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SUMMARY

An animal’s decision depends not only on incoming sensory evidence but also on its fluctuating internal state.
This state embodies multiple cognitive factors, such as arousal and fatigue, but it is unclear how these factors
influence the neural processes that encode sensory stimuli and form a decision. We discovered that, un-
prompted by task conditions, animals slowly shifted their likelihood of detecting stimulus changes over the
timescale of tens of minutes. Neural population activity from visual area V4, as well as from prefrontal cortex,
slowly drifted together with these behavioral fluctuations. We found that this slow drift, rather than altering the
encoding of the sensory stimulus, acted as an impulsivity signal, overriding sensory evidence to dictate the
final decision. Overall, this work uncovers an internal state embedded in population activity across multiple
brain areas and sheds further light on how internal states contribute to the decision-making process.

INTRODUCTION

Over the course of a day, we face many perceptual decisions

(e.g., a driver waiting for a traffic signal to turn green). These de-

cisions are influenced not only by information at hand (e.g., the

color of the traffic signal) but also by a myriad of internal factors

that influence our choices at the moment a decision is made

(e.g., fatigue from driving). These factors have timescales

ranging from many minutes (e.g., arousal) to seconds (e.g.,

spatial attention) to fractions of a second (e.g., recent visual stim-

ulus history), and, together, they define an ‘‘internal state.’’ When

an animal is tasked with making back-to-back perceptual deci-

sions in a laboratory setting, fluctuations in the internal state still

influence perceptual outcomes despite the constancy of the sta-

tistics of task variables. Indeed, many studies have investigated

how and to what extent internal states influence the outcome of a

decision (Gold and Shadlen, 2007; Harris and Thiele, 2011;

McGinley et al., 2015b), as this provides insight into the cognitive

and neural mechanisms underlying decision making (Shadlen

and Kiani, 2013).

Perceptual decisions have often been characterized with

models that accumulate (noisy) sensory evidence, such as vari-

ants of the drift-diffusion model (Krajbich and Rangel, 2011;

Brunton et al., 2013; Ratcliff et al., 2016), and there are neural sig-

natures of this accumulation process (Schall, 2003; Gold and

Shadlen, 2007; Kiani and Shadlen, 2009; Fetsch et al., 2011;

Hanks et al., 2015; Brody and Hanks, 2016; Hanks and Summer-

field, 2017; Huk et al., 2017). Decisions can be better character-

ized by extending these models to include factors such as an ur-

gency signal (Cisek et al., 2009; Hanks et al., 2014; Murphy et al.,

2016), duration of fixation (Krajbich et al., 2010), the expected

accuracy of a choice (Purcell and Kiani, 2016), the number of
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alternative choices (Churchland et al., 2008), the reward or

choice history of previous trials (Abrahamyan et al., 2016; Urai

et al., 2019), or a model term describing errors (i.e., ‘‘lapses’’)

that occur independently of sensory evidence (Weissman

et al., 2006; Pisupati et al., 2019). Less is known about the neural

signatures of these cognitive factors (O’Connell et al., 2018).

Most of these models focus solely on short-term influences on

decisions (e.g., within a single trial or between consecutive trials)

despite the presence of long-term influences (i.e., over several

minutes to hours) on decisions, such as fatigue (Marcora et al.,

2009), arousal (Aston-Jones and Cohen, 2005; McGinley et al.,

2015b; Urai et al., 2017; Schriver et al., 2018), and satiety (Allen

et al., 2019), among others. This motivates the question of how

such long-term changes in a subject’s internal state influence

the subject’s choices in a perceptual decision-making task.

In this work, we trained macaque monkeys to make hundreds

of perceptual decisions over the course of several hours. We

found that the animals’ behavior changed slowly during the

task, unprompted by task structure. These slowly changing be-

haviors included their tendency to report a change when none

had happened (i.e., the rate of false alarms), reaction time, and

pupil diameter. These behavioral measures covaried with each

other over the course of tens of minutes, indicating that they

have a shared neural origin. During the task, we simultaneously

recorded neural population activity from visual area V4 and pre-

frontal cortex (PFC), two brain areas that have been implicated in

forming perceptual decisions. We identified a slow fluctuation

(termed the ‘‘slow drift’’) in V4 activity that covaried with the

slow changes in behavior. Surprisingly, we also found that PFC

neurons, despite their physical distance from V4, exhibited a

slow drift that was highly correlated with that of V4. We uncov-

ered evidence that this slow drift acts as an arousal or impulsivity

signal, which influences the final decision through a pathway in-

dependent of sensory evidence. In addition, we found evidence

that downstream areas remove or account for this slow drift to

prevent it from adversely affecting the sensory readout. This

may explain how perceptual decisions can be formed reliably

when sensory signals (e.g., V4 activity) drift so profoundly. Over-

all, this work identifies a slowly varying internal signal present in

both V4 and PFC (and likely throughout the cortex) and proposes

a role for this signal in the decision-making process.

RESULTS

We trained two adult, male rhesus monkeys (Macaca mulatta) to

perform an orientation-change detection task (Figure 1A). Re-

sults from a portion of data collected from this experiment

have been reported previously (Snyder et al., 2018). After an

initial flash of two Gabor stimuli, each succeeding flash had the

same probability (30% and 40% for monkeys 1 and 2, respec-

tively) that the orientation of one of the stimuli would change

(i.e., a flat hazard function). The animal was trained to detect a

change in the stimulus and saccade to it. A ‘‘hit’’ trial was one

in which the animal correctly made a saccade to the changed

stimulus and then received a reward. A ‘‘false alarm’’ trial was

one in which the animal incorrectly made a saccade to a stimulus

when no change occurred. To measure the animal’s ability to

detect a stimulus change, we used signal detection theory to

calculate sensitivity of detection d0 (Macmillan and Creelman,

2004; Luo andMaunsell, 2015). As expected, the animal’s sensi-

tivity increased as the change in orientation increased (Figure 1B,

‘‘cued stimulus changed’’). To probe the effects of spatial atten-

tion, we structured trials into alternating blocks such that for

each block a changed stimulus was 90% likely to occur at one

location (Figure 1A, ‘‘cued stimulus’’) and 10% likely to occur

at the other location (i.e., the ‘‘uncued stimulus’’). Animals were

more sensitive (based on d0) at detecting stimulus changes at

the cued location than changes that occurred at the uncued

location (Figure 1B, similar results for second monkey in Fig-

ure S1), suggesting that the animals deployed spatial attention

to the cued location.

Slow Fluctuations in Behavioral Variables Reveal the
Presence of a Shifting Internal State
Although task statistics remained constant throughout each

recording session (average session duration: 2.3 and 3.0 h for

monkeys 1 and 2, respectively), the animal’s internal state was

free to vary with the passage of time due to such factors as

satiety, fatigue, motivation, etc. Indeed, when we analyzed the

animal’s behavior across the entire session, we found fluctua-

tions in its behavior that were hidden from our previous analysis

(Figure 1B) for which we collapsed across trials for the purpose

of measuring the effect of spatial attention. The time course of

two commonly analyzed behavioral variables—hit rate and false

alarm rate—slowly fluctuated together over the entire session

(Figure 1C, example session, teal and purple lines). The difficulty

of the perceptual decisions, the 90% chance of stimulus

changes occurring at the cued location within a block, and the

uncertainty of when a change would occur yielded high false

alarm rates (~50% for this session and on average 30.2% and

40.5% for monkeys 1 and 2, respectively; see STAR Methods).

Over the course of the session, a change to a more impulsive

behavioral state would result in more correct choices—but also

more false alarms—on the difficult trials. Conversely, a more

hesitant approach would yield a lower false alarm rate but also

reduce the likelihood of correctly detecting difficult stimulus dis-

criminations. For all sessions, we found that hit rate and false

alarm rate covaried (Figure 1D, black dots), indicating a fluctua-

tion between a more impulsive and more hesitant state. These

two variables drifted together on long timescales (hit rate:

13:4±1:3 min and 15:9±2:2 min for monkeys 1 and 2, respec-

tively; false alarm rate: 14:0±1:3min and 14:5±1:8 min for mon-

keys 1 and 2, respectively; mean ±1 SEM over sessions; see

STAR Methods).

One possible explanation for these behavioral fluctuations

was that spatial attention was cued to each of the two stimuli

in blocks of trials (Figure 1C, green line, each block lasted, on

average, 20.4 and 23.7 min for monkeys 1 and 2, respe-

citvely), and the animal reacted to the switches between

blocks. This cueing occurred at the beginning of each block

(see STAR Methods) and resulted in robust attentional effects

in both behavior and neural activity (Snyder et al., 2018). While

the blocks of cued trials could in principle have explained the

slow fluctuations in the animal’s behavior that we report here,

we found this not to be the case (Figure 1C, example session,

teal and purple lines have little to no covariation with green
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line; Figure 1D, across all sessions, gray dots). We also found

that these behavioral shifts did not simply reflect the animal

becoming gradually fatigued over the course of the session

and ‘‘guessing’’ more at the end, as it was not the case that

hit rate and false alarm rate strictly increased during each ses-

sion (Figure S1). Instead, because task statistics remained

constant throughout the session, these behavioral shifts likely

reflected a slow change in the animal’s internal state from

minute to minute within the session. Such fluctuations could

lead the animal to change its behavior—at different times hav-

ing a higher or lower impetus to make a choice (or conversely,

a higher or lower resistance to initiating a movement), leading

to correlated fluctuations in hit rate and false alarm rate.

Next, we asked whether these slow fluctuations in behavior

were large relative to the prominent behavioral effect of spatial

attention that we observed during our task. The behavioral shifts

of spatial attention involved large changes in hit rate (0:35± 0:09

and 0:41±0:12 for monkeys 1 and 2, respectively; see STAR

Methods) but small changes in false alarm rate (0:05± 0:04

and 0:03±0:02) between trials in which the changed stimulus

occurred in the cued location versus the uncued location. In

contrast, the slow fluctuations in behavior had large changes in

both hit rate (0:32±0:12;0:34±0:10 for monkeys 1 and 2) and

false alarm rate (0:21±0:09 and 0:32±0:09). These results sug-

gest that the animals’ behavior slowly changed across the ses-

sion on the order of tens of minutes, at a level that was on par

with (but uncorrelated with) the behavioral effects we measured

due to spatial attention.

