared the prediction performance of voxel-wise models 
constructed using our original semantic feature space to those constructed based on two alternative 
feature spaces. The first alternative feature space consists of simple indicator variables for each unique 
word in the estimation and validation stories. Because this feature space does not consider word co-
occurrence statistics, it should provide a poor description of the semantic domains in the stories. To test 
the words feature space we employed the same voxel-wise modeling procedure used in the main text. 
We used regularized linear regression to estimate how each word influenced BOLD responses in each 
individual voxel and in every subject. Then we used the models to predict responses to a new story that 
had not been used for estimation. We measured the prediction performance of the new models by 
computing the correlation between predicted and actual responses in the validation data. Finally, we 
compared the prediction performance of this simplified model to that of our co-occurrence-based 
model (for this comparison we used the raw correlation between predicted and actual responses to 
measure performance; no noise-ceiling correction was performed).

Our original co-occurrence-based semantic model predicts voxel responses significantly better than the 
simplified model (paired t-test across all voxels; t=170, p<1e-16). The number of voxels that were 
significantly predicted (q(FDR)<0.05) was, on average across subjects, 274% higher for the original 
model than the simplified model. Among voxels that were significantly predicted by either model, the 
performance of the original model was higher by an average of 0.11. Among very well-predicted voxels 
where either model had prediction performance above 0.5, the performance of the original model was 
higher by an average of 0.28. These results demonstrate that the co-occurrence-based semantic feature 
space that was used in this study substantially outperforms a simpler model that does not incorporate 
word co-occurrence statistics. This, supports our conclusion that semantic domains are an important 
factor in representation.

 

WWW.NATURE.COM/NATURE | 5

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature17637



The second alternative feature space that we tested is word2vec (Mikolov, Yih, & Zweig, 2012). Like 
the feature space used in the main text, word2vec is a word embedding space constructed using word 
co-occurrence statistics across a large corpus of text. We used a pre-trained 300-dimensional word2vec 
embedding space that was constructed using approximately 100 billion words of text from Google 
News. (This pre-trained model is freely available at https://code.google.com/p/word2vec/.) The 
procedure for constructing the word2vec space is also similar to that used to construct our original 
feature space, except that word2vec uses unsupervised dimensionality reduction while our feature 
space uses hand-selected dimensions based on the list of 985 common English words. Because 
word2vec only has 300 dimensions while the original model has 985, we might expect word2vec to do 
slightly worse than the original model if 300 dimensions are insufficient to describe semantic 
representations. Similarly, if 985 dimensions are too many, then we might expect the original model to 
perform slightly worse than word2vec. If word2vec performs substantially better or worse than our 
original model, it would suggest that the model performance we find is dependent on the exact corpus 
or procedure used to construct the semantic feature space. This would call into question the generality 
of our results and conclusions.

To test the word2vec feature space we employed the same voxel-wise modeling procedure used in the 
main text. We used word2vec to transform each word that was spoken in the stories into a 300-
dimensional vector, and then temporally downsampled these vectors to the same rate as the fMRI 
acquisition. Next we used regularized linear regression to estimate how the 300 word2vec semantic 
features influenced BOLD responses in each individual voxel and in every subject. Then we used the 
word2vec models to predict responses to a new story that had not been used for model estimation. We 
measured the prediction performance of the word2vec models by computing the correlation between 
predicted and actual responses in the validation data set. Finally we compared the prediction 
performance of the word2vec model to that of the semantic model described in the main text. (For this 
comparison we used the raw correlation between predicted and actual responses to measure 
performance; no noise-ceiling correction was applied). 

Our original semantic model predicts voxel responses significantly better than does the word2vec 
model (paired t-test across all voxels; t=49, p<1e-16). The number of voxels that were significantly 
predicted (q(FDR)<0.05) was, on average across subjects, 17% higher for the original model than the 
word2vec model. Among voxels that were significantly predicted by either model, the performance of 
the original model was higher by an average of 0.017. Among very well-predicted voxels where either 
model had prediction performance above 0.5, the performance of the original model was higher by an 
average of 0.066. The differences between our original model and the word2vec model are much 
smaller than the differences between our original model and the indicator variable model described 
above. Thus, the small but significant differences between our original model and the word2vec model 
do not provide any strong evidence that our results and conclusions are unduly affected by our choice 
of feature space design or text corpus. Instead, this small difference likely reflects the difference in 
dimensionality of the two feature spaces: our original feature space has more than three times as many 
dimensions as the word2vec space and thus provides a richer representation of the stimuli.

5. Alternative methods for labeling semantic word clusters. Using principal components analysis we 
extracted four shared semantic dimensions from the voxel-wise modeling data, and then we sought to 
interpret those dimensions using k-means clustering. This revealed twelve distinct clusters
(Supplementary Table 2). These clusters can loosely be thought of as semantic domains, although each
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cluster could potentially combine multiple domains, or a domain could be split across clusters. Each 
cluster was labeled by hand. We attempted to select cluster labels that captured the common properties 
of the words in each cluster and that were not overly specific, while keeping in mind that the clustered 
words were selected on the basis of having high projections onto the semantic dimensions and thus are 
likely to be relatively extreme examples of each cluster. For some clusters the labels were relatively 
obvious. For example, almost all the words in the temporal cluster are related to time. For other clusters 
it was difficult to select a single label that applied to the entire cluster. For example, the abstract cluster 
contains words such as “natural” and “diverse”.

Although our label assignment was necessarily somewhat subjective, we feel that the labels are 
generally accurate enough to be useful for understanding the results of this study. However, it is also 
important to ask what other labels might reasonably be assigned to these clusters. Here we used two 
alternative methods to assign cluster labels and evaluated the results of each. The first alternative 
method that we used to assign labels was to ask 10 human raters to examine each cluster and write 
down five possible labels for each. These raters did not include the authors, but one of the raters was 
also a subject in the fMRI experiment. To summarize the ratings we used the word2vec word 
embedding space (Mikolov et al., 2012). For each cluster we first averaged together semantic vectors 
for the five labels assigned by each rater, and then averaged the resulting vectors across raters. Then we 
queried the space to find the most similar words to the average label vector for each cluster. Here we 
list the experimenter-assigned label for each cluster, along with the two best words according to the 
consensus across raters (excluding alternate word forms such as “clothing” and “clothes”). For the 
temporal cluster the best words were “time” and “schedule”; for abstract they were “nature” and “art”; 
for professional they were “work” and “business”; for visual they were “clothing” and “attire”; for 
violent they were “death” and “murder”; for tactile they were “shape” and “curvature”; for communal 
they were “society” and “culture”; for mental they were “emotion” and “feeling”; for numeric they 
were “quantity” and “amount”; for emotional they were “religion” and “spirituality”; for social they 
were “crime” and “family”; and for locational they were “sports” and “recreation”.

Some of the rater-assigned cluster labels are very similar to those assigned by the experimenter (such as 
temporal, professional, violent, communal, and numeric), while others are different (such as abstract, 
visual, tactile, mental, emotional, social, and locational). In some cases these differences seem to arise 
because of fundamental difficulty in assigning a label to the cluster (as in abstract and tactile). For 
those clusters the labels assigned by the individual raters were highly variable. In other cases the 
differences seemed to arise because raters preferred specific labels that capture a subset of the words in 
the cluster over generic labels that more loosely describe the entire cluster (as in visual, mental, 
emotional, and locational). And in the final case (social) the difference seemed to arise because the 
label assigned by the experimenter label took into account the selection bias for extreme words. While 
the social cluster does contain many words related to crime, we believe that this reflects an extreme 
manifestation of dramatic social interaction.

The second alternative method that we used to assign labels was to find the average word for each 
cluster in the word2vec word embedding space (Mikolov et al., 2012). To do this we converted every 
word into a semantic vector and then averaged together all the vectors for each cluster. Then we 
queried the space to find the most similar words to each average vector. Here we list the experimenter-
assigned label for each cluster, along with the two best words according to the word embedding space 
(excluding alternate word forms such as “thick” and “thicker”). For the temporal cluster the best words 
were “hours” and days”; for abstract they were “subtle” and “delicate”; for professional they were 
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“house” and “rented”; for visual they were “pink” and “purple”; for violent they were “kill” and “die”; 
for tactile they were “thicker” and “thinner”; for communal they were “educated” and “community”; 
for mental they were “imagining” and “thinking”; for numeric they were “five” and “four”; for 
emotional they were “hatred” and “feelings”; for social they were “mother” and “son”; and for 
locational they were “facilities” and “spaces”. 

One downside of this method is that it provides typical examples of each category but generates no 
summary labels. For instance, the best words for the temporal cluster were “hours” and “days”, which 
are both typical examples of temporal words. Therefore these results require slightly more 
interpretation than the labels assigned by raters. Still, for most of the clusters the typical words are in 
good agreement with the labels assigned by hand (such as temporal, visual, violent, communal, mental, 
numeric, emotional, social, and locational). For the other three clusters, however, the correspondence is 
less clear. For the abstract cluster the typical words were “subtle” and “delicate”, which are both 
adjectives that can describe either concrete or abstract nouns. Thus, this result does little to clarify the 
abstract category. For the professional cluster the typical words were “house” and “rented”, which 
seem more closely related to everyday locations than to work or business. And for the tactile cluster the 
typical words were “thicker” and “thinner”, which both describe shape, but not necessarily tactile 
sensation.

The results of these two analyses suggest that most of the cluster labels are uncontroversial (such as 
temporal, violent, and numeric), but that a few are less clear. In particular the abstract and tactile 
clusters seem to have multiple valid interpretations. For the abstract category the human raters selected 
labels related to “nature” and “art” and the word embedding method selected the words “subtle” and 
“delicate”. The overall theme of the abstract category seems to be descriptions that are not linked to 
any particular sense, including words like “subtle”, “exaggerated”, and “strong”. The manually 
assigned label abstract does not fully capture this this property, but the alternate labeling methods do 
not seem to offer a better alternative. For the tactile category the human raters selected labels related to 
“shape” and “curvature” and the word embedding method selected the words “thicker” and “thinner”. 
We selected the more general label tactile because in addition to shape words this category also 
includes texture/material words (such as “smooth” and “metallic”) and specifically tactile words (such 
as “fingers”, “pinch”, and “pressing”).