The Activity of V4 Neurons Slowly Drift Together
Wenext consideredwhether a neural signature of this fluctuating

internal state might be found in the activity of cortical neurons

(Figure 2A). We investigated two brain regions, visual area V4

and dorsolateral PFC. We selected these areas because past

work has suggested that perceptual decisions might be influ-

enced by noise in sensory neurons (Shadlen et al., 1996) and

by top-down control mechanisms (Cumming and Nienborg,

2016). In each animal, we implanted two 100-electrode ‘‘Utah’’

arrays in the same hemisphere to simultaneously record the ac-

tivity of populations of neurons in V4 and PFC. We began by

A B

DC

Figure 1. Behavior Slowly Fluctuates during an Experimental Session

(A) Orientation-change detection task with cued attention. On each stimulus flash, either of two oriented gratings could change orientation. The animal’s task was

to saccade to the stimulus location whose orientation changed (orange arrow). The animal was previously cued as to which of the two stimulus locations was

more likely to change its orientation (cued stimulus location is indicated by dashed circle, which was not shown to the animal).

(B) The animal’s sensitivity d0 increased with larger orientation changes of the cued stimulus (blue dots: gray line indicates fit with Weibull function). For trials in

which the uncued stimulus changed, the animal’s sensitivity was lower (Dq= 3�, black dot below blue dot, p< 0:002 for both monkeys, paired permutation test).

Dots indicate means over sessions, error bars indicate ± 1 SEM.

(C) A representative session in which the hit rate (teal line) and false alarm rate (purple line) slowly covaried over time (Pearson’s r=0:91, p< 0:002, permutation

test). For this session, hit rate (r= 0:10, p= 0:096) and false alarm rate (r= 0:23, p< 0:002) rates had little to no relationship with which stimulus location was cued

(top, green line).

(D) Correlations over time between hit rate, false alarm rate, and cued stimulus location (asterisks denote significance over chance levels, p< 0:05, permutation

test). Dots indicate medians over sessions, error bars indicate bootstrapped 90% confidence intervals.

See also Figure S1.
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asking whether V4 activity contained a neural signature of the

slow behavioral fluctuations (Figure 1C).

First, we considered the activity of individual neurons. We

found that some neurons increased their activity (Figure 2B,

‘‘neuron 1’’), some neurons decreased their activity (Figure 2B,

‘‘neuron 3’’), and other neurons did not exhibit drift in their ac-

tivity (Figure 2B, ‘‘neuron 2’’) during a typical session. We

ensured that this was not due to instability in neural record-

ings (see Figure 2B spike waveform insets, Figure S2, and

STAR Methods), or to small movements of the eyes (e.g., mi-

crosaccades) that shift the visual image on the retina (Fig-

ure S3). In addition, we confirmed that the basic properties

of the recorded V4 neurons (i.e., mean firing rates, Fano fac-

tors, and noise correlations) were consistent with previous

studies (Figure S4, as well as analysis published in Snyder

et al., 2018).

To quantify the coordinated drift in activity across the popula-

tion of simultaneously recorded neurons, we applied principal-

component analysis (PCA) to binned spike counts (after sub-

tracting each neuron’s mean response to the stimulus: see

STAR Methods) and found a dominant linear combination of

the neurons for which their activity drifted strongly. The weights

(also known as loadings) of this linear combination represent an

axis in the population activity space, which we define as the

‘‘slow drift axis.’’ We then projected the activity onto the slow

drift axis (Figure 2C, gray dots) to reveal a substantial fluctuation

in neural activity over the course of the 3 h experimental session

(Figure 2C, black line).We define this fluctuation as a ‘‘slow drift.’’

The time course of slow drift varied across sessions (Fig-

ure 2D), with a timescale of around 40 min (Figure S4,

32:8±3:1 and 43:5±2:7 min for monkeys 1 and 2, respectively;

see STAR Methods). The slow drift was different from the

A

B C D

Figure 2. Neural Activity Slowly Drifts throughout a Session

(A) We simultaneously recorded population activity from visual area V4, thought to transform stimulus input into sensory evidence, and from prefrontal cortex

(PFC), thought to be involved in cognitive control signals and decision making. We asked whether these brain areas exhibit a neural signature (orange) of the

observed slow fluctuations in behavior (Figure 1C).

(B) Time course of the activity of three neurons from a representative session. Each dot is the 400-ms-binned residual spike count (raw spike count minus mean

spike count averaged over stimulus repeats) for one stimulus flash. Dashed lines denote mean residual spike counts for the first 30 min. Insets: spike waveforms

corresponding to the three neurons. Each waveform is the mean spike waveform averaged across either the first hour of the session (lighter shade, ‘‘first hour’’) or

the third hour of the session (darker shade, ‘‘last hour’’). Lines are close to overlapping.

(C) Linear combination of the activity of the 48 simultaneously recorded neurons from the same session as in (B). Each gray dot is a linear combination (identified

using PCA; see STAR Methods) of the residual spike counts for one stimulus flash. These projections were then Gaussian smoothed to estimate the slow drift

(black line).

(D) Time courses of the slow drifts (computed in the same manner as in C) for all sessions for both monkeys.

See also Figure S4.
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average of activity taken across neurons (Figure S4), which has

been proposed as a way to estimate On/Off states and summa-

rize population activity using a single variable (Renart et al., 2010;

Harris and Thiele 2011; Okun et al., 2015; Engel et al., 2016; Bea-

man et al., 2017; but see Snyder et al., 2018). We analyzed the

weights of the linear combination (i.e., the slow drift axis) and

found that about 50% of neurons had activity that drifted

together in the same direction, about 25% drifted in the opposite

direction, and the remaining 25% had little to no slow drift (Fig-

ure S4). Thus, the slow drift would be difficult to detect using in-

dividual neurons recorded sequentially or the average of simulta-

neously recorded neurons because the slow drift is a

coordinated but diverse fluctuation across the population of

neurons.

The Slow Drift Covaries with Slow Fluctuations in
Behavior
We found that the slow drift is a prominent neural fluctuation with

a similar timescale (tens of minutes) as that of fluctuations in

behavior, as well as tightly coupled with both hit rate and false

alarm rate (Figure 3A). We sought to link our neural and behav-

ioral observations of slow drift more directly. We quantified this

relationship in two ways. First, within each session, we found

that fluctuations in the slow drift and multiple behavioral vari-

ables, including hit rate and false alarm rate, were correlated

over time within a session (Figure 3B; see also Figure S5 for indi-

vidual animals). That the slow drift was correlated with all five

behavioral variables tested suggested that the slow drift was

correlated with a behavioral pattern in which hit rate, false alarm

rate, and pupil diameter increase while trial duration and reaction

time decrease (or vice versa). Indeed, we found that the slow drift

was correlated with this pattern, which explained 60% of the

behavioral variance (Figure S5). This pattern of correlations

among behavioral variables was consistent with an underlying

shift between an impulsive behavioral state, associated with

making more saccades with short reaction times while the pupil

is dilated, and a hesitant behavioral state, in which there are less

saccades, longer reaction times, and a more constricted pupil.

Second, across sessions, we found that the magnitude of

firing rate changes in the slow drift (measured as the variance

of the slow drift; see STAR Methods) covaried with the magni-

tude of behavioral changes (Figure 3C; see Figure S5 for individ-

ual animals). Thus, on sessions where the slow drift substantially

fluctuated, there were also substantial behavioral changes.

A

B C

Figure 3. The Slow Drift of V4 Neural Activity Covaries with Slow Fluctuations in Behavior

(A) Two example sessions for monkey 1 (left) andmonkey 2 (right) in which hit rate, false alarm rate, and the slow drift covaried together (between hit rate and false

alarm rate: r= 0:63; 0:84 for monkeys 1 and 2; between slow drift and hit rate: r= 0:72;0:64; between slow drift and false alarm rate: r= 0:27;0:67).

(B) Within each session, the slow drift and behavioral variables were correlated over time (asterisks correspond to a significance of p< 0:002 over shuffling across

sessions, permutation test). Dots indicate medians over sessions, error bars indicate bootstrapped 90% confidence intervals.

(C) Across sessions, correlations between the magnitudes of fluctuations of the slow drift and behavioral variables. Slow drift magnitude was the within-session

variance over time of the slow drift. Behavioral variable magnitude was the within-session variance over time of that variable. All correlations were significant

(asterisks correspond to a significance of p< 0:05 over chance levels, permutation test). The magnitude of pupil diameter was not included because pupil

diameter measurements were not comparable across sessions (see STAR Methods).

See also Figure S5.
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Taking both findings together, the slow drift appears to reflect

the fluctuations of an underlying internal state.

The SlowDrift Is Unrelated to and Larger than theNeural
Effect of Spatial Attention
To evaluate the origin of this neural effect, we asked to what

extent the slow drift relates to another well-known modulation

of the internal state of the animal, spatial attention (Reynolds

and Heeger, 2009; Maunsell, 2015; Moore and Zirnsak, 2017),

whichwe cued to different locations in blocks of trials (Figure 4A).

We refer to trials for which the stimulus location was cued either

inside or outside the V4 receptive fields as ‘‘cue-in’’ or ‘‘cue-out’’

trials, respectively (Figure 4A, orange and green lines). Similar to

how the slow fluctuations in behavior were not correlated with

the cued stimulus location (Figures 1C and 1D), we found that

the slow drift in neural activity did not covary with the timing of

the cued blocks (e.g., Figure 4A, black lines versus orange and

green lines; mean jrj= 0:18;0:15 for monkeys 1 and 2, both no

greater than expected by chance, p= 0:71 and p= 0:56, one-

sided permutation test). Thus, the slow drift was not a neural

signature of spatial attention.

Instead, we used spatial attention to interpret the size of the

firing rate modulations corresponding to the slow drift. We

measured the magnitude of firing rate changes as the variance

of the slow drift over time (Figure 4A, spread of black lines,

s2slow drift) and compared it to the variance of changes in re-

sponses across cue-in and cue-out blocks (Figure 4B, spread

of orange and green lines, s2attn). Because the slow drift was con-

strained to be along one axis in firing rate space (i.e., the slow

drift axis), we also constrained the response changes due to

attention to be along an axis for which the responses most

differed between cue-in and cue-out blocks (i.e., the ‘‘attention

axis’’; see STAR Methods). For this example session, the size

of the slow drift was 5 times larger than the effect size of attention

(s2slow drift=s
2
attnz5). The ratio of the size of the slow drift divided

by the effect size of attention was greater than 1 for both mon-

keys (Figure 4C, median ratios: 1.8 and 6.6 for monkeys 1 and

2, respectively, p< 0:002, paired permutation test). These results

indicate that the slow drift is a prominent neural fluctuation that

leads to larger variation than that of the neural fluctuations due

to spatial attention.

Another important neural effect of attention is the decrease in

mean noise correlations of pairs of V4 neurons when spatial

attention is directed to their receptive field (Cohen andMaunsell,

2009; Mitchell et al., 2009). We confirmed this was the case for

the recorded V4 neurons in this experiment (Figure S4). Although

we found that the slow drift did not covary with spatial attention,

in any task the slow drift could affect measures of population ac-

tivity, including noise correlation (Cohen and Kohn, 2011) and the

outputs of dimensionality reduction (Cunningham and Yu, 2014).

This is because the presence of the slow drift may strengthen or

weaken the measured effects of cognitive signals that also

modulate neural activity, possibly on much smaller timescales.

For example, when studying attention modulation in V4 activity,

Rabinowitz et al. (2015) found that their model needed a term to

account for a ‘‘slow drift’’ in V4 activity, consistent with the slow

drift observed in our recorded V4 activity, that otherwise masked

the smaller modulations of attention. Thus, accounting for slow

drifts in population activity and behavior can be critical when

measuring other neural and cognitive effects.

V4 and PFC Neurons Share the Same Slow Drift
The covariation between the slow drift in V4 activity and behav-

ioral variables (Figure 3) suggests that the slow drift could play a

role in the decision-making process. However, it is unclear how

the slow drift propagates through the neural circuit to ultimately

influence the decision outcome. To better understand this, we

recorded neural activity in PFC, simultaneous with the V4

A B C

Figure 4. The Slow Drift in V4 Activity Is Larger than the Effect of Spatial Attention

(A) Neural responses (orange and green dots) along the slow drift axis were unrelated to how blocks of trials were cued (black lines versus orange and green lines,

jrj = 0:06) in an example session. Dot color indicates whether the cued stimulus location was within (‘‘cue-in,’’ orange) or outside (‘‘cue-out,’’ green) the receptive

fields of the V4 neurons. Black lines indicate the mean activity along the slow drift axis within each cued block. The magnitude of firing rate changes of the slow

drift s2slow drift was measured as the variance of the vertical levels of the black lines.

(B) For the same session as in (A), responses along an attention axis capturing the largest difference between mean spike counts during cue-in versus cue-out

trials. The effect of attention s2attn wasmeasured as the variance of themean value of responses averaged within each block, where the variance was taken across

blocks (i.e., the spread of the orange and green lines).

(C) Ratios s2slow drift=s
2
attn across sessions. Medians (‘‘med’’) are also shown.
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recordings (Figure 2A). PFC is a brain area relevant to integrating

sensory evidence and forming decisions (Curtis and D’Esposito,

2003; Mante et al., 2013; Raposo et al., 2014), and subregions of

PFC receive direct projections from V4 (8 m: Felleman and Van

Essen, 1991; Huerta et al., 1987; 9/46d: Markov et al., 2014).

One possibility is that PFC has no slow drift, suggesting that

the slow drift is a local signal within the neural circuitry for visual

processing. Another possibility is that PFC has a slow drift but

that this slow drift does not covary with the V4 slow drift, indi-

cating that multiple local signals co-exist within the brain. Finally,

it could be that PFC has a slow drift that covarieswith the V4 slow

drift, suggesting that the slow drift has a global presence in

the brain.

To test these possibilities, we applied the same analyses to

the PFC activity as we did to the V4 activity (i.e., PCA was

applied separately to V4 and PFC activity; see STAR

Methods). Visually, we found that PFC activity had a slow drift

that was remarkably similar to the V4 slow drift on a session-

by-session basis (Figure 5A, black and red lines). We quanti-

fied the relationship between the V4 and PFC slow drifts in

two ways. First, within each session, we found that the V4

slow drift strongly covaried with the PFC slow drift over time

(Figure 5B, orange histogram, median jrj = 0:96;0:93 for

monkeys 1 and 2, p< 0:002, permutation test). These correla-

tions were significantly greater than those expected from a

control in which PFC had a slow drift unrelated to the V4

slow drift (Figure 5B, gray histogram, median jrj = 0:68,

significantly less than the median of the real data, p< 0:002,

permutation test). We simulated these control slow drifts

by generating smooth, random time courses over time from

a Gaussian process with a timescale similar to that of

the slow drift (45 min; see Figure S4). We confirmed that

longer timescales also yielded a median correlation signifi-

cantly below that of the real data (1 h timescale, median

jrj = 0:81, p< 0:002, permutation test), indicating that the

observed correlations between V4 and PFC slow drifts were

not simply due to spurious correlations between smooth,

random signals.

Second, across sessions, we found that themagnitude of fluc-

tuations of the V4 slow drift correlated with that of the PFC slow

drift (Figure 5C, r= 0:68;0:60 for monkeys 1 and 2). Magnitude

was measured for each brain area separately as the variance

of the slow drift within a session (same metric as in Figure 3C).

Thus, when the V4 slow drift had large fluctuations, the PFC

slow drift also tended to have large fluctuations for the same ses-

sion. This finding that PFC had a slow drift that closely matched

that in V4 suggests that the slow drift has a global presence in

the brain.

A

B C

Figure 5. V4 and PFC Activity Share a Similar Slow Drift

(A) The slow drift of PFC neurons (red) and slow drift of V4 neurons (black) for the 6 most correlated and 6 least correlated sessions for each monkey.

(B) Within each session, the V4 and PFC slow drifts had a larger correlation over time than that for a control in which PFC activity followed a smooth random walk

(asterisk denotes p< 0:002, permutation test). Triangles indicate medians (‘‘med’’).

(C) Across sessions, the magnitude of fluctuations of the V4 slow drift was correlated with that of the PFC slow drift (r=0:60, p< 0:002, permutation test).

Magnitude was measured as the variance of the slow drift over time within a session. Each dot represents one session. The correlation was not solely due to the

outlying session (magnitude of V4 slow drift z0:2), as its removal still led to a significant correlation (r= 0:43, p< 0:005, permutation test).
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Figure 6. Two Models of How the Slow Drift Could Influence the Decision-Making Process

(A) The sensory biasmodel. The slow drift biases sensory evidence (e.g., V4 activity), and this biased evidence propagates through the decision pathway (possibly

throughmultiple stages of processing) to reach a downstream area (e.g., PFC). The slow drift could arise from feedforward sensory noise (e.g., slow fluctuations in

LGN or V1) or from top-down feedback (e.g., a slow modulation originating from PFC) (right inset).

(B) Simulations of the sensory bias model, for which hit rate, false alarm rate, and the slow drift covary over time.

(C) The covariation of the simulated variables in (B) could also be observed in real data (an example session shown). Parameters of the model were not fit to data,

and thus, we do not expect an exact match of lines between panels.

(D) Under the sensory bias model, false alarms occur in two ways. First, sensory noise (e.g., feedforward noise from retina or LGN) may corrupt stimulus input

(e.g., sinusoidal gratings) and push sensory evidence (e.g., V4 activity, black lines) to pass a decision threshold (dashed line), leading to a perceived change in

stimulus and a false alarm (leftmost red FA). Second, the slow drift may bias sensory evidence to pass the decision threshold, also leading to a false alarm

(rightmost red FA).

(E) For simulations of the sensory bias model, we measured the extent to which simulated V4 activity (with or without the slow drift) predicted false alarms (see

STAR Methods). Decoding accuracy decreased when the slow drift was subtracted from the simulated V4 activity (red dot below black dot, p< 0:002, paired

permutation test). Dots indicate means, error bars indicate ± 1 SD over 50 runs.

(legend continued on next page)
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The Influence of the Slow Drift on the Decision-Making
Process
In previous sections, we identified a slow drift in V4 and PFC ac-

tivity that was related to slow behavioral fluctuations. These re-

sults shed light on the possible roles the slow drift can play in

the neural circuit governing decision making. One possibility is

that the slow drift reflects a signal that biases sensory evidence

to be closer to or farther from a decision threshold. For example,

an increase in the slow drift could bias evidence closer to this

threshold, leading to an increase in both hit rate and false alarm

rate (i.e., a change in criterion). This is consistent with our obser-

vations that hit rate, false alarm rate, and the slow drift covaried

together (Figure 3B). This possibility can also explain the pres-

ence of the slow drift in both V4 and PFC: the slow drift biases

sensory evidence (e.g., V4 activity), which is then propagated

through the decision circuit (which may include multiple stages

of processing) and eventually is read out by a downstream

area that helps to form the decision (e.g., PFC) (Figure 6A). The

slow drift could arise in sensory areas from bottom-up feedfor-

ward sensory noise (Figure 6A, right inset, 1, from the sensory

periphery) or from top-down feedback signals (Figure 6A, right

inset, 2, from downstream areas), both of which are thought to

induce choice probabilities (Cumming and Nienborg, 2016).

To test this sensory bias hypothesis, we simulated a simple

decision-making model in which V4 activity was thresholded to

determine the final decision (Figure S6; see STAR Methods).

We biased the simulated V4 activity to be closer to or farther

from a decision threshold by adding a slow drift that varied

across simulated trials. We confirmed that the outputs of the

sensory bias model (Figure 6B) were consistent with our real

data (Figure 6C, representative session) in that hit rate, false

alarm rate, and slow drift covaried together. Next, we developed

an analysis to probe how errors occur on a trial-by-trial basis.