6. Testing whether rotating the shared semantic dimensions increases interpretability. The shared 
semantic dimensions revealed by PCA of the voxel-wise models describe a low-dimensional semantic 
space that is common across our subjects (Figure 2). The space spanned by these four dimensions 
captures, in total, the maximum amount of variance in the voxel-wise models that can be captured by 
any four-dimensional space. However, any four-dimensional rotation of these dimensions will span the 
same four-dimensional space, and so will explain the same amount of variance in total. In the main text 
we interpret some of the shared dimensions by examining which semantic categories they distinguish 
between. It is possible that rotating the shared semantic dimensions would result in more interpretable 
dimensions, while still explaining the same amount of variance in the data. This practice is commonly 
used in the factor analysis literature, and there are several methods for rotating orthonormal bases to 
increase interpretability.

Here we applied the most commonly used method, varimax rotation, to the shared semantic 
dimensions. In varimax rotation the dimensions are rotated such that the variance of the squared factor 
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loadings is maximized (Kaiser, 1958). This often makes the factor loadings more sparse (as they tend to 
be either very large or very small) and can thus increase interpretability. In our case the factor loadings 
are the coefficients for the 985 features in our word embedding space. We found that applying varimax 
rotation to the shared semantic dimensions increased the variance of the squared factor loadings by 
12% (thus resulting in slightly sparser coefficients), but had little effect on our interpretations.

Varimax rotated the first dimension by 39 degrees (correlation between original and rotated first PC is 
0.78). The original first dimension has the categories tactile and locational at one end, and social and 
emotional at the other. The rotated first dimension has tactile and numeric at one end, and social and 
communal at the other. These changes do not affect our interpretation of the first dimension, which still 
seems to generally distinguish between social and perceptual concepts.

Varimax rotated the second dimension by 32 degrees (correlation between original and rotated second 
PC is 0.85). The original second dimension has the categories visual and tactile at one end, and mental 
and professional at the other. The rotated second dimension has violent and tactile at one end, and 
professional and mental at the other. Again, these changes do not affect our interpretation of the second 
dimension, which still seems to distinguish between perceptual and non-perceptual concepts.

However, the third and fourth dimensions were more strongly affected by varimax rotation. Varimax 
rotated the third dimension by 63 degrees (correlation between original and rotated third PC is 0.46). 
The original third dimension has the categories numeric and professional at one end, and abstract and 
emotional at the other. The rotated third dimension has visual and locational at one end, and mental and 
violent at the other. The original third dimension could be interpreted as distinguishing between 
quantitative concepts and subjective or qualitative concepts. The rotated third dimension might be more 
accurately described as distinguishing between emotional and unemotional concepts.

Varimax rotated the fourth dimension by 61 degrees (correlation between original and rotated fourth PC 
is 0.48). The original fourth dimension has the categories communal and emotional at one end, and 
temporal and numeric at the other. The rotated fourth dimension has abstract and emotional at one end, 
and numeric and temporal at the other. The original fourth dimension might, like the third dimension, 
be interpreted as distinguishing between quantitative and qualitative concepts. The rotated fourth 
dimension is a closer match to the original third dimension (the correlation between the two is 0.85), 
but the interpretation seems very similar.

Because the varimax rotation did not substantially increase the interpretability of the shared semantic 
dimensions, we maintained the original dimensions for subsequent analyses.

7. Detailed descriptions of semantic maps in seven cortical regions. In this report we have divided 
the semantic atlas into seven regions based on anatomical distinctions (Binder, Desai, Graves, & 
Conant, 2009; Bookheimer, 2002; Hickok & Poeppel, 2007; Price, 2010). These regions are lateral 
parietal cortex (LPC, 15 semantically-selective areas in the left hemisphere and 13 in the right), medial 
parietal cortex (MPC; 14 left, 10 right), superior prefrontal cortex (SPFC; 18 left, 19 right), lateral 
temporal cortex (LTC; 8 left, 8 right), ventral temporal cortex (VTC, 6 left, 1 right), inferior prefrontal 
cortex (IPFC; 12 left, 9 right), and opercular and insular cortex (OIC; 4 left, 3 right). One area in left 
motor cortex did not fall cleanly into any of these regions, so we grouped it with OIC due to its 
functional similarity to other semantically-selective areas within OIC. To enforce a uniform labeling 
scheme we labeled each region separately. Within each region we assigned each area a number
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according to its average anatomical location, such that numbers increase from posterior to anterior. The 
MNI coordinates for every area are listed in Supplementary Table 3. A detailed interactive version of 
the semantic atlas (including MNI coordinates for each area) can be explored online at 
http://gallantlab.org/huth2016.

Semantic maps in lateral parietal cortex (LPC). Lateral parietal cortex, and in particular the angular 
gyrus (AG), is thought to play a central role in processing complex semantic information (Binder et al., 
2009; Price, 2010). The AG is also one of the primary nodes in the default mode network (DMN) 
(Buckner, Andrews-Hanna, & Schacter, 2008; Raichle et al., 2001). We find that LPC contains a 
heterogeneous collection of semantically-selective areas (15 in the left hemisphere and 13 in the right) 
centered around the AG (Extended Data Figure 6). In the core of LPC, which lies on the AG itself, we 
find areas selective for social concepts (L6, 7, 9, 11; R5, 7). Some of these core LPC areas are also 
selective for emotional concepts (L6, 7, 9, 11; R7), mental concepts (L7, 9, 11; R5, 7), communal 
concepts (L6, 7, 9), professional concepts (L6, 7; R5, 7), violent concepts (L7, 9, 11; R5, 7), and 
temporal concepts (R5, 7). On the ventral bank of the intraparietal sulcus, which curves around the core 
of LPC, we find areas that are selective for visual concepts (L2, 4, 5, 8; R6, 11). Most of these areas are 
also selective for tactile concepts (L2, 8; R6, 11) and numeric concepts (L2, 4, 5; R6, 11). On the 
supramarginal gyrus, anterior to the AG, we find areas selective for both temporal and numeric 
concepts (L13; R9). On the posterior bank of the postcentral sulcus, just outside primary somatosensory 
cortex, we find areas selective for tactile concepts (L14, 15; R11, 12, 13). Posterior to the core of LPC, 
at the lateral lip of the transverse occipital sulcus, we find areas selective for both locational and 
professional concepts (L3, 4; R3, 4). The semantic map in LPC for the two hemispheres are somewhat 
bilaterally symmetric, but there are some differences. Overall, right LPC responds more than left LPC 
to mental, professional, temporal and locational concepts, but less than left LPC to violent and visual 
concepts (q(FDR)<0.05, t-test). Previous studies have shown that lesions to the left AG and 
surrounding cortex produce a wide variety of different cognitive deficits (Binder et al., 2009), including 
anomia, alexia, acalculia, visual-spatial disorders, body schema disorders, and many others. Some of 
these disorders could be explained by damage to specific semantic brain areas near AG; acalculia, for 
example, could result from damage to areas selective for numeric concepts, visual-spatial disorders 
from areas selective for visual concepts, and body schema disorders from areas selective for tactile 
concepts. However, other lesion outcomes—such as anomia and alexia—cannot be explained by the 
semantic selectivity that we observe here. This difference suggests that areas within LPC also play 
other roles in cognition and language processing.

Semantic maps in medial parietal cortex (MPC). Medial parietal cortex, and in particular the 
precuneus, is thought to be important for episodic memory function (Lundstrom, 2003; Wagner, 
Shannon, Kahn, & Buckner, 2005) and social processing (Iacoboni et al., 2004). Like LPC, it also 
contains one of the primary nodes in the DMN (Buckner et al., 2008; Raichle et al., 2001). We find that 
MPC contains a heterogeneous collection of semantic areas (14 in the left hemisphere and 10 in the 
right) centered around the subparietal sulci (Extended Data Figure 7). Again like LPC, the core of MPC 
contains areas selective for social and mental concepts (L6, 8, 10; R6, 7). The most dorsolateral areas 
in MPC, near the intraparietal sulcus, are selective for tactile concepts (L2, 4; R1) and visual concepts 
(L2). In anterior dorsal MPC, near the marginal sulcus, we find areas selective for temporal concepts 
(L5, 9; R4, 9). In ventral MPC, near retrosplenial cortex, we find areas selective for professional, 
temporal, and locational concepts (L11, 12, 14; R8). Just superior to retrosplenial cortex we find one 
distinct area in both hemispheres that is selective for mental, professional and temporal concepts (L7; 
R3). The semantic maps in MPC for the two hemispheres are largely bilaterally symmetric, but overall, 
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right MPC responds more than left MPC to mental concepts (q(FDR)<0.05, t-test). Lesions to MPC 
have been known to cause deficits in processing the temporal ordering of events (Bowers, Verfaellie, 
Valenstein, & Heilman, 1988; McDonald, Crosson, Valenstein, & Bowers, 2001). This is consistent 
with our finding that the majority of areas in both left and right MPC are selective for temporal 
concepts.

Semantic maps in superior prefrontal cortex (SPFC). Superior prefrontal cortex is thought important 
for self-initiated retrieval of semantic information from memory (Robinson, Blair, & Cipolotti, 1998), 
but little is known about its role in language comprehension. Like LPC and MPC, SPFC also contains 
one of the primary nodes in the DMN (Buckner et al., 2008; Raichle et al., 2001). We find that SPFC 
also contains a heterogeneous collection of semantic areas (18 in the left hemisphere and 19 in the 
right). However, this region does not appear to be organized around a group of core areas as are MPC 
and LPC. Instead, the organization in SPFC seems to follow the long rostro-caudal sulci and gyri of the 
dorsal frontal lobe (Extended Data Figure 8). In posterior SPFC, on the middle frontal gyrus and in the 
intermediate frontal sulcus, we find areas selective for social concepts (L4, 6; R6, 9, 11). Some of these 
areas are also selective for communal and emotional concepts (L4, 6) or professional concepts (R6, 11). 
Above, in the superior frontal sulcus, we find areas selective for tactile concepts (L2, 3, 8; R1), 
numeric concepts (L2, 3, 7; R5, 7, 13), and visual concepts (L2, 3). Above the superior frontal sulcus, 
on the superior frontal gyrus, we find a long strip of areas that are selective for social concepts (L1, 5, 
10, 12-15; R8, 10, 12, 14-17). Many of these areas are also selective for emotional and violent concepts 
(L1, 5, 10, 12-15; R8, 14, 15), and for mental concepts (L1, 5, 10, 12, 13; R8, 15). In the left 
hemisphere many of these areas are also selective for communal concepts (L5, 10, 12, 13, 15). In the 
right hemisphere many are selective for temporal concepts (R8, 10, 15, 17). This strip appears to 
bifurcate at its most rostral extent. One segment extends into ventromedial prefrontal cortex and the 
other crosses the anterior-most part of the superior frontal sulcus. In ventromedial prefrontal cortex we 
find one distinct area in each hemisphere that is selective for mental concepts (L17; R18).

The variety of semantic domain selectivity across SPFC appears to be as broad as in LPC and MPC, 
and suggests that SPFC represents many different types of semantic information. This finding is 
consistent with dozens of earlier neuroimaging studies that have found some relationship between 
semantic processing and activity in this region (Binder et al., 2009). However, the precise role of SPFC 
in semantic processing is still unclear. Our results do not fit cleanly with some earlier studies, which 
have indicated that SPFC is mainly involved in memory retrieval during language production (Binder 
et al., 2009; Binder & Desai, 2011), and that SPFC lesions do not cause chronic deficits in language 
comprehension (Baldo & Shimamura, 1998; Thompson-Schill et al., 1998). This could be because 
SPFC lesions are generally too broad or too variable across subjects to reliably identify domain-specific 
deficits. Alternatively, semantic representations in SPFC could be useful but not necessary for semantic 
processing, and thus lesions in SPFC might be easily compensated for by other parts of cortex. Our 
results are also difficult to reconcile with the working memory literature, where earlier studies have 
found little domain specificity in SPFC (Courtney, 1998; Levy & Goldman-Rakic, 2000; Linden, 
Oosterhof, Klein, & Downing, 2012). This could indicate that those earlier studies did not effectively 
probe the space of semantic domains relevant to working memory, or that SPFC serves some role in 
semantic processing that is distinct from working memory. Further work will be required to disentangle 
the many roles that functional areas within SPFC seem to play in different aspects of cognition.

The complex semantic maps that we find in LPC, MPC, and SPFC correspond to three of the primary 
components of the default mode network (DMN). This is consistent with the claim that the DMN is 

  

WWW.NATURE.COM/NATURE | 11

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature17637



involved in language processing (Binder et al., 2009). Semantic maps within two of these regions, the 
lateral parietal cortex (LPC) and medial parietal cortex (MPC), are organized into similar circular 
motifs. The core of each region is selective for social concepts and the peripheral areas are 
heterogeneous. This suggests that there may be a common computational architecture to these two 
regions of high-level association cortex. It is clear that more work will be required to elucidate the 
relationship between the semantic domain selectivity observed here and other putative roles for the 
DMN, such as introspection, rumination, and conscious cognition (Buckner et al., 2008).

Semantic maps in lateral temporal cortex (LTC). Lateral temporal cortex (LTC) encompasses much of 
auditory cortex, and is considered critical for semantic processing (Binder et al., 2009; Binder & Desai, 
2011; Warrington, 1975). Thus, we might expect that this region, like LPC, MPC, and SPFC, would 
contain a widely varied collection of semantic areas. However, our results suggest that semantic 
selectivity in LTC is much more homogeneous than that found in other regions (Extended Data Figure 
9). In anterior LTC we find areas selective for social and emotional concepts (L4-8; R4, 5, 7, 8). In the 
right hemisphere, we also find one area on the posterior middle temporal gyrus that is selective for 
numeric and temporal concepts (R2). In posterior LTC near occipital cortex we find areas selective for 
visual, tactile, and numeric concepts (L1-3; R1). What little semantic domain selectivity we see at the 
temporal pole is not consistent across subjects. However, the quality of fMRI signals in this region is 
poor (Visser, Jefferies, & Lambon Ralph, 2010), so the absence of clear selectivity should not be taken 
as evidence for the absence of semantic domain representation in the temporal pole.

The limited semantic domain selectivity that we find in LTC is surprising, given the important role that 
LTC seems to play in language and semantic processing (Peelen, Romagno, & Caramazza, 2012; 
Warrington, 1975). One possible explanation for this result is that neural populations in LTC are 
domain-selective, but they are anatomically organized along non-semantic dimensions such as 
phonemic content (Mesgarani, Cheung, Johnson, & Chang, 2014). This would make it difficult to 
distinguish semantic domain-selective representations using our methods. Alternatively, LTC might 
contain few domain-selective representations, but instead serve a more general role in semantic 
processing, such as coordinating brain activity in other regions during narrative comprehension. 

Semantic maps in ventral temporal cortex (VTC). Ventral temporal cortex (VTC) is thought to play an 
important role in semantic processing for both vision (Epstein & Kanwisher, 1998; Kanwisher, 
McDermott, & Chun, 1997) and language (Binder et al., 2009; Lüders et al., 1991). Confirming these 
earlier reports, we find that every area in VTC is selective for visual concepts (Extended Data Figure 
10). Areas in left posterior VTC are selective for tactile, visual, and abstract concepts (L1-4). Most of 
these areas are also selective for numeric concepts (L2-4). Areas on the parahippocampal gyrus, near or 
overlapping with the parahippocampal place area (Epstein & Kanwisher, 1998), are selective for 
locational concepts (L5, 6; R1).

Semantic maps in inferior prefrontal cortex (IPFC). Inferior prefrontal cortex (IPFC) contains Broca's 
area, and it is thought to play an important role in both general language processing and semantic 
processing (Binder et al., 2009; Price, 2010). We find that IPFC contains several semantically selective 
areas, but that these areas appear to be more homogeneous in their semantic domain selectivity than are 
those located within LPC, MPC, or SPFC (Extended Data Figure 11). Areas in the inferior precentral 
sulcus (L1-3; R1) and inferior frontal sulcus (L4-7; R5) are selective for visual, tactile, and numeric 
concepts. Areas on the pars opercularis and pars triangularis are selective for social, emotional, and 
violent concepts (L8; R4, 7). Areas in the orbitofrontal sulci are selective for tactile, visual, numeric, 
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abstract, and locational concepts (L10; R9).

Semantic maps in opercular and insular cortex (OIC). We defined a separate region called opercular 
and insular cortex (OIC) that encompasses the frontal operculum, anterior insula, and one area in the 
central sulcus. Areas in OIC are selective for abstract, emotional, and communal concepts (Extended 
Data Figure 12). This result is consistent with earlier reports that damage to perisylvian areas such as 
the frontal operculum impair knowledge of abstract concepts (Binder et al., 2009).
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Supplementary Methods

1. Subject handedness. All subjects were right handed or ambidextrous according to the Edinburgh
handedness inventory (Oldfield, 1971) (laterality quotient of -100: entirely left-handed, +100: entirely
right-handed). Laterality scores were +90 (decile R.7), +80 (decile R.5), +100 (decile R.10), +25
(ambidextrous), +80 (decile R.5), +10 (ambidextrous), and +90 (decile R.7) for S1-7, respectively.

2. fMRI data pre-processing. Each functional run was motion-corrected using the FMRIB Linear
Image Registration Tool (FLIRT) from FSL 5.0 (Jenkinson & Smith, 2001). All volumes in the run
were then averaged to obtain a high quality template volume. FLIRT was then used to automatically
align the template volume for each run to the overall template, which was chosen to be the template for
the first functional run for each subject. These automatic alignments were manually checked and
adjusted as necessary to improve accuracy. The cross-run transformation matrix was then concatenated
to the motion-correction transformation matrices, and the concatenated transformation was used to
resample the original data directly into the overall template space.

Low-frequency voxel response drift was identified using a 2nd order Savitsky-Golay filter with a 120-
second window and then subtracted from the signal. The mean response for each voxel was then 
subtracted and the remaining response was scaled to have unit variance.

3. Cortical surface reconstruction and visualization. Cortical surface meshes were generated from 
the T1-weighted anatomical scans using Freesurfer software (Dale, Fischl, & Sereno, 1999). Before 
surface reconstruction, anatomical surface segmentations were carefully hand-checked and corrected 
using Blender software and pycortex (Gao, Huth, Lescroart, & Gallant, 2015). Relaxation cuts were 
made into the surface of each hemisphere and Blender and pycortex were used to remove the surface 
crossing the corpus callosum. The calcarine sulcus cut was made at the horizontal meridian in V1 using 
retinotopic mapping data as a guide.

Functional images were aligned to the cortical surface using boundary based registration (BBR) 
implemented in FSL. These registrations were checked for accuracy and, if necessary, adjusted using 
pycortex.

Model prediction performance maps shown in Figure 1 and Extended Data Figure 1 and model 
selectivity maps shown in Figure 2 and Extended Data Figures 3-4 & 6-12 were created by projecting 
values for each voxel onto the cortical surface using the nearest scheme in pycortex. This projection 
scheme finds the location of each pixel in the image in 3D space, and then assigns that pixel the value 
of the enclosing voxel. This was done by finding pixel locations only on the mid-cortical surface, 
which lies halfway between the pial and white matter surfaces generated by Freesurfer. 

4. Localizers for known ROIs. Known regions of interest (ROIs) were localized separately in each 
subject using standard techniques. Some of these ROIs were used as landmarks for the PrAGMATiC 
analysis. For all subjects we defined ROIs using three experiments: a visual category localizer, an 
auditory cortex localizer, and a motor localizer. For some subjects we also defined retinotopic visual 
ROIs using a retinotopic localizer, and area MT+ using an MT localizer.

Visual category localizer. Visual category localizer data were collected in six 4.5-minute scans 
consisting of 16 blocks, each 16 seconds long. During each block, 20 images of either places, faces, 
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human body parts, non-human animals, household objects, or spatially scrambled household objects 
were displayed. Each image was displayed for 300 ms followed by a 500 ms blank. Occasionally the 
same image was displayed twice in a row, in which case the subject was asked to respond with a button 
press. 