Under the sensory bias model, false alarms occur because

both sensory noise and the slow drift can push sensory evidence

(i.e., V4 activity) past a decision threshold (Figure 6D). Thus, sub-

tracting the slow drift from V4 activity removes an important

signal on which the final decision depends. Indeed, in our simu-

lations, we found that subtracting the slow drift from V4 activity

led to a decrease in how well V4 activity predicted the occur-

rence of false alarms within a trial (Figure 6E, red dot below black

dot).

To see whether this effect held for real data, we performed the

following analysis. We first computed how well V4 activity pre-

dicted the occurrence of a false alarm versus a correctly rejected

flash within a trial. We considered responses during a 175 ms

time window between stimulus onset and saccade onset (see

STAR Methods). We found that these responses predicted false

alarms above chance (Figure 6F, black dots above dashed line,

p< 0:05 for both monkeys, one-sample t test). Next, we sub-

tracted the estimate of the slow drift from V4 activity, re-trained

the decoder, and computed the decoding accuracy. We found

that subtracting the slow drift significantly increased decoding

accuracy (Figure 6F, red dots above black dots). This result did

not support the sensory bias model (compare Figure 6E to 6F).

That the slow drift is a neural fluctuation that does not bias sen-

sory evidence is not completely surprising. Previous work has re-

ported neural fluctuations in sensory cortical neurons that are

seemingly unrelated to sensory encoding but rather related to

factors such as locomotion (Erisken et al., 2014), arousal (McGin-

ley et al., 2015b; Stringer et al., 2019), eye movement (Steinmetz

and Moore, 2014), fidgeting (Musall et al., 2019), and thirst (Allen

et al., 2019). However, it is unclear how a downstream area could

reliably decipher sensory evidence in the presence of constantly

drifting neural activity. One intriguing possibility is that the down-

stream areas that read out activity from sensory areas may

somehow account for these fluctuations.

Inspired by this possibility, we hypothesized that the slow drift

reflects a separate decision process, independent of sensory ev-

idence, that leads the animal to be more or less likely to make a

saccade (i.e., an increase or decrease in both hit rate and false

alarm rate). In previous work, similar behavioral processes

have been described as urgency in a drift diffusion model (Cisek

et al., 2009; Hanks et al., 2014), exploration in a multisensory

discrimination task (Pisupati et al., 2019), and impulsivity in a

response inhibition framework (Bari and Robbins, 2013). For

our purposes, we term this process ‘‘impulsivity,’’ which reflects

the animal’s tendency to make a decision without incorporating

sensory evidence (Figure 6G). Under this model, the slow drift

acts as an impulsivity signal, increasing or decreasing the likeli-

hood of making a saccade independent of sensory evidence. It

does this by directly influencing downstream areas that form

the decision, overriding the sensory evidence. The slow drift

might be attributed to a brain-wide release of neuromodulators

(Figure 6G, right inset), consistent with our findings that V4 and

PFC slowly drift together (Figure 5). This neuromodulator could

arise from brainstem nuclei and influence both sensory process-

ing areas as well as the downstream areas in which the final de-

cision is formed. To prevent the slow drift from interfering with

the sensory readout process (i.e., what occurs in the sensory

bias model), the impulsivity model removes the slow drift from

its perceptual readout (Figure 6G, red X). The brain may perform

(F) For the real data, subtracting the slow drift from V4 activity increased decoding performance (red dots above black dots, asterisks correspond to p< 0:05,

paired permutation test). Dots indicate means over sessions, error bars indicate ±1 SEM.

(G) The impulsivity model. The slow drift directly influences downstream areas to increase or decrease the likelihood of an impulsive decision (i.e., a saccade

made independently from sensory evidence). The slow drift is present in sensory evidence (e.g., V4 activity), and a downstream area along the decision pathway

removes the slow drift from its readout of upstream activity (red X). The slow drift could arise from a brain-wide release of neuromodulators (right inset).

(H) The impulsivity model reproduced the finding in real data that hit rate, false alarm rate, and the slow drift covary over time (cf. C).

(I) Under the impulsivity model, false alarms occur in two ways. First, like in the sensory bias model, sensory noise may lead to a false alarm (leftmost red FA).

Second, the slow drift may increase the likelihood of an impulsive decision (orange die), leading to a false alarm (rightmost red FA).

(J) Under the impulsivity model, decoding accuracy of predicting false alarms from V4 activity increased when we subtracted the slow drift from simulated V4

activity (red dot above black dot, p< 0:002, paired permutation test), consistent with the real data (cf. F). Dots indicate means, error bars indicate ± 1 SD over

50 runs.

See also Figure S6.
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this removal by having a downstream area access a copy of the

slow drift via the same neuromodulator that modulates V4 and

subtract this modulation from its sensory readout. For example,

if the decision involves a readout of PFC activity, the slow drift

(which is present in PFC, Figure 5) can be subtracted out during

this readout (e.g., via inhibitory connections).

We simulated the impulsivity model (Figure S6; see STAR

Methods) and found that the slow drift produced by the model

covaried with hit rate and false alarm rate (Figure 6H), consistent

with the real data (Figure 6C). Under this model, some false

alarms occur due to sensory noise (Figure 6I, perceptual deci-

sion, left FA) while others occur due to impulsivity (Figure 6I,

impulsive decision, right FA). We next askedwhether subtracting

the slow drift from V4 activity increased decoding performance,

as observed in the real data (Figure 6F). In this model, the slow

drift obscures the sensory evidence in V4 activity (i.e., stimulus

input + sensory noise), upon which the decision to saccade or

not is based (i.e., whether the sensory evidence crosses a

threshold). This is different from the sensory bias model, for

which the sensory evidence comprises stimulus input + sensory

noise + the slow drift. It then follows that for the impulsivity

model, subtracting the slow drift from V4 activity would improve

our predictions of false alarms that arise from perceptual deci-

sions because we remove a ‘‘nuisance’’ variable that otherwise

obscured the sensory evidence. Indeed, we found this to be

the case (Figure 6J, red dot higher than black dot). Thus, the

impulsivity model is more consistent with the real data than the

sensory bias model (cf. Figures 6J and 6F).

There are two important components of the impulsivity model,

and, without both, the model would fail to be consistent with

real data. First, without the slow drift acting as an impulsivity

signal, the model would fail to have fluctuations in its behavioral

output (i.e., teal and purple lines would be flat in Figure 6H). Sec-

ond, without the removal of the slow drift from readouts of V4 ac-

tivity, the model would fail to show an increase in decoding accu-

racy when the slow drift is subtracted from V4 activity (i.e., red dot

would not be above black dot in Figure 6J). Thus, both of these

components allow the impulsivity model to capture aspects of

the real data that the sensory bias model cannot. In the sensory

bias model, by contrast, because the slow drift is a component

of the sensory evidence that influences the decision-making pro-

cess, subtraction of the slow drift reduces the ability to predict

behavior.

Why Is It Helpful to Remove Slow Drift from Sensory
Activity?
Our results are more consistent with the impulsivity model in

which a downstream area likely removes the slow drift from its

readout of V4 activity. Why would the brain employ such a mech-

anism? One reason is that if not removed, the slow drift could

corrupt sensory information encoded byV4 activity and negatively

impact perception and non-impulsive decisions. Consider the

following illustrative example. The responses of two V4 neurons

to different natural images encode information about these im-

ages along a ‘‘stimulus-encoding’’ axis (Figure 7A, left, dashed

black line). If the slow drift lies along an axis that is not aligned

with the stimulus-encoding axis (Figure 7A, middle, dashed black

and purple lines are not aligned), the response encoding remains

reliable along the stimulus-encoding axis. However, if the slow

drift lies along the stimulus-encoding axis (Figure 7A, right, dashed

black and purple lines are aligned), the response encoding would

be corrupted because the slow drift perturbs the responses over

time independent of which stimulus is shown. Although we

considered only one stimulus-encoding axis for this example, a

population of neurons likely uses multiple stimulus-encoding

axes, each encoding different properties of the natural images.

Given recent theoretical studies that predict that most neural

fluctuations do not corrupt stimulus encoding (Moreno-Bote

et al., 2014; Kanitscheider et al., 2015; Kohn et al., 2016) and

experimental studies that provide evidence for this prediction

(Stringer et al., 2019; Rumyantsev et al., 2020), we predicted

that the slow drift would not lie along any of the stimulus-encod-

ing axes. We tested this hypothesis in a separate set of experi-

ments in which monkeys performed a fixation task while viewing

many natural images (see STAR Methods). We applied PCA to

the trial-averaged responses to identify axes along which they

varied the most (Cowley et al., 2016; Stringer et al., 2019) and

defined these axes as the ‘‘stimulus-encoding axes.’’ The re-

sponses along the top two stimulus-encoding axes appeared

to encode complex features of the images, as nearby responses

corresponded to similar high-level features (Figure 7B, images of

blue backgrounds, eyes, cardinals, dogs, arranged fruits, etc.).

Next, we asked whether V4 activity during this fixation task

contained a slow drift as in the change detection task (cf. Fig-

ure 2). Using the same approach to identify the slow drift as

before, we found a slow drift in the V4 responses (Figure 7C).

This suggests that the presence of the slow drift was not depen-

dent on the type of task (change detection versus active fixation)

or stimulus set (sinusoidal gratings versus natural images) but

rather occurs across multiple contexts.

We then testedwhether the slow drift axis was aligned with the

top stimulus-encoding axes. We computed the fraction of slow

drift variance (i.e., variance of the slow drift across time within

a session) captured by each of the top stimulus-encoding axes

(Figure 7D, orange) and compared that to a chance level for

which the slow drift lies along a random axis (Figure 7D, gray).

We found that the total fraction of slow drift variance captured

by the top 12 stimulus-encoding axes was significantly greater

than the fraction expected if the slow drift lay along a random

axis (Figure 7E; see Figure S7 for individual sessions). We also

performed this same analysis on neural activity from the orienta-

tions presented in the final flash of each trial during the change

detection task (i.e., 16 different grating orientations) and found

in these data that the slow drift axis was also aligned to the top

stimulus-encoding axes (Figure S7).

These results indicate that a slow drift is present in V4 activity

across multiple experimental contexts and lies along axes that

contain stimulus information likely used by downstream areas.