The contrast between faces and objects was used to define the fusiform face area (FFA) (Kanwisher et 
al., 1997) and occipital face area (OFA). The contrast between human body parts and objects was used 
to define the extrastriate body area (EBA) (Downing, Jiang, Shuman, & Kanwisher, 2001). The 
contrast between places and objects was used to define the parahippocampal place area (PPA) (Epstein 
& Kanwisher, 1998), occipital place area (OPA) (Nakamura et al., 2000), and retrosplenial cortex 
(RSC).

Auditory cortex localizer. Auditory cortex localizer data were collected in one 10 minute scan. The 
subject listened to 10 repeats of a 1-minute auditory stimulus, which consisted of 20-second segments 
of music (Arcade Fire), speech (Ira Glass), and natural sound (a babbling brook). To determine whether 
a voxel was responsive to auditory stimuli, the repeatability of the voxel response across the 10 
stimulus repeats was calculated using an F-statistic. The F-statistic map was used to define the auditory 
cortex (AC).

Motor localizer. Motor localizer data were collected during one 10-minute scan. The subject was cued 
to perform six different motor tasks in a random order in 20-second blocks. For the hand, mouth, foot, 
speech, and rest blocks the stimulus was simply a word at the center of the screen (e.g. "Hand"). For 
the saccade block the subject was shown a pattern of saccade targets.

For the “Hand” cue the subject was instructed to make small finger-drumming movements with both 
hands for as long as the cue remained on the screen. Similarly for the “Foot” cue the subject was 
instructed to make small toe movements for the duration of the cue. For the “Mouth” cue the subject 
was instructed to make small mouth movements approximating the nonsense syllables balabalabala for 
the duration of the cue—this requires movement of the lips, tongue, and jaw. For the “Speak” cue the 
subject was instructed to continuously subvocalize self-generated sentences for the duration of the cue. 
For the saccade condition the written cue was replaced with a fixed pattern of twelve saccade targets, 
and the subject was instructed to make frequent saccades between the targets. A linear model was used 
to find the change in BOLD response of each voxel in each condition relative to the mean BOLD 
response.

Weight maps for the foot, hand, and mouth responses were used to define primary motor and 
somatosensory areas for the feet (M1F, S1F), hands (M1H, S1H), and mouth (M1M, S1M); 
supplementary motor areas for the feet (SMFA) and hands (SMHA); secondary somatosensory area for 
the feet (S2F) and, in some subjects, the hands (S2H); and, in some subjects, the ventral premotor hand 
area (PMVH). The weight map for saccade responses was used to define the frontal eye field (FEF), 
frontal operculum eye movement area (FO), intraparietal sulcus visual areas (IPS), and, in some 
subjects, the supplementary eye field (SEF). The weight map for speech production responses was used 
to define Broca's area (BA) and the superior ventral premotor speech area (sPMv).

Retinotopic localizer. Retinotopic mapping data were collected in four 9-minute scans. Two scans used 
clockwise and counterclockwise rotating polar wedges, and two used expanding and contracting rings. 
Visual angle and eccentricity maps were used to define visual areas V1, V2, V3, V4, LO, V3A, V3B, 
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and V7.

Area MT+ localizer. Area MT+ localizer data were collected in four 90-second scans consisting of 
alternating 16-second blocks of continuous and temporally scrambled natural movies. The contrast 
between continuous and temporally scrambled natural movies was used to define visual motion area 
MT+.

5. Abbreviations for annotated gyri and sulci. In the flattened cortical maps shown in Figure 3 and
Extended Data Figures 6-12 some sulci and gyri are annotated and labeled. The nomenclature generally
follows (Ono, Kubik, & Abernathey, 1990). Here we list abbreviations and complete labels for these
sulci and gyri: POS, posterior occipital sulcus; TOS, transverse occipital sulcus; LOS, lateral occipital
sulcus; AOS, anterior occipital sulcus; CoS, collateral sulcus; mFus, midfusiform sulcus; OTS;
occipitotemporal sulcus; ITS, inferior temporal sulcus; STS, superior temporal sulcus; HS, Heschl's
sulcus; IPS, intraparietal sulcus; AG, angular gyrus; SMG, supramarginal gyrus; sbPS, subparietal
sulci; CgS, cingulate sulcus; PoCeS, postcentral sulcus; CeS, central sulcus; PreCeS, precentral sulcus;
IFS, inferior frontal sulcus; SFS, superior frontal sulcus; SyF, sylvian fissure; CSI, circular sulcus of
the insula; aarSyF, anterior ascending ramus of the sylvian fissure; ahrSyF, anterior horizontal ramus of
the sylvian fissure.

6. Story synopses. This experiment used ten stories for voxel-wise model estimation and one story for
model validation. All stories were taken from recordings produced by The Moth Radio Hour, and are
true, autobiographical stories told in front of a live audience. The ten estimation stories were:
“Alternate Ithaca Tom” by Tom Weiser, a story about a man who is plagued by visions of what his life
would have been like if he had become a university professor instead of a database engineer;
“Targeted” by Jen Lee, a story about a woman questioning and then losing her faith both in evangelical
Christianity and in Mary Kay cosmetics; “My Avatar and Me” by Laura Albert (aka J.T. LeRoy), a
story about an author who published under a pen name, and the backlash that was directed at her when
she was exposed; “My Unhurried Legacy” by Kyp Malone, a story about a man who recovers repressed
childhood memories when he sees his daughter struggling in grade school; “Ode to Stepfather” by
Ethan Hawke, a story about a boy growing up with and then losing a tough and macho stepfather;
“Under the Influence” by Jeffery Rudell, a story about a man's struggle with hope and forgiveness after
being completely disowned by his family when he came out to them as gay; “How to Draw a Nekkid
Man” by Tricia Rose Burt, a story about a woman who leaves the business world and becomes an artist;
“My First Day at the Yankees” by Matt McGough, a story about becoming a batboy for the New York
Yankees and the target of a prank; “Naked” by Catherine Burns, a story about a woman who briefly
becomes an exotic dancer after overcoming self-esteem issues; and “Life Flight” by Kimberly Reed, a
story about a trans woman who returns to her hometown and reveals her transgender status after her
father's death. The validation story was “Where There's Smoke” by Jenifer Hixson, a story about a
woman who makes a new friend while struggling with an abusive relationship.

7. Word rate and phoneme rate model construction. To account for the highly variable speech rate
both within and across stories, we constructed two single-feature models that simply count the number
of words and number of phonemes that occurred during the acquisition of each fMRI volume
(2.0045s).

8. Phoneme model construction. To account for response variance caused by the low-level phonemic
content of the stories, we constructed a 39-parameter model that captures how often each of the 39
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phonemes in English was spoken over time. This model was constructed from the phoneme 
representation of the stories: the lists of phoneme-time pairs (P, t) were re-arranged into 39 lists, each 
of which contains only the times of a single phoneme. These lists of times were then downsampled to 
the fMRI acquisition rate.

9. Noise-ceiling correction. While the correlation between predicted response and actual mean
response is an appropriate metric for assessing significance, it is biased downward due to noise in the
validation data (David & Gallant, 2005; Hsu, Borst, & Theunissen, 2004; Sahani & Linden, 2003). This
is because the actual mean response is calculated using a finite number of repetitions (in this case 2)
and thus it contains residual noise in addition to signal. This noise level is likely to vary across voxels
due to vascularization and magnetic field inhomogeneity. For the corrected correlation flatmaps shown
in Extended Data Figure 1, we accounted for noise in the validation data using the method developed in
(Hsu et al., 2004). In this method the raw correlation is divided by the expected maximum possible
model correlation (called the noise ceiling) for each voxel. For very noisy voxels, however, this method
led to divergent correlation estimates. To correct this issue we limited voxel noise ceilings to be above
some value k. For k=1, the estimated actual correlation is the observed correlation between response
and prediction, and for k=0 the estimated actual correlation is the original divergent estimate. We used
k=0.0966, which is the p<0.05 significance threshold for the correlation of two gaussian variables with
the same length as our validation story.

10. Significance testing of semantic principal components. If there is no structured semantic space
underlying the true model weights (i.e. the weights for each voxel are independent from the other
voxels) then the PCs of the estimated model weights will be identical to the PCs of the stimulus matrix,
which contains the semantic feature representations of each 2-second segment of the stories. This bias
in the estimated weight PCs is due to the regularized regression procedure used here, which trades a
small increase in bias for a large decrease in error (Hoerl & Kennard, 2012). Thus in order to
appropriately evaluate statistical significance of the estimated model weight PCs we compared them to
the PCs of the stories. This significance criterion helps ensure that the semantic structure that we
observe in the PCs is due primarily to the fMRI data and not the statistics of the stories. We first tested
whether each individual-subject model weight PC accounted for more variance than would be expected
by chance. To find confidence intervals on the variance accounted for by each PC we bootstrapped the
model weight PCA by sampling with replacement from the voxel population 1000 times. Similarly,
confidence intervals on the variance in model weights accounted for by each story PC were obtained by
bootstrapping the story PCA 1000 times. One potential issue with directly comparing the variance
accounted for by an individual-subject PC and the correspondingly numbered story PC (i.e. comparing
the first subject PC with the first story PC) is that the same PCs might appear in both analyses but in a
different order. To account for this issue we re-ordered the first 20 story PCs to maximize their
correspondence to the first 20 subject PCs using the Gale-Shapley stable marriage algorithm.

The amount of variance accounted for in the model weights by each of the model weight PCs (orange 
lines) and story PCs (gray lines) is shown in Extended Data Figure 2, along with error bars denoting 
99% confidence intervals. To test the hypothesis that a model weight PC accounts for more variance 
than the corresponding story PC we counted the number of times in the 1000 bootstrap samples that the 
story PC accounted for more variance than the model weight PC. The null hypothesis for this analysis 
is that the story PC and the model weight PC account for the same amount of variance. We rejected the 
null hypothesis if the story PC never accounted for more variance than the voxel weight PC across the 
1000 bootstrap samples (corresponding to p<0.001).
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Because lower-variance PCs are more sensitive to noise and thus more likely to yield false positives, 
we tested the PCs sequentially and stopped testing after encountering the first non-significant PC. This 
procedure revealed that subject S1 has 6 significant individual-subject PCs, S2 has 8 significant PCs, 
S3 has 4 significant PCs, S4 has 6 significant PCs, S5 has 7 significant PCs, S6 has 6 significant PCs, 
and S7 has 4 significant PCs.

Next we tested PCs constructed using combined data from many subjects. For each subject we 
constructed a set of group PCs using combined data from the other six subjects, leaving out the selected
subject. For example, to test subject S1 we performed PCA on combined model weights from subjects 
S2-S7. We then computed the amount of variance accounted for in the model weights for the left out 
subject by each of the group PCs. As with the individual subject PCs and story PCs, confidence 
intervals on the variance explained by the group PCs were found using the bootstrap. The amount of 
variance accounted for in the model weights by each of the group PCs (blue lines) is shown in 
Extended Data Figure 2, along with error bars denoting 99% confidence intervals.

We then tested whether each group PC explained more variance than the corresponding story PC (again
re-ordered using the Gale-Shapley stable marriage algorithm) using the statistical procedure described 
above. We found that subject S5 was significantly explained by 6 group PCs, subjects S1 and S3 were 
significantly explained by 5 group PCs, subjects S4, S6, and S7 were significantly explained by 4 
group PCs, and subject S3 was significantly explained by 3 group PCs (Extended Data Figure 2).

11. Semantic word cluster analysis. Cluster analysis was used to create interpretable features in the
semantic space. First all 10,470 words in the semantic feature space were projected into the 4-
dimensional common semantic PC space. Then an iterative, robust convex hull estimation procedure
was used to find the most important words in this space. At each iteration, 80% of the 10,470 words
were selected at random, and then their convex hull was found in the 4-D semantic space. This was
repeated 100 times. The set of all words that appeared on the convex hull in at least one iteration was
then found. These 458 words were then clustered in the 4-D space using the k-means implementation in
scikit-learn (Pedregosa et al., 2011). To select the number of clusters we computed the fraction of
variance that the clusters collectively explained in the mean semantic model for each of the significant
semantic areas identified by the PrAGMATiC atlas. Then we selected the smallest number of clusters
that would account for at least 10% of the variance in each PrAGMATiC area, which was 12. To
maximize cluster stability we repeated the k-means clustering 100 times and selected the model with
the highest average variance explained across the PrAGMATiC areas. Within each k-means repetition
the clustering model was initialized 100 times using k-means++. Labels were assigned to the clusters
manually by inspecting the words that appeared in each cluster (Supplementary Table 2). For alternate
label assignment methods see Supplementary Data 5.

12. PrAGMATiC details. The PrAGMATiC algorithm assumes that the cortex of each subject is tiled
with convex functional areas, and that all locations within each area have the same tuning within the 4-
dimensional semantic space. The location of each area is determined by the location of its centroid,
which is a single point on the cortical surface. The location of each centroid depends on the locations of
a few neighboring centroids and the locations of some known landmarks, which are identified
separately in each subject. The functional selectivity of each area is determined by its mean functional
value. The mean functional value for area  is called .

This model is instantiated for each subject as a two-layer Bayesian network, with one visible layer and 
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one hidden layer. The visible layer units are vertices on the cortical surface mesh. Each vertex is 
associated with a -vector of observed functional values. The vector of observed values for visible unit
 in subject  is called , and the collection of all visible units in a subject is called . We 

assume that all visible units are independent of each other, given the hidden layer units.

The hidden layer units are the locations of the area centroids. The location of centroid  in subject  is 
called , and the collection of all hidden units in subject  is called .

As a generative model, PrAGMATiC must be able to generate samples from the distribution of visible 
unit vectors. To sample  we first find the index of the nearest area centroid on the cortical surface,

. Then we look up the mean associated with that centroid, . Finally we draw a sample
from a multivariate Gaussian distribution with spherical variance: 

The probability distribution over locations of the hidden units is modeled using a physical analogy to a 
system of springs. The ideal length of the spring connecting units  and  is called .

The full probability distribution for PrAGMATiC is written:

The distribution over arrangements of the hidden layer units, H, is modeled using a Boltzmann 
distribution with the following energy function:

Here  is the geodesic distance across the cortical surface between hidden layer units  and  in 
subject . This distance is computed using a heat-based approximation to the exact geodesic distance 
(Crane et al. 2012). This energy function is exactly the sum over the spring potential energy for all 
spring connections in the model. The constant  determines the temperature of the spring system. The 
normalizing constant for  depends on the value of , and is written here as .

The distribution over visible unit values is multivariate Gaussian with equal variance in all dimensions 
and zero covariance, but for consistency we write it as an energy-based model. The energy function for 
the visible units is:

Here  is the mean functional value for the closest hidden layer unit (by geodesic distance across
the cortical surface) in the arrangement  to visible layer unit  in subject . The constant  is the 
standard deviation of the Gaussian. The normalizing constant for  depends on , but not 
on any of the learned parameters (because this is a Gaussian distribution its normalizing constant is 
known).

We use maximum likelihood estimation (MLE) to learn  and  based on observed visible unit data,
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. For the spring lengths, the average log likelihood given the observed data is written:

Here  is the number of subjects and  is an index across subjects.

Then we differentiate with respect to  to find:

Where the total probability of the observed data given the parameters,  is equal to the 
expectation over :

The first part of the gradient, which involves the normalization constant , can be written as:

or simply as the expectation of the gradient over :

Note that the entire gradient could be written more simply as the Boltzmann learning rule from Ackley, 
Hinton, & Sejnowski, 1985:

However, to make an essential approximation we retain the earlier formulation. This gradient is 
impossible to compute exactly because it requires integrating over all possible . Therefore we 
approximate the gradient using only a small number of samples from . These samples are 
obtained using Gibbs sampling, wherein the location of each hidden unit is update sequentially 
according to the conditional distribution . This procedure is used to obtain  samples of

, which are denoted  with . We then use these samples to approximate the integral and 
expectation over . The gradient function is then rewritten as:
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This function shows that the likelihood gradient is equal to the difference between the average energy 
gradient across all  samples (the first term) and a weighted average energy gradient (the second term),
where the weights are proportional to the probability of the observed data  given the sampled . 

To compute the energy gradient for each sample we differentiate the energy function with respect to 
each element of , giving:

The gradient for  is slightly different because the normalization constant  does not depend on 
(as the normalization constant of a Gaussian does not depend on the mean). Thus it has a simpler 
expression:

And the energy gradient for the mean of area ,  is:

Where the sum is taken only over the visible units  for which the closest hidden unit in the 
arrangement,  is .

To obtain high quality, independent samples of  we maintain  parallel Markov chains for each of the
 subjects. At each learning step we perform one Gibbs sweep through each of the Markov chains. 

That is, at step  in chain  and subject  we draw the sample: 

For each of the  samples we compute the energy gradients for  and , as well as the likelihood of 
the observed data . Then we compute the average gradients and the weighted 
average gradient according to the data likelihoods. Finally we update  and  by taking a small step 
down these gradients:

The learning rate, , is set on each step so that the largest change in any spring length is no more than 
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2mm and the largest change in any mean functional value is no more than 0.025 standard deviations.

The hyperparameters  and  affect learning speed, but they do not directly affect the learned 
parameters (except by virtue of poor approximation). The inverse spring temperature, , determines 
how stiff or floppy the springs are. If the inverse temperature is very high then the springs will be very 
stiff, samples of  will be highly correlated across iterations, and the quality of the gradient steps will 
suffer. If it is very low then the springs will be very floppy, samples of  will be highly random, and 
the quality of the gradient steps will also suffer. 

If  is very low, then one sample from  will always yield much higher likelihood of  than the 
others, and the weighted average of the gradients across samples will become the difference between 
the best sample and the other samples. If  is very high, then the likelihood of  will be very 
similar for all samples, and the weighted average of the gradients will be almost identical to the simple 
average across gradients.

Note further that these hyperparameters interact with each other. If  is very high, then almost all 
samples from  will be close to the  that minimizes the total spring energy. Because the samples will
be more similar, the likelihoods will also be more similar, and the weighted average of the gradients 
will again be similar to the simple average. The hyperparameters also interact with the number of areas 
in the model.

Rather than tuning these parameters directly, we select desired levels of entropy for
 and . If the average entropy of  is lower than the target 

value then we lower  to make the springs more floppy; if it is higher than the target value then we 
raise  to make the springs stiffer. Similarly, if the entropy of  is lower than the target value then we 
raise ;  if it is higher than the target value then we lower .

High entropy keeps the model from falling into local minima, but also keeps the model from finding 
very high likelihood solutions. Conversely, low entropy allows the model to find high likelihood 
solutions, but also makes it more likely to fall into local minima. To take advantage of both low and 
high entropy states we use an annealing approach, where the entropy target for  is high at the 
beginning of learning, but then is gradually lowered throughout the learning process. This makes the 
Markov chain take larger, more uncorrelated steps at the beginning of learning, but smaller steps at the 
end.

In practice the algorithm as written above tends to converge when the numbers of areas and subjects are
both small. If these numbers become large, however, (e.g. 128+ clusters and 5+ subjects) the algorithm 
becomes less stable. When this occurs, the model tends to prioritize minimum energy solutions over 
maximum probability solutions. That is, the model tries to minimize the total spring energy across all 
the subjects at the cost of poorly explaining the data. This often causes all the areas to bunch up as far 
as possible from any known landmarks. These effects are exacerbated when  is high.

We believe that this problem is caused by bias in drawing samples of . When the spring temperature 
is low, all samples from  will be very close to the minimum spring energy state (i.e. the 
arrangement that minimizes ). If the minimum spring energy state is far from the maximum 
probability state (i.e. the arrangement that maximizes ), then this could bias the gradient 
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steps such that the likelihood decreases over time.

One solution to this problem is to increase , the number of samples that are drawn for each subject at 
each step of the learning algorithm. However, this is expensive, as run time is linear in . An 
alternative solution that incurs almost no additional cost is to add a small perturbation to the ideal 
spring lengths that is specifically tailored to each subject. That is, we replace the global spring length 
parameters  with . Now the domain of possible minimum spring energy states is much larger, 
and thus it is much more likely that the maximum probability state also has low or minimum spring 
energy. To ensure that  stays small and does not capture differences that are common across subjects 
we set the learning rate for  to 1/10 of the learning rate for .