If not removed, the slow drift could corrupt this stimulus informa-

tion (Figure 7A, right, unreliable encoding). This supports the

notion that downstream areas account for the slow drift and re-

move it from their readouts of V4 activity in order to preserve reli-

able encoding. Thus, these results are consistent with the impul-

sivity model, of which an important component is this removal of

the slowdrift. Indeed, removing someof the neural fluctuations in

readouts of visual cortical activity is likely one of themechanisms
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by which the brain maintains stable and robust representation of

the visual environment.

DISCUSSION

While monkeys perform perceptual decisions, there are slow

changes in their behavior over the course of tens of minutes un-

related to task conditions, reflecting a fluctuating internal state.

We discovered a neural signature of this internal state in the

form of a slow drift in neural activity that covaried over time

with the slow fluctuations of behavior. We found that the slow

drift is a brain-wide signal present in both V4 and PFC.We further

asked what role the slow drift plays in the decision-making pro-

cess and found that our data were consistent with a model in

A C

D

E

B

Figure 7. The Slow Drift Axis Is Aligned to Stimulus-Encoding Axes

(A) Illustration of how the slow drift may influence the stimulus encoding of two V4 neurons.Without slow drift (left), a downstream areamay read out the responses

along a stimulus-encoding axis (dashed black line) and faithfully recover stimulus information (e.g., fruit, eye, bird). If the slow drift axis (middle, dashed purple line)

is not aligned to the stimulus-encoding axis, the encoding remains reliable. If the slow drift axis is aligned to the stimulus-encoding axis (right), the encoding is

corrupted by the slow drift and is unreliable because the slow drift displaces responses over time, independent of which stimulus is shown.

(B) Repeat-averaged V4 responses to 2,000 natural images (gray dots) along the first two stimulus-encoding axes (identified by applying PCA to the responses of

129 neurons for this session). Selected images were overlaid on top of their corresponding responses, and colored outlines denote similar images that resulted in

similar responses.

(C) Linear combination of the activity of the 129 simultaneously recorded neurons from the same session as in (B). Same conventions as in Figure 2C. Each gray

dot corresponds to the residual spike counts (raw spike counts minus repeat-averaged responses) binned over each trial and projected onto the slow drift axis.

These projections are then Gaussian smoothed (black line) to identify the slow drift.

(D) The fraction of slow drift variance captured by each stimulus-encoding axis (orange) for the same session as in (B) and (C). A fraction closer to 1 indicates that

the stimulus-encoding and slow drift axis are more aligned. The top two stimulus-encoding axes (k = 1;2) correspond to the two axes in (B). The top 12 stimulus-

encoding axes captured 77%of the slow drift variance, significantly higher than if the slow drift lay along a randomly chosen axis (gray, captured on average 9%of

the slow drift variance, p< 0:002, proportion of 500 runs whose fraction was greater than that of the slow drift). The small fraction observed for the randomly

chosen axes stems from the fact that a random axis is unlikely to align with 12 other axes in a high-dimensional space (where the dimensionality is equal to the

number of neurons, 129 in this case).

(E) Summary of results (five sessions from two monkeys, 75 to 129 neurons for each session). The fraction of slow drift variance captured by the top 12 stimulus-

encoding axes (green dots) was significantly greater for each session than if the slow drift lay along a random axis (p< 0:002, proportion of 500 runswhose fraction

was greater than that of the slow drift, gray distribution corresponds to 500 runs for session with smallest fraction, distributions for other sessions were similar).

See also Figure S7.
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which the slow drift is removed from readouts of sensory evi-

dence but still influences the ultimate decision as an impulsivity

signal. Our work thus reveals that much of the apparent ‘‘noise’’

in the responses of cortical neurons is in fact a neural signature of

a fluctuating cognitive factor, evident only when considering the

temporal sequence of trials within each session.

Many studies have reported large, ongoing fluctuations in neu-

ral activity that are independent of sensory stimulation (Arieli

et al., 1996; Harris and Thiele, 2011; McGinley et al., 2015b;

Kohn et al., 2016; Engel et al., 2016; Muller et al., 2018). These

fluctuations evolve on different timescales, from hundreds ofmil-

liseconds (Arieli et al., 1996; Okun et al., 2015; Vinck et al., 2015;

Rabinowitz et al., 2015; Beaman et al., 2017; Wasmuht et al.,

2019) to seconds (Reimer et al., 2014; Lin et al., 2015; Stringer

et al., 2019) to minutes or longer (Aston-Jones and Cohen,

2005; McGinley et al., 2015a; Okun et al., 2019; Milton et al.,

2020; Hennig et al., 2020). Studies have found that these fluctu-

ations correlate with experimental and behavioral variables,

including pupil diameter (Nassar et al., 2012; Vinck et al., 2015;

McGinley et al., 2015a; Joshi et al., 2016; Ebitz and Moore,

2017; Gutnisky et al., 2017a; Mathôt, 2018; Okun et al., 2019;

Stringer et al., 2019; Hennig et al., 2020), eye movements (Leo-

pold and Logothetis, 1998; Anderson et al., 2011; Steinmetz

andMoore, 2014; Lowet et al., 2018; Saber et al., 2015), locomo-

tion (Erisken et al., 2014; Reimer et al., 2016; Leinweber et al.,

2017), wakefulness (Reimer et al., 2014; McGinley et al.,

2015b; Milton et al., 2020), attention (Rabinowitz et al., 2015;

Snyder et al., 2016; Engel et al., 2016; Moore and Zirnsak,

2017; Huang et al., 2019), task difficulty (Ruff and Cohen,

2014b), and learning (Chaisanguanthum et al., 2014; Ni et al.,

2018). In addition, these fluctuations may have a computational

purpose, such as changing the structure of noise correlations to

improve the fidelity of stimulus encoding (Cohen and Maunsell,

2009; Mitchell et al., 2009; Ruff and Cohen, 2014a; McGinley

et al., 2015b; Engel et al., 2016; Beaman et al., 2017; Gutnisky

et al., 2017a, 2017b; Ni et al., 2018; Rule et al., 2019), passing in-

formation from one brain area to another (Ruff and Cohen, 2016,

2019; Snyder and Smith, 2018; Semedo et al., 2019; Shahidi

et al., 2019; Kohn et al., 2020), or integrating sensory evidence

with feedback from higher cortical areas (Nienborg and Cum-

ming, 2009; Zhang et al., 2014; Bondy et al., 2018; Stringer

et al., 2019). For example, On states of V4 activity, during which

the firing rates of many V4 neurons are elevated, have higher

behavioral performance than Off states (Engel et al., 2016). It

could be the case that the slow drift and the slow fluctuations

in behavior reported here arise from long sequences of either

On states and Off states, but our analyses suggest that this is

not the case (Figure S4). In addition, the slow drift does not

appear to be related to changes in synchronized/desynchron-

ized states in V4 activity, as these states were found not to drift

over trials or correlate with pupil diameter (Beaman et al., 2017).

Instead of improving the fidelity of local neural computations, it

appears the slow drift operates on a timescale detrimental for

processing stimuli that change rapidly.

It is unclear whether every fluctuation is useful to downstream

processing, and it stands to reason that the brain might have

developed mechanisms to deal with such internal noise. One

possible mechanism for noise removal is the pooling of neurons

that encode redundant information by averaging their activity in

order to reduce trial-to-trial variability (Zohary et al., 1994; Shad-

len and Newsome, 1998). A second related mechanism is that a

downstream readout may be configured to ignore much of the

trial-to-trial variability of neural activity (Averbeck et al., 2006;

Moreno-Bote et al., 2014; Kohn et al., 2016). Such a mechanism

might restrict the noise to be along dimensions in population ac-

tivity space not read out by downstream regions. This mecha-

nism has been proposed to separate neural signals in the visual

cortex (Ruff and Cohen, 2019; Semedo et al., 2019; Stringer

et al., 2019; Rumyantsev et al., 2020; Zhao et al., 2020), motor

system (Kaufman et al., 2014; Elsayed et al., 2016; Stavisky

et al., 2017; Hennig et al., 2018; Perich et al., 2018), and oculo-

motor system (Khanna et al., 2019b), as well as a way to perform

economic choice evaluation (Yoo and Hayden, 2018). Our obser-

vation that the slow drift aligns well with stimulus-encoding di-

mensions suggests that this mechanism might not be able to

eliminate the ‘‘noisy’’ fluctuations of the slow drift. Our work sug-

gests yet a third type of noise removal, whereby downstream

areas remove noisy neural fluctuations from their readouts.

This removal could be carried out by a downstream area (e.g.,

PFC) accessing a separate copy of the slow drift and either sub-

tracting out this copy via inhibition (Wilson et al., 2012) or dividing

out this copy via normalization (Carandini and Heeger, 2011).

This copy may be accessed through the influence of a neuromo-

dulator or by a downstream area keeping a running estimate of

the slow drift in working memory (Cohen et al., 1997). Our work

points to potential mechanisms to remove noise as an important

area of focus in future studies on the impact of neural variability

on perception and behavior.

Our findings raise an interesting conundrum: why does the

brain modulate visual cortical activity (i.e., the slow drift) and

then remove this signal downstream rather than have no modu-

lation of visual cortical activity at all? One possible explanation

for the existence of the slow drift and its internal removal is

that through evolution the underlying neural mechanisms gov-

erning perception evolved in a coordinated manner with the

mechanisms that govern the animal’s internal state in order to

achieve high fidelity of stimulus readout while allowing for

brain-wide releases of neuromodulators (Rial et al., 2010). The

slow drift may also be closely connected to the global fluctua-

tions observed in sleep (Steriade et al., 2001; McGinley et al.,

2015b). For example, the slow drift may represent a fluctuating

state between high and low levels of alertness, with correspond-

ing differences in neuromodulation.