With this new term, the full probability distribution becomes:

And the spring energy function becomes:

The energy gradient for  is very similar to that for :

PrAGMATiC optimizes a non-convex objective function and so can find many potential locally optimal 
solutions. (This is a common problem in clustering algorithms.) This also means that the resulting 
model is sensitive to initial conditions and to the random seed that is used while sampling new model 
states during learning. Here we use two methods to maximize the chance of finding the optimal global 
solution. First, we use an annealing process, lowering the temperature parameter slowly over the course 
of learning. Second, we re-estimate the model for each hemisphere 10 times, using a different random 
initialization and random seed each time. From these various estimates we take the model that has the 
highest likelihood to be the canonical model. Extended Data Figure 5 shows the model with the highest 
likelihood, and the model with the second-highest likelihood. The most likely and second-most likely 
functional parcellations are quite similar, though there are some small local differences that reflect 
statistical thresholding and the influence of initial conditions. Thus, our implementation of the 
PrAGMATiC algorithm seems to produce reliable and stable estimates of functional parcellation. 

13. PrAGMATiC atlas. To determine how many total areas should be used in the PrAGMATiC atlas 
we used a cross-validation procedure. We estimated PrAGMATiC models with different numbers of 
areas (ranging from 8 to 384) and data from six of the seven subjects. We computed the average 
semantic voxel-wise model weight vector (including all four delays) in each area for each of the six 
subjects included in the PrAGMATiC model. This was done by projecting the weight vectors into
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vertex space using the line-nearest scheme in pycortex and then averaging across all the vertices within 
each area. Then those vectors were averaged together across subjects to obtain a single estimated 
weight vector for each area.

Next we used the estimated PrAGMATiC model to parcellate cortex in the seventh subject, generating 
a predicted parcellation based only on the locations of the functional landmarks. This was done by 
loading the spring lengths from the estimated PrAGMATiC model and then resampling the area 
centroid locations in the seventh subject for 100 iterations, during which the inverse temperature (beta) 
was gradually increased from 0.05 to 37. At this point each vertex in the seventh subject is assigned to 
a single area in the PrAGMATiC parcellation.

Next we tested how well the average weight vector for each PrAGMATiC area from the other six 
subjects could predict responses in the seventh subject. We projected BOLD responses to the validation 
story (which was not used for voxel-wise model estimation) for the seventh subject into vertex space 
using the line-nearest scheme in pycortex. Then for each vertex we used the average weight vector 
assigned to its area based on the other six subjects to predict BOLD responses to the validation story in 
the seventh subject. Finally we computed the correlation between the predicted and actual BOLD 
responses to obtain a measure of model prediction performance. These correlation values were 
averaged across all vertices in each hemisphere in each subject to obtain the PrAGMATiC prediction 
values shown in Figure 3B. This procedure was repeated three times while holding out each of the 
seven subjects separately.

To select the best number of areas for each hemisphere based on these correlation values, we performed 
a linear mixed-effects ANOVA using the lmer package in R with each number of areas as a factor level 
in a fixed effect and subjects as random effects. This showed that correlation was significantly different 
for different numbers of areas. Next we performed pairwise post hoc tests comparing mean correlations 
across numbers of areas using the multcomp package in R. Resulting p-values were corrected for 
multiple comparisons using FDR. Finally, we selected the smallest number of areas for which the mean 
correlation was not significantly different (q(FDR)>0.01) from the mean correlation for any larger 
number of areas. For the left hemisphere, this required 192 areas. For the right, this required 128 areas.

The final PrAGMATiC atlas was based on data from all seven subjects, unlike the cross-validated 
models described above. To identify semantically selective areas in the atlas we tested whether the 
average semantic model in each area performed significantly better than the average low-level model. 
This was done using a similar procedure to that outlined above. The average semantic model was 
computed for each area (including data from all seven subjects), as was the average low-level model 
for each area. Predictions for each vertex in each area were computed, as above, for both semantic and 
low-level models. Then a bootstrap procedure was used to estimate a distribution of correlation values 
for each vertex under each model by resampling the 290 time points that were used to compute the 
correlation, with replacement, 1000 times. These bootstrap correlations were averaged across each area 
and across subjects. Finally the average correlations for the semantic and low-level models were 
compared for each bootstrap sample. The p-value for the significance test was computed as the fraction 
of samples where the average semantic model correlation for an area was less than the average low-
level model correlation. This p-value is 1.0 for areas where the low-level model is always better, 0.5 for 
areas where both models are about the same, and 0.0 for areas where the semantic model is always 
better. These p-values were corrected for multiple comparisons using FDR. Corrected p-value 
thresholds were chosen based on the total number of areas. For example, in the left hemisphere the 
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threshold p<1/192 should limit the number of non-semantic areas that are considered semantic to fewer 
than one. Only areas where the semantic model performed significantly better than the low-level model 
according to this test are shown in Figure 3 and Extended Data Figures 6-12.

To describe the semantic selectivity of areas in the PrAGMATiC atlas we predicted the average 
response of each area to each of the 12 semantic categories identified earlier (Figure 2A). This was 
done by computing the average semantic model weights for each area (as described above, but here 
averaging across delays) and then projecting those weights onto the average semantic vector for each of 
the 12 categories. These values are shown in Extended Data Figures 6-12. To determine whether each 
area was selective for a category we used a t-test to determine whether the estimated response to the 
category was consistently greater than zero across subjects (q(FDR)<0.05, FDR correction applied 
across areas within each region and across the 12 categories). 

To order the 12 categories for display purposes (Extended Data Figures 6-12) we projected the category 
vectors onto semantic model weights for all areas in the left hemisphere, and then computed the 
correlation between these projections for each pair of categories. Then we used a traveling salesman 
solver to find a path through the 12 categories that maximized correlations between adjacent categories.

One issue with using the 12 semantic categories to describe semantic selectivity is that many semantic 
concepts or categories that might be represented in the brain will fall outside of those categories. This 
would lead the 12 category interpretation to be incomplete. To assess how completely the 12 category 
interpretation describes each area in the PrAGMATiC atlas we fit linear models that attempted to 
recreate the average semantic model weights for each area from a weighted combination of the 
semantic vectors for the 12 categories. Then we computed the fraction of variance in the average 
semantic model weights that was explained by this linear model. In the best-explained areas the 12 
categories account for 40-50% of the variance in the average semantic model weights, while for poorly 
explained areas they can account for less than 15% of the variance. Areas with very low variance 
explained are incompletely described by the 12 categories, while areas with higher variance explained 
are well described by the 12 categories. The variance explained for each area is shown in bar plots in 
Extended Data Figures 6-12.

To determine whether left hemisphere or right hemisphere areas within any given region (such as the 
medial parietal cortex) were significantly more selective for any of the 12 semantic categories we used 
a t-test to compare predicted responses in all left hemisphere areas to all right hemisphere areas.
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Supplementary Tables

1. Semantic categories that are over- or under-sampled in the story stimuli. To determine which
semantic categories are over- or under-sampled in the stories used in this experiment we compared the
stories to a large text corpus (see Supplementary Data 1 for details). Semantic categories were found
using Ward agglomerative clustering. For each category that was significantly over- or under-sampled
in the stories, this table shows the frequency of that category in the corpus, the frequency of that
category in the story stimuli, the ratio of those frequencies, the p-value of the difference in frequency,
and a few sample words from that category.

Under-sampled categories
Corpus frequency Stimulus frequency Ratio ↓ p-value Sample words

47.33/100k 0.00/100k inf:1 0.000029 sinking stern boat diving sank

38.08/100k 0.00/100k inf:1 0.000284 mademoiselle dorrit mrs winkle squeers

301.35/100k 8.57/100k 35.2:1 0.000000 unit laboratory foundation project extend

83.50/100k 4.29/100k 19.5:1 0.000000 sailed boarded arriving aboard patrol

184.44/100k 12.86/100k 14.3:1 0.000000 admiral military artillery survivors disaster

167.77/100k 17.14/100k 9.8:1 0.000000 succession british crowned kingdom rebellion

569.27/100k 60.00/100k 9.5:1 0.000000 adapted originally major currently expanded

85.37/100k 12.86/100k 6.6:1 0.000008 entering temporarily reserve guidance aid

240.43/100k 38.57/100k 6.2:1 0.000000 organized nations affairs nation dispute

102.32/100k 17.14/100k 6.0:1 0.000002 pulse channels tracking via radios

310.61/100k 55.72/100k 5.6:1 0.000000 machine effectively devices thereby equipped

465.40/100k 90.00/100k 5.2:1 0.000000 woods meadows grove canyon eastern

215.87/100k 42.86/100k 5.0:1 0.000000 union commerce cities occupation towns

244.63/100k 51.43/100k 4.8:1 0.000000 instrument introduction purposes instruments traced

135.24/100k 30.00/100k 4.5:1 0.000000 threatened enemies destroy brutal threatening

647.01/100k 154.29/100k 4.2:1 0.000000 circumstances responsible altogether privilege citizens

141.41/100k 34.29/100k 4.1:1 0.000000 elegant elaborate females likeness mature

508.09/100k 132.86/100k 3.8:1 0.000000 headquarters halls stables city boulevard

80.55/100k 21.43/100k 3.8:1 0.000311 lord highness privy constable priest

218.99/100k 60.00/100k 3.6:1 0.000000 peril disguise spared summoned siege

136.92/100k 38.57/100k 3.5:1 0.000003 collapse reactor atomic shifting observe

181.23/100k 51.43/100k 3.5:1 0.000000 miller owens barton maxwell marshall

686.19/100k 197.15/100k 3.5:1 0.000000 o w d span h

118.42/100k 34.29/100k 3.5:1 0.000023 cops prison unaware suspicion pleaded

250.62/100k 72.86/100k 3.4:1 0.000000 resigned rival representative presidential alliance

73.45/100k 21.43/100k 3.4:1 0.001454 possum elephant wolves turtle butterfly

219.92/100k 64.29/100k 3.4:1 0.000000 estimate similarly object y scale

251.57/100k 77.14/100k 3.3:1 0.000000 increase increasing absorbed owing million

264.71/100k 81.43/100k 3.3:1 0.000000 fail logic argue opinions suspect

188.16/100k 60.00/100k 3.1:1 0.000000 preserve suitable ideal unique lacked

303.19/100k 98.57/100k 3.1:1 0.000000 represents borne contained representing refer

774.81/100k 257.15/100k 3.0:1 0.000000 tree pavement feet rolling ground

153.38/100k 51.43/100k 3.0:1 0.000008 lethal survival beings power fatal

126.54/100k 42.86/100k 3.0:1 0.000064 trade proprietor owned owner co

113.65/100k 38.57/100k 2.9:1 0.000190 metallic patch uneven spot canvas
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Corpus frequency Stimulus frequency Ratio ↓ p-value Sample words

86.89/100k 30.00/100k 2.9:1 0.001181 drying melt container freezing temps

95.51/100k 34.29/100k 2.8:1 0.000928 spiders herd snakes spider insects

105.91/100k 38.57/100k 2.7:1 0.000556 spoke uttered spoken mute word

176.43/100k 64.29/100k 2.7:1 0.000005 wells detached divided remainder prior

175.83/100k 64.29/100k 2.7:1 0.000005 corridor passenger connecting passengers corridors

474.13/100k 184.29/100k 2.6:1 0.000000 theory example currency absolute universally

98.94/100k 38.57/100k 2.6:1 0.001628 dell k rx sm borrow

578.16/100k 227.15/100k 2.5:1 0.000000 china ra ri kremlin european

97.34/100k 38.57/100k 2.5:1 0.002130 reporter rumour bush fox paul's

139.93/100k 55.72/100k 2.5:1 0.000152 defensive offense fighter target forces

161.36/100k 64.29/100k 2.5:1 0.000056 hero battlefield twilight doom quest

520.22/100k 210.00/100k 2.5:1 0.000000 effective result employ cumulative ease

461.23/100k 188.57/100k 2.4:1 0.000000 specialist financial service listed conceded

226.32/100k 94.29/100k 2.4:1 0.000002 role studied assistant former hopkins

218.85/100k 94.29/100k 2.3:1 0.000009 successful significance scholar considered accomplished

382.38/100k 167.15/100k 2.3:1 0.000000 counseling trusted desire statements religion

104.42/100k 47.14/100k 2.2:1 0.004272 losing future eager brink meantime

245.78/100k 111.43/100k 2.2:1 0.000006 shores wooded concrete slopes gliding

222.87/100k 102.86/100k 2.2:1 0.000021 positively psychological positive stress illness

222.50/100k 102.86/100k 2.2:1 0.000027 lore millions country cult decades

174.40/100k 81.43/100k 2.1:1 0.000280 electricity tires blade hammer panels

255.01/100k 120.00/100k 2.1:1 0.000009 wing slate split forming banners

190.86/100k 90.00/100k 2.1:1 0.000123 persisted reported preceded previous apparent

118.04/100k 55.72/100k 2.1:1 0.003025 squared vertical edges debris waves

152.91/100k 72.86/100k 2.1:1 0.000764 engagement demanded despised protested allowed

151.86/100k 72.86/100k 2.1:1 0.000974 specially recommended planned offer prepared

332.41/100k 162.86/100k 2.0:1 0.000001 harmless easier impossible frowned appropriately

235.86/100k 115.72/100k 2.0:1 0.000047 bacon cooking ate wholesome rice

2225.32/100k 1110.02/100k 2.0:1 0.000000 types such many other sometimes

281.88/100k 141.43/100k 2.0:1 0.000011 admirable amusing respond smarter troll

220.09/100k 111.43/100k 2.0:1 0.000150 errors error typed task tasks

337.88/100k 171.43/100k 2.0:1 0.000002 clicked note interrupt skipped missed

142.57/100k 72.86/100k 2.0:1 0.003024 mostly fairly slightly extraordinarily insanely

150.85/100k 77.14/100k 2.0:1 0.002268 ruthless elders captive disgrace slaves

266.64/100k 137.14/100k 1.9:1 0.000034 therefore nature ordinarily se leibniz

324.42/100k 180.00/100k 1.8:1 0.000032 needed raised flatland reared frail

175.05/100k 98.57/100k 1.8:1 0.003617 visitors midst neighbourhood photos barren

1170.67/100k 677.15/100k 1.7:1 0.000000 four second seventh s october

276.55/100k 167.15/100k 1.7:1 0.000915 pursue destined rewarded encourage foremost

261.17/100k 158.57/100k 1.6:1 0.001301 letter readers address pages link

362.76/100k 231.43/100k 1.6:1 0.000478 music onstage singer release violin

494.22/100k 321.43/100k 1.5:1 0.000085 passport paperwork ups debt credit

991.36/100k 677.15/100k 1.5:1 0.000000 wrong possible possibly agree sense

34285.9/100k 28898.9/100k 1.2:1 0.000000 brought had has for when
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Over-sampled categories
Corpus freq. Stim. freq. Ratio p-value Sample words

127.32/100k 1860.03/100k 14.6:1 0.000000 doin lookin hah suck dunno

73.82/100k 415.72/100k 5.6:1 0.000000 sixteen twenty-three eighteen seventy fifteen

79.53/100k 325.72/100k 4.1:1 0.000009 blouse skirts hat t-shirts apron

27.27/100k 98.57/100k 3.6:1 0.000001 sanchez merrill hal wharton neville

116.92/100k 381.43/100k 3.3:1 0.000000 hanging railing crawl doors chair

34.25/100k 107.14/100k 3.1:1 0.003617 gabrielle alice jane naomi bianca

53.46/100k 162.86/100k 3.0:1 0.000190 laundry upstairs bedroom drawers carpet

25.76/100k 72.86/100k 2.8:1 0.000000 nigh wasn idly heartily emphatically

48.18/100k 132.86/100k 2.8:1 0.000764 arrow claws pits dart claw

263.90/100k 608.58/100k 2.3:1 0.000915 screaming listen scream shouted wink

332.17/100k 732.87/100k 2.2:1 0.000928 friend's hers kids relax tomorrow

144.10/100k 291.43/100k 2.0:1 0.002268 beauty men fro spectacles boy's

143.49/100k 278.58/100k 1.9:1 0.000000 tired hurt tempted remembering remind

126.86/100k 240.00/100k 1.9:1 0.000000 foul herb cigarettes wash smelled

251.57/100k 467.15/100k 1.9:1 0.000003 son son's funeral grace death

1994.22/100k 3612.91/100k 1.8:1 0.000000 i'd i'm feeling absolutely sigh

134.98/100k 231.43/100k 1.7:1 0.000280 ronnie nigel dave bobby ted

223.16/100k 381.43/100k 1.7:1 0.000047 waits open opens motioned gestured

269.01/100k 428.58/100k 1.6:1 0.000000 exclaimed asked call wondering imagined

322.88/100k 510.01/100k 1.6:1 0.000000 hold blew rolled smashed roll

2170.54/100k 3390.05/100k 1.6:1 0.000000  until came old time

173.72/100k 270.00/100k 1.6:1 0.000000 dreamer best marvelous favorite marvellous

4828.25/100k 7418.68/100k 1.5:1 0.000009 want how saying things people

205.97/100k 312.86/100k 1.5:1 0.000085 fingernails shaving fingers mouth eyelids

18745.95/100k 27128.9/100k 1.4:1 0.000000 here keeps than much right

607.73/100k 865.73/100k 1.4:1 0.000000 knows nice pity wish happy

WWW.NATURE.COM/NATURE | 32

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature17637



2. All words in each semantic cluster. To interpret the semantic dimensions found using PCA, we
clustered the words that had large projections on these dimensions into twelve clusters using k-means.
This table lists all the words in each cluster and the label that was assigned to that cluster by the
authors. Alternative methods for labeling the clusters are discussed and evaluated in Supplementary
Data 5.

Cluster Label Cluster Words

temporal travel minute leave date clock hours week rumbling next schedule months month immediately heading waited weeks weekend arrive
seconds starting destination hour minutes twice parking trip halfway nights pm promptly

abstract natural roots delicate exaggerated diverse gentle stronger atmosphere flesh soothing qualities muscular distorted describe strong 
powerful artificial deeper ecology stem pure sound spreading deep particularly intricate subtle masses expressive weak focus 
environment influenced hip creating intense sensation folk surroundings

professional meetings owner worker office rented year business meet home decided visit staying paid bank students house members visiting 
meeting private staff school estate classroom college apartment hotel attend

visual yellow fur silver badge garment large gold suit steel colour variety brown uniform cap clothing leather breeches coloured colored 
skull cotton wig bone wears fielder ribbons skin green stockings black seal breast glove stripes striped feathers jackets colors shafts
white wide medium color style blazer shaped cloth tan

violent lethal instantly breath kill bat painful pause repeat tongue stab trigger sentence breathe die accidentally poison accidental swallow 
explode bullet reaction kills hit swallowed repeatedly loses

tactile fingers blade metallic fog melt slow vertical dome edges waves drifting absorb barrel inches flowing thin swirling smooth pinch 
diameter tops sliding thick gravity breeze depth drops lightly blades hits slowly surface thinner sheets heavier portable pressing 
needle solid cut thicker soft slight finger melting meters cloudy slowed lighter flow faster layers screens lighting inch clouds slower 
reach shapes stream layer upwards

communal schools male community church young society interests bred banker family respected american culture catholic adopted whose 
teaching african among educated founded children public youth politician protect reputation sons wealthy

mental asleep knew memories overwhelmed awake anxious uneasy studying moments hadn't learning sadness talked experiences sounded
confess senses calm fascinating thoughts answered emptiness reading wake dreaming listening tense hearing experience awe reply 
exploring replies quiet solitude comforting wished explore happened realised discuss

numeric four quarter pairs set pound pair five maximum extra half drop card pounds cent overhead deck floors three two per stock each top 
tie shillings purse ten twenty double sold intervals tables smaller six

emotional alive nature innocent despised disgrace religion spiritual believes troubled emotion illness influence truth tortured compassion fear 
deeply speak perceived anger embrace religious emotions weakness human feelings harsh vile profoundly openly remark profound 
evil admiration believing peaceful christian convinced hatred man's cruel fearful betrayed

social child son situation pleaded marriage parents arrest daughter victim husband informed charges charged suicide relatives sheriff 
widow accused met arrested confronted eldest father custody robbery pregnant murder mother guilty confessed calls wife court 
whom stolen refused married murderer murdered convicted

locational stadium visitors halls company shops golf scenery architecture rooms gardens athletic lounge spacious space evenings building 
houses art landscape fields sporting shopping arts purchased annual national center stores pools campus facilities sports activities 
design uniforms clubhouse teams local
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3. MNI coordinates for each identified semantic area. The PrAGMATiC analysis found 77
significant semantic areas in the left hemisphere and 63 in the right. Each area was identified in the
native anatomical space for each subject. This table lists the average MNI coordinates and the standard
deviation for each area across subjects.