The observed correlation between hit rate and false alarm rate

(Figure 1D) implies that shifts in criterion occurred (i.e., shifts of

the decision threshold in signal detection theory). Previous

work has shown that activity in PFC (Luo and Maunsell, 2018),

but not V4 (Luo and Maunsell, 2015), is associated with shifts

in criterion. Here, we found that activity in V4 and PFC was

related to criterion (i.e., the slow drift covaried with both hit

rate and false alarm rate). Although on the surface these results

might appear to be contradictory, they are not. Instead, this dif-

ference can be attributed to the fact that Luo and Maunsell spe-

cifically measured a spatially selective criterion signal, defined

by their task structure, whereas we measured a global criterion

shift independent of task structure. In particular, our findings
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suggest that a shift in criterion is not necessarily due to a bias in

sensory evidence (i.e., a change in decision threshold) but

instead can be explained by separate decision processes unre-

lated to sensory evidence, such as impulsivity. That V4may have

multiple signals that co-exist and influence behavior differently is

not unexpected. Indeed, in addition to local criterion and impul-

sivity, neural fluctuations in V4 relate to reward expectation (Bar-

uni et al., 2015), attentional effort (Ghosh and Maunsell, 2019),

eye movements (Anderson et al., 2011; Steinmetz and Moore,

2014; Leopold and Logothetis, 1998; Lowet et al., 2018), and

task difficulty (Ruff and Cohen, 2014b), suggesting that V4 is

part of a flexible, multifaceted circuit.

In this work, the slow drift covaried with hit rate, false alarm

rate, pupil diameter, and reaction time. Another important

behavioral variable is the rate of small eye movements, or micro-

saccades (Martinez-Conde et al., 2004; Hafed et al., 2011).

Because microsaccades shift the visual stimulus relative to the

receptive field of a visual cortical neuron, microsaccades can

modulate the firing rates of visual cortical neurons (Leopold

and Logothetis, 1998; Bosman et al., 2009; Anderson et al.,

2011). Furthermore, the responses of V4 neurons might directly

be influenced by the saccade plan through corollary discharge

(Crapse and Sommer, 2008; Steinmetz and Moore, 2014; Lowet

et al., 2018).We ruled out these possible causes for the observed

slow drift in neural activity in control analyses, in which we still

observed the presence of the slow drift both in the absence of vi-

sual stimuli and when the eyes remained extraordinarily still (Fig-

ure S3). This is not to say that the slow drift is independent of mi-

crosaccade rate. Indeed, as an impulsivity signal, slow drift may

lead to changes in the likelihood of making such small eye move-

ments (e.g., an animal maymakemore microsaccades during an

impulsive state than during a hesitant state).

What is the source of the slow drift? Given that the slow drift is

a brain-wide signal that covaries with pupil diameter (Figure 3B),

it is conceivable that the slow drift arises from the release of neu-

romodulators throughout the brain. One candidate neuromodu-

lator is norepinephrine, which is distributed by the locus coeru-

leus (LC) to many different brain areas on a similar timescale

as that of the slow drift (Aston-Jones and Cohen, 2005;McGinley

et al., 2015b; Joshi et al., 2016). It has also been proposed that

the LC modulates arousal, as the activity of LC neurons has

been linked to behavioral variables that reflect arousal, such as

pupil diameter (McGinley et al., 2015a; Joshi et al., 2016; Liu

et al., 2017) and task performance (Aston-Jones and Cohen,

2005; Eldar et al., 2013). Another candidate neuromodulator is

acetylcholine, which is released by the basal forebrain and has

been shown to relate to pupil diameter and locomotion (McCor-

mick, 1992; Everitt and Robbins, 1997; McGinley et al., 2015b;

Y€uzgeç et al., 2018). Further experiments that include electro-

physiological recordings from relevant nuclei and experimental

manipulation of the levels of different neuromodulators are

needed to identify the source of the slow drift.

The decision pathway that transforms the sensory evidence

arriving at the retina to a behavioral output of oculomotor neu-

rons likely involvesmultiple stages of processing across the hier-

archy of the visual cortex. If the slow drift arises from the brain-

wide release of neuromodulator, then it seems likely the stages

of visual cortical processing most involved in discriminating the

features of visual stimuli (e.g., V1, V4, IT) are all influenced by

this neuromodulator. Given that IT reads out V4 activity (Unger-

leider et al., 2008), does IT also inherit the slow drift from its

readout of V4? If so, this could potentially double the size of

the slow drift at each stage of the hierarchy (i.e., receiving two

sources of slow drift: from its input from an upstream area and

from the brain-wide release of neuromodulator). This might

lead us to expect the size of the slow drift to be larger in down-

stream areas, consistent with findings that the strength of gain

modulations increases along the visual cortical pathway (Goris

et al., 2014). Another possibility is that each stage of processing

performs a removal of the slow drift from its input (i.e., its readout

of upstream activity) via local operations including normalization

(Carandini and Heeger, 2011) or subtraction via inhibitory con-

nections (Wilson et al., 2012). If so, the size of the slow drift would

remain essentially constant across different stages of the hierar-

chy. Future work is needed to tease apart these possibilities.

As studies continue to investigate richer, more naturalistic

behavior and the underlying cognitive influences, there has

been an increasing use of terms such as arousal, motivation,

effort, urgency, impulsivity, etc. It is often unclear which label

to place on a particular observed change in behavior and/or neu-

ral activity (Calhoun et al., 2019). Regardless of the label applied

to our data, the slow drift we identified represents a substantial

change in neural activity associated with profound fluctuations

in behavior during perceptual decisions. This signal was most

evident when considering how neurons change their activity

together, accounted for a large fraction of the apparent noise

in neural activity from trial to trial, and could be found only

when we considered the time ordering of trials within a session.

Our observation that slow drift is a widespread signal in cortex

means that recognizing and accounting for it may be critical in

any study that attempts to link cortical activity to behavior.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Electrophysiology

B Orientation-change detection task

B Quantifying the slow fluctuations in behavior

B Estimating slow drift in neural activity

B Aligning the V4 slow drift across sessions

B Controlling for neural recording instabilities

B Measuring behavioral variables and relating them to

the slow drift

B Measuring whether neural responses vary more

strongly with the slow drift versus attention

B Comparing the slow drift between brain areas V4

and PFC

ll
Article

Neuron 108, 1–17, November 11, 2020 13

Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021



B Models of perceptual decision-making

B Decoding V4 responses to predict the occurrence of

false alarms

B Determining whether the slow drift has the potential to

corrupt stimulus encoding

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

neuron.2020.07.021.

ACKNOWLEDGMENTS

The authors thank Samantha Schmitt for assistance with surgery and data

collection. Some elements of the graphical abstract were created with Bio-

Render.com, and Figures 2 and 6 in the manuscript contain elements created

with the Scalable Brain Atlas (Bakker et al., 2015). B.R.C. was supported by the

C.V. Starr Foundation Fellowship. A.C.S. was supported by NIH R00

EY025768 and a NARSAD Young Investigator Award from the Brain and

Behavior Research Foundation. K.A. was supported by NSF Graduate Fellow-

ship Grant 1747452. R.C.W. was supported by a Richard KingMellon Founda-

tion Presidential Fellowship in the Life Sciences. B.M.Y. and M.A.S. were sup-

ported by NIH R01 MH118929 and R01 EB026953 and NSF NCS 1734916/

1954107. B.M.Y. was also supported by NSF NCS BCS1533672, NIH R01

HD071686, NIH CRCNS R01 NS105318, and Simons Foundation 543065.

M.A.S. was also supported by NIH R01 EY022928 and P30 EY008098.

AUTHOR CONTRIBUTIONS

Conceptualization, B.R.C., B.M.Y., and M.A.S.; Methodology, B.R.C., B.M.Y.,

and M.A.S.; Software, B.R.C., A.C.S., and R.C.W.; Validation, B.R.C., B.M.Y.,

and M.A.S.; Formal Analysis, B.R.C., B.M.Y., and M.A.S.; Investigation,

B.R.C., A.C.S., K.A., R.C.W.; Writing – Original Draft, B.R.C.; Writing – Review

& Editing, B.R.C., A.C.S., K.A., R.C.W., B.M.Y., and M.A.S.; Visualization,

B.R.C., B.M.Y., and M.A.S.; Supervision, B.M.Y. and M.A.S.; Resources,

B.M.Y. and M.A.S.; Funding Acquisition, B.M.Y. and M.A.S.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 17, 2020

Revised: June 15, 2020

Accepted: July 17, 2020

Published: August 17, 2020

SUPPORTING CITATIONS

The following references appear in the Supplemental Information: Kohn, 2007.

REFERENCES

Abrahamyan, A., Silva, L.L., Dakin, S.C., Carandini, M., and Gardner, J.L.

(2016). Adaptable history biases in human perceptual decisions. Proc. Natl.

Acad. Sci. USA 113, E3548–E3557.

Allen, W.E., Chen, M.Z., Pichamoorthy, N., Tien, R.H., Pachitariu, M., Luo, L.,

and Deisseroth, K. (2019). Thirst regulates motivated behavior through modu-

lation of brainwide neural population dynamics. Science 364, 253–253.

Anderson, E.B., Mitchell, J.F., and Reynolds, J.H. (2011). Attentional modula-

tion of firing rate varies with burstiness across putative pyramidal neurons in

macaque visual area V4. J. Neurosci. 31, 10983–10992.

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics of ongoing

activity: explanation of the large variability in evoked cortical responses.

Science 273, 1868–1871.

Aston-Jones, G., and Cohen, J.D. (2005). An integrative theory of locus coeru-

leus-norepinephrine function: adaptive gain and optimal performance. Annu.

Rev. Neurosci. 28, 403–450.

Averbeck, B.B., Latham, P.E., and Pouget, A. (2006). Neural correlations, pop-

ulation coding and computation. Nat. Rev. Neurosci. 7, 358–366.

Bakker, R., Tiesinga, P., and Kötter, R. (2015). The scalable brain atlas: instant

web-based access to public brain atlases and related content.

Neuroinformatics 13, 353–366.

Bari, A., and Robbins, T.W. (2013). Inhibition and impulsivity: behavioral and

neural basis of response control. Prog. Neurobiol. 108, 44–79.

Baruni, J.K., Lau, B., and Salzman, C.D. (2015). Reward expectation differen-

tially modulates attentional behavior and activity in visual area V4. Nat.

Neurosci. 18, 1656–1663.

Beaman, C.B., Eagleman, S.L., and Dragoi, V. (2017). Sensory coding accu-

racy and perceptual performance are improved during the desynchronized

cortical state. Nat. Commun. 8, 1308.

Bondy, A.G., Haefner, R.M., and Cumming, B.G. (2018). Feedback determines

the structure of correlated variability in primary visual cortex. Nat. Neurosci.

21, 598–606.

Bosman, C.A.,Womelsdorf, T., Desimone, R., and Fries, P. (2009). Amicrosac-

cadic rhythm modulates gamma-band synchronization and behavior.

J. Neurosci. 29, 9471–9480.

Brody, C.D., and Hanks, T.D. (2016). Neural underpinnings of the evidence

accumulator. Curr. Opin. Neurobiol. 37, 149–157.

Brunton, B.W., Botvinick, M.M., and Brody, C.D. (2013). Rats and humans can

optimally accumulate evidence for decision-making. Science 340, 95–98.

Calhoun, A.J., Pillow, J.W., and Murthy, M. (2019). Unsupervised identification

of the internal states that shape natural behavior. Nat. Neurosci. 22,

2040–2049.

Carandini, M., and Heeger, D.J. (2011). Normalization as a canonical neural

computation. Nat. Rev. Neurosci. 13, 51–62.

Chaisanguanthum, K.S., Shen, H.H., and Sabes, P.N. (2014). Motor variability

arises from a slow random walk in neural state. J. Neurosci. 34, 12071–12080.

Churchland, A.K., Kiani, R., and Shadlen, M.N. (2008). Decision-making with

multiple alternatives. Nat. Neurosci. 11, 693–702.

Cisek, P., Puskas, G.A., and El-Murr, S. (2009). Decisions in changing condi-

tions: the urgency-gating model. J. Neurosci. 29, 11560–11571.

Cohen, M.R., and Kohn, A. (2011). Measuring and interpreting neuronal corre-

lations. Nat. Neurosci. 14, 811–819.

Cohen, M.R., and Maunsell, J.H. (2009). Attention improves performance pri-

marily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600.

Cohen, M.R., and Maunsell, J.H. (2010). A neuronal population measure of

attention predicts behavioral performance on individual trials. J. Neurosci.

30, 15241–15253.

Cohen, J.D., Perlstein, W.M., Braver, T.S., Nystrom, L.E., Noll, D.C., Jonides,

J., and Smith, E.E. (1997). Temporal dynamics of brain activation during a

working memory task. Nature 386, 604–608.

Cowley, B.R., Smith, M.A., Kohn, A., and Yu, B.M. (2016). Stimulus-driven

population activity patterns in macaque primary visual cortex. PLoS

Comput. Biol. 12, e1005185.

Cowley, B., Williamson, R., Acar, K., Smith, M., and Yu, B.M. (2017). Adaptive

stimulus selection for optimizing neural population responses. Adv. Neural Inf.

Process. Sys. 30, 1395–1405.

Crapse, T.B., and Sommer, M.A. (2008). Corollary discharge across the animal

kingdom. Nat. Rev. Neurosci. 9, 587–600.

Cumming, B.G., and Nienborg, H. (2016). Feedforward and feedback sources

of choice probability in neural population responses. Curr. Opin. Neurobiol. 37,

126–132.

Cunningham, J.P., and Yu, B.M. (2014). Dimensionality reduction for large-

scale neural recordings. Nat. Neurosci. 17, 1500–1509.

Curtis, C.E., and D’Esposito, M. (2003). Persistent activity in the prefrontal cor-

tex during working memory. Trends Cogn. Sci. 7, 415–423.

ll
Article

14 Neuron 108, 1–17, November 11, 2020

Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021

https://doi.org/10.1016/j.neuron.2020.07.021
https://doi.org/10.1016/j.neuron.2020.07.021
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref1
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref1
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref1
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref2
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref2
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref2
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref3
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref3
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref3
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref4
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref4
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref4
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref5
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref5
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref5
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref6
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref6
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref146
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref146
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref146
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref7
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref7
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref8
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref8
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref8
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref9
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref9
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref9
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref10
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref10
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref10
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref11
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref11
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref11
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref12
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref12
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref13
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref13
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref14
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref14
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref14
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref15
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref15
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref16
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref16
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref17
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref17
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref18
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref18
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref19
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref19
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref20
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref20
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref21
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref21
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref21
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref22
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref22
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref22
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref23
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref23
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref23
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref24
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref24
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref24
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref25
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref25
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref26
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref26
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref26
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref27
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref27
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref28
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref28


Ebitz, R.B., and Moore, T. (2017). Selective modulation of the pupil light reflex

by microstimulation of prefrontal cortex. J. Neurosci. 37, 5008–5018.

Eldar, E., Cohen, J.D., and Niv, Y. (2013). The effects of neural gain on attention

and learning. Nat. Neurosci. 16, 1146–1153.

Elsayed, G.F., Lara, A.H., Kaufman, M.T., Churchland, M.M., and

Cunningham, J.P. (2016). Reorganization between preparatory andmovement

population responses in motor cortex. Nat. Commun. 7, 13239.

Engel, T.A., Steinmetz, N.A., Gieselmann, M.A., Thiele, A., Moore, T., and

Boahen, K. (2016). Selective modulation of cortical state during spatial atten-

tion. Science 354, 1140–1144.

Erisken, S., Vaiceliunaite, A., Jurjut, O., Fiorini, M., Katzner, S., and Busse, L.

(2014). Effects of locomotion extend throughout the mouse early visual sys-

tem. Curr. Biol. 24, 2899–2907.

Everitt, B.J., and Robbins, T.W. (1997). Central cholinergic systems and cogni-

tion. Annu. Rev. Psychol. 48, 649–684.

Felleman, D.J., and Van Essen, D.C. (1991). Distributed hierarchical process-

ing in the primate cerebral cortex. Cereb. Cortex 1, 1–47.

Fetsch, C.R., Pouget, A., DeAngelis, G.C., and Angelaki, D.E. (2011). Neural

correlates of reliability-based cue weighting during multisensory integration.

Nat. Neurosci. 15, 146–154.

Ghosh, S., and Maunsell, J.H. (2019). Visual area v4 encodes history depen-

dent attentional effort and single-trial perceptual detection. bioRxiv. https://

doi.org/10.1101/584409.

Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making.

Annu. Rev. Neurosci. 30, 535–574.

Goris, R.L., Movshon, J.A., and Simoncelli, E.P. (2014). Partitioning neuronal

variability. Nat. Neurosci. 17, 858–865.

Gutnisky, D.A., Beaman, C., Lew, S.E., and Dragoi, V. (2017a). Cortical

response states for enhanced sensory discrimination. eLife 6, e29226.

Gutnisky, D.A., Beaman, C.B., Lew, S.E., and Dragoi, V. (2017b). Spontaneous

fluctuations in visual cortical responses influence population coding accuracy.

Cereb. Cortex 27, 1409–1427.

Hafed, Z.M., Lovejoy, L.P., and Krauzlis, R.J. (2011). Modulation of microsac-

cades in monkey during a covert visual attention task. J. Neurosci. 31,

15219–15230.

Hanks, T.D., and Summerfield, C. (2017). Perceptual decision making in ro-

dents, monkeys, and humans. Neuron 93, 15–31.

Hanks, T., Kiani, R., and Shadlen, M.N. (2014). A neural mechanism of speed-

accuracy tradeoff in macaque area LIP. eLife 3, e02260.

Hanks, T.D., Kopec, C.D., Brunton, B.W., Duan, C.A., Erlich, J.C., and Brody,

C.D. (2015). Distinct relationships of parietal and prefrontal cortices to evi-

dence accumulation. Nature 520, 220–223.

Harris, K.D., and Thiele, A. (2011). Cortical state and attention. Nat. Rev.

Neurosci. 12, 509–523.

Hennig, J.A., Golub, M.D., Lund, P.J., Sadtler, P.T., Oby, E.R., Quick, K.M.,

Ryu, S.I., Tyler-Kabara, E.C., Batista, A.P., Yu, B.M., and Chase, S.M.

(2018). Constraints on neural redundancy. eLife 7, e36774.

Hennig, J.A., Oby, E.R., Golub, M.D., Bahureksa, L.A., Sadtler, P.T., Quick,

K.M., Ryu, S.I., Tyler-Kabara, E.C., Batista, A.P., Chase, S.M., et al. (2020).

Learning is shaped by abrupt changes in neural engagement. bioRxiv.

https://doi.org/10.1101/2020.05.24.112714.

Huang, C., Ruff, D.A., Pyle, R., Rosenbaum, R., Cohen, M.R., and Doiron, B.

(2019). Circuit models of low-dimensional shared variability in cortical net-

works. Neuron 101, 337–348.e4.

Huerta, M.F., Krubitzer, L.A., and Kaas, J.H. (1987). Frontal eye field as defined

by intracortical microstimulation in squirrel monkeys, owl monkeys, and ma-

caque monkeys. II. Cortical connections. J. Comp. Neurol. 265, 332–361.

Huk, A.C., Katz, L.N., and Yates, J.L. (2017). The role of the lateral intraparietal

area in (the study of) decision making. Annu. Rev. Neurosci. 40, 349–372.

Hung, C.-C., Carlson, E.T., and Connor, C.E. (2012). Medial axis shape coding

in macaque inferotemporal cortex. Neuron 74, 1099–1113.

Jasper, A.I., Tanabe, S., and Kohn, A. (2019). Predicting perceptual decisions

using visual cortical population responses and choice history. J. Neurosci. 39,

6714–6727.

Joshi, S., Li, Y., Kalwani, R.M., and Gold, J.I. (2016). Relationships between

pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingu-

late cortex. Neuron 89, 221–234.

Kanitscheider, I., Coen-Cagli, R., Kohn, A., and Pouget, A. (2015). Measuring

Fisher information accurately in correlated neural populations. PLoS

Comput. Biol. 11, e1004218.