Area  X (± std)  Y (± std)  Z (± std)

LPC L6  -43±3.5  -67±4.1  24±4.8

LPC L9  -51±5.1  -57±4.4  23±5.2

LPC L7  -47±3.5  -63±3.7  34±3.9

LPC L11  -53±1.8  -54±3.7  36±6.3

LPC L12  -54±4.9  -48±5.4  30±4.6

LPC L3  -36±5.9  -78±4.9  32±4.3

LPC L13  -52±2.9  -49±4.7  45±4.3

LPC L14  -57±1.9  -41±2.7  31±4.6

LPC L8  -31±2.5  -53±5.2  49±5.9

LPC L5  -31±3.1  -65±3.2  45±4.2

LPC L4  -30±2.4  -75±4.6  37±4.3

LPC L1  -37±3.2  -81±2.6  21±4.1

LPC L15  -51±4.1  -38±3.3  42±4.2

LPC L10  -38±5.0  -50±5.9  44±3.9

LPC L2  -25±3.0  -72±5.5  34±3.7

MPC L10  -5±1.5  -55±3.2  26±2.9

MPC L8  -9±2.8  -47±2.7  34±3.9

MPC L6  -5±1.1  -59±1.6  37±4.3

MPC L7  -10±1.4  -69±4.2  31±4.1

MPC L5  -8±2.1  -49±3.4  44±3.0

MPC L11  -9±3.1  -62±2.4  20±3.3

MPC L14  -6±3.8  -45±3.3  9±5.3

MPC L13  -16±2.0  -60±2.8  5±3.2

MPC L12  -8±2.7  -55±2.2  12±3.7

MPC L9  -4±1.1  -36±3.8  37±2.7

MPC L1  -8±2.4  -57±4.6  58±3.0

MPC L4  -11±2.7  -77±3.4  44±3.6

MPC L3  -5±2.5  -66±2.8  49±4.2

MPC L2  -16±2.6  -71±3.2  52±3.0

SPFC L13  -17±2.3  53±6.3  29±6.9

SPFC L6  -37±3.3  20±5.0  42±3.9

SPFC L12  -5±0.8  54±4.7  33±4.5

SPFC L15  -6±1.1  56±6.1  18±3.2

SPFC L4  -34±5.0  19±5.4  48±6.9

SPFC L10  -6±1.5  40±3.8  46±5.5

SPFC L5  -9±2.4  26±3.4  57±2.8

SPFC L14  -8±2.6  47±4.1  18±7.5

SPFC L1  -8±2.9  10±2.1  65±1.5

SPFC L18  -6±1.8  60±2.3  -8±3.3

SPFC L17  -7±1.3  51±4.4  0±2.7

SPFC L11  -23±2.7  43±3.9  35±3.6

SPFC L9  -16±3.6  37±3.3  45±4.1

SPFC L16  -15±3.4  67±2.8  11±5.2

SPFC L7  -22±2.0  23±2.5  46±3.6

SPFC L2  -19±2.4  12±3.9  61±4.0

SPFC L8  -33±1.7  32±3.6  35±4.3

SPFC L3  -27±1.9  8±4.4  52±1.4

LTC L6  -53±5.4  -29±6.1  -3±2.4

LTC L8  -51±3.6  3±6.6  -21±6.0

Area  X (± std)  Y (± std)  Z (± std)

LTC L4  -56±3.2  -45±4.9  3±3.8

LTC L7  -59±2.5  -8±6.1  -23±6.4

LTC L5  -61±3.5  -35±7.0  -7±2.9

LTC L3  -57±3.3  -56±6.3  -1±4.1

LTC L1  -48±4.4  -64±4.8  1±4.8

LTC L2  -54±4.8  -59±5.2  -9±4.4

VTC L6  -33±4.1  -23±1.6  -22±1.3

VTC L5  -29±1.1  -39±1.5  -13±0.9

VTC L1  -47±5.1  -66±4.1  -9±5.3

VTC L4  -43±2.1  -48±4.6  -14±2.6

VTC L3  -50±3.6  -55±5.4  -14±4.9

VTC L2  -45±3.9  -59±4.3  -11±2.4

IPFC L9  -34±5.0  57±5.6  3±6.5

IPFC L8  -45±2.9  37±2.2  -7±2.3

IPFC L11  -38±2.0  53±2.2  -10±3.1

IPFC L12  -22±3.0  51±2.9  -17±1.2

IPFC L1  -42±3.1  3±4.9  40±5.3

IPFC L10  -35±1.9  39±2.6  -14±2.1

IPFC L5  -41±4.0  35±5.8  26±3.8

IPFC L7  -41±4.2  42±4.7  4±3.3

IPFC L3  -46±4.1  7±4.5  22±5.4

IPFC L2  -43±5.2  8±6.2  31±2.7

IPFC L4  -45±3.5  28±7.4  19±6.1

IPFC L6  -44±2.5  38±7.9  14±2.3

OIC L1  -42±1.8  -15±4.1  47±4.8

OIC L2  -54±2.6  0±3.3  7±3.8

OIC L3  -35±1.5  14±5.4  6±3.1

OIC L4  -39±1.0  -2±4.5  -6±2.3

LPC R7  52±4.7  -53±3.6  28±4.7

LPC R5  48±5.3  -58±3.7  25±4.8

LPC R8  43±4.1  -61±4.2  45±4.2

LPC R9  50±5.4  -52±3.7  42±5.1

LPC R10  54±5.3  -46±2.8  32±2.8

LPC R3  45±4.0  -68±2.7  26±4.9

LPC R2  50±2.8  -61±4.1  7±5.9

LPC R12  55±4.7  -41±3.2  42±4.9

LPC R4  36±3.7  -70±4.2  39±4.3

LPC R1  41±3.9  -76±3.8  20±2.9

LPC R13  55±2.6  -33±5.2  44±4.5

LPC R11  41±5.5  -45±2.8  42±3.7

LPC R6  31±3.9  -64±3.4  44±5.9

MPC R7  9±1.0  -52±3.7  33±2.8

MPC R6  5±0.8  -60±3.5  27±2.5

MPC R3  12±1.8  -69±4.9  36±5.9

MPC R10  4±0.2  -29±2.3  26±1.2

MPC R8  11±1.5  -57±2.4  17±3.3

MPC R4  7±0.8  -55±3.2  45±2.8

MPC R5  10±3.0  -45±4.7  54±5.4

MPC R2  11±1.3  -58±4.0  61±2.6

Area  X (± std)  Y (± std)  Z (± std)

MPC R9  6±1.1  -37±2.5  36±2.4

MPC R1  21±3.4  -74±5.5  41±2.0

SPFC R9  38±4.1  16±6.8  38±3.1

SPFC R11  37±2.8  27±5.1  36±4.4

SPFC R17  28±1.5  58±2.4  7±4.9

SPFC R15  20±2.0  52±2.8  31±3.5

SPFC R8  12±3.3  25±3.7  57±3.2

SPFC R16  9±1.2  57±2.7  17±1.7

SPFC R14  7±0.7  45±4.4  40±2.4

SPFC R12  17±2.5  40±5.1  47±2.8

SPFC R6  39±2.9  18±5.8  48±5.1

SPFC R19  9±2.4  66±2.9  -6±5.6

SPFC R2  10±3.1  8±4.8  65±4.4

SPFC R18  8±0.6  48±2.0  -4±1.8

SPFC R4  41±1.9  2±4.4  46±6.2

SPFC R10  24±3.5  29±3.4  44±4.9

SPFC R3  19±3.0  14±4.9  62±3.3

SPFC R5  33±3.3  8±5.5  52±2.7

SPFC R1  23±1.3  3±4.6  59±3.4

SPFC R13  28±4.1  35±3.9  38±5.0

SPFC R7  23±2.6  18±4.0  50±3.6

LTC R5  57±3.9  -23±4.9  -6±3.8

LTC R7  51±2.3  11±6.1  -21±4.8

LTC R4  53±5.1  -27±6.4  1±3.7

LTC R3  57±3.5  -41±4.3  5±4.0

LTC R8  47±1.9  7±4.0  -35±2.1

LTC R6  63±4.4  -25±5.3  -13±4.4

LTC R2  57±3.1  -51±6.0  -1±4.4

LTC R1  55±3.7  -57±5.7  -6±4.5

VTC R2  42±1.2  -14±5.1  -31±2.5

VTC R1  30±1.2  -25±3.7  -21±2.0

IPFC R7  49±2.4  35±3.2  -1±2.2

IPFC R4  52±3.2  25±3.2  13±3.0

IPFC R8  41±2.3  54±2.3  -3±4.1

IPFC R3  46±2.5  29±3.5  28±4.0

IPFC R9  31±1.9  41±3.3  -14±1.5

IPFC R2  51±3.2  11±3.3  16±2.7

IPFC R6  43±3.1  46±2.8  11±5.4

IPFC R1  42±3.6  11±3.1  31±2.6

IPFC R5  45±4.0  36±4.5  15±3.6

OIC R3  55±4.9  4±3.7  16±5.4

OIC R2  38±0.9  15±4.1  5±1.7

OIC R1  40±0.4  -3±3.1  -3±2.3
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