Kaufman, M.T., Churchland, M.M., Ryu, S.I., and Shenoy, K.V. (2014). Cortical

activity in the null space: permitting preparation without movement. Nat.

Neurosci. 17, 440–448.

Kelly, R.C., Smith, M.A., Samonds, J.M., Kohn, A., Bonds, A.B., Movshon,

J.A., and Lee, T.S. (2007). Comparison of recordings from microelectrode ar-

rays and single electrodes in the visual cortex. J. Neurosci. 27, 261–264.

Khanna, S.B., Scott, J.A., and Smith, M.A. (2019a). Dynamic shifts of visual

and saccadic signals in prefrontal cortical regions 8ar and fef. bioRxiv.

https://doi.org/10.1101/817478.

Khanna, S.B., Snyder, A.C., and Smith, M.A. (2019b). Distinct sources of vari-

ability affect eye movement preparation. J. Neurosci. 39, 4511–4526.

Kiani, R., and Shadlen, M.N. (2009). Representation of confidence associated

with a decision by neurons in the parietal cortex. Science 324, 759–764.

Kohn, A. (2007). Visual adaptation: physiology, mechanisms, and functional

benefits. J. Neurophysiol. 97, 3155–3164.

Kohn, A., Coen-Cagli, R., Kanitscheider, I., and Pouget, A. (2016). Correlations

and neuronal population information. Annu. Rev. Neurosci. 39, 237–256.

Kohn, A., Jasper, A.I., Semedo, J.D., Gokcen, E., Machens, C.K., and Yu, B.M.

(2020). Principles of corticocortical communication: proposed schemes and

design considerations. Trends Neurosci. Published online August 5, 2020.

https://doi.org/10.1016/j.tins.2020.07.001.

Krajbich, I., and Rangel, A. (2011). Multialternative drift-diffusion model pre-

dicts the relationship between visual fixations and choice in value-based deci-

sions. Proc. Natl. Acad. Sci. USA 108, 13852–13857.

Krajbich, I., Armel, C., and Rangel, A. (2010). Visual fixations and the compu-

tation and comparison of value in simple choice. Nat. Neurosci. 13,

1292–1298.

Leinweber, M.,Ward, D.R., Sobczak, J.M., Attinger, A., and Keller, G.B. (2017).

A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95,

1420–1432.e5.

Leopold, D.A., and Logothetis, N.K. (1998). Microsaccades differentially

modulate neural activity in the striate and extrastriate visual cortex. Exp.

Brain Res. 123, 341–345.

Lin, I.-C., Okun,M., Carandini, M., andHarris, K.D. (2015). The nature of shared

cortical variability. Neuron 87, 644–656.

Liu, Y., Rodenkirch, C., Moskowitz, N., Schriver, B., and Wang, Q. (2017).

Dynamic lateralization of pupil dilation evoked by locus coeruleus activation

results from sympathetic, not parasympathetic, contributions. Cell Rep. 20,

3099–3112.

Lowet, E., Gomes, B., Srinivasan, K., Zhou, H., Schafer, R.J., and Desimone,

R. (2018). Enhanced neural processing by covert attention only during micro-

saccades directed toward the attended stimulus. Neuron 99, 207–214.e3.

Luo, T.Z., and Maunsell, J.H. (2015). Neuronal modulations in visual cortex are

associated with only one of multiple components of attention. Neuron 86,

1182–1188.

Luo, T.Z., andMaunsell, J.H.R. (2018). Attentional changes in either criterion or

sensitivity are associated with robust modulations in lateral prefrontal cortex.

Neuron 97, 1382–1393.e7.

Macmillan, N.A., and Creelman, C.D. (2004). Detection Theory: A User’s Guide

(Psychology Press).

Mante, V., Sussillo, D., Shenoy, K.V., and Newsome, W.T. (2013). Context-

dependent computation by recurrent dynamics in prefrontal cortex. Nature

503, 78–84.

ll
Article

Neuron 108, 1–17, November 11, 2020 15

Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021

http://refhub.elsevier.com/S0896-6273(20)30565-1/sref29
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref29
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref30
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref30
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref31
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref31
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref31
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref32
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref32
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref32
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref33
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref33
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref33
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref34
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref34
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref35
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref35
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref36
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref36
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref36
https://doi.org/10.1101/584409
https://doi.org/10.1101/584409
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref38
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref38
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref39
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref39
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref40
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref40
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref41
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref41
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref41
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref42
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref42
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref42
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref43
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref43
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref44
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref44
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref45
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref45
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref45
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref46
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref46
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref47
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref47
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref47
https://doi.org/10.1101/2020.05.24.112714
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref49
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref49
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref49
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref50
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref50
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref50
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref51
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref51
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref52
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref52
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref53
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref53
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref53
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref54
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref54
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref54
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref55
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref55
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref55
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref56
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref56
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref56
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref57
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref57
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref57
https://doi.org/10.1101/817478
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref59
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref59
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref60
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref60
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref61
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref61
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref62
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref62
https://doi.org/10.1016/j.tins.2020.07.001
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref64
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref64
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref64
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref65
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref65
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref65
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref66
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref66
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref66
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref67
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref67
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref67
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref68
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref68
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref69
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref69
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref69
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref69
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref70
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref70
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref70
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref71
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref71
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref71
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref72
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref72
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref72
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref73
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref73
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref74
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref74
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref74


Marcora, S.M., Staiano, W., and Manning, V. (2009). Mental fatigue impairs

physical performance in humans. J. Appl. Physiol. 106, 857–864.

Markov, N.T., Ercsey-Ravasz, M.M., Ribeiro Gomes, A.R., Lamy, C., Magrou,

L., Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., et al. (2014). A

weighted and directed interareal connectivity matrix formacaque cerebral cor-

tex. Cereb. Cortex 24, 17–36.

Martinez-Conde, S., Macknik, S.L., and Hubel, D.H. (2004). The role of fixa-

tional eye movements in visual perception. Nat. Rev. Neurosci. 5, 229–240.

Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. J. Cogn

1, 16.

Maunsell, J.H.R. (2015). Neuronal mechanisms of visual attention. Annu. Rev.

Vis. Sci. 1, 373–391.

Mayo, J.P., Cohen, M.R., and Maunsell, J.H. (2015). A refined neuronal popu-

lation measure of visual attention. PLoS ONE 10, e0136570.

McCormick, D.A. (1992). Neurotransmitter actions in the thalamus and cere-

bral cortex and their role in neuromodulation of thalamocortical activity.

Prog. Neurobiol. 39, 337–388.

McGinley,M.J., David, S.V., andMcCormick, D.A. (2015a). Cortical membrane

potential signature of optimal states for sensory signal detection. Neuron 87,

179–192.

McGinley, M.J., Vinck, M., Reimer, J., Batista-Brito, R., Zagha, E., Cadwell,

C.R., Tolias, A.S., Cardin, J.A., and McCormick, D.A. (2015b). Waking state:

rapid variations modulate neural and behavioral responses. Neuron 87,

1143–1161.

Milton, R., Shahidi, N., and Dragoi, V. (2020). Dynamic states of population ac-

tivity in prefrontal cortical networks of freely-moving macaque. Nat. Commun.

11, 1948.

Mitchell, J.F., Sundberg, K.A., and Reynolds, J.H. (2009). Spatial attention de-

correlates intrinsic activity fluctuations in macaque area V4. Neuron 63,

879–888.

Moore, T., and Zirnsak,M. (2017). Neural mechanisms of selective visual atten-

tion. Annu. Rev. Psychol. 68, 47–72.

Moreno-Bote, R., Beck, J., Kanitscheider, I., Pitkow, X., Latham, P., and

Pouget, A. (2014). Information-limiting correlations. Nat. Neurosci. 17,

1410–1417.

Muller, L., Chavane, F., Reynolds, J., and Sejnowski, T.J. (2018). Cortical trav-

elling waves: mechanisms and computational principles. Nat. Rev. Neurosci.

19, 255–268.

Murphy, P.R., Boonstra, E., and Nieuwenhuis, S. (2016). Global gain modula-

tion generates time-dependent urgency during perceptual choice in humans.

Nat. Commun. 7, 13526.

Musall, S., Kaufman, M.T., Juavinett, A.L., Gluf, S., and Churchland, A.K.

(2019). Single-trial neural dynamics are dominated by richly varied move-

ments. Nat. Neurosci. 22, 1677–1686.

Nassar,M.R., Rumsey, K.M.,Wilson, R.C., Parikh, K., Heasly, B., andGold, J.I.

(2012). Rational regulation of learning dynamics by pupil-linked arousal sys-

tems. Nat. Neurosci. 15, 1040–1046.

Ni, A.M., Ruff, D.A., Alberts, J.J., Symmonds, J., and Cohen, M.R. (2018).

Learning and attention reveal a general relationship between population activ-

ity and behavior. Science 359, 463–465.

Nienborg, H., and Cumming, B.G. (2009). Decision-related activity in sensory

neurons reflects more than a neuron’s causal effect. Nature 459, 89–92.

O’Connell, R.G., Shadlen, M.N., Wong-Lin, K., and Kelly, S.P. (2018). Bridging

neural and computational viewpoints on perceptual decision-making. Trends

Neurosci. 41, 838–852.

Okun, M., Steinmetz, N., Cossell, L., Iacaruso, M.F., Ko, H., Barthó, P., Moore,
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Y€uzgeç, Ö., Prsa, M., Zimmermann, R., and Huber, D. (2018). Pupil size

coupling to cortical states protects the stability of deep sleep via parasympa-

thetic modulation. Curr. Biol. 28, 392–400.e3.

Zhang, S., Xu, M., Kamigaki, T., Hoang Do, J.P., Chang, W.-C., Jenvay, S.,

Miyamichi, K., Luo, L., and Dan, Y. (2014). Selective attention. Long-range

and local circuits for top-down modulation of visual cortex processing.

Science 345, 660–665.

Zhao, Y., Yates, J.L., Levi, A.J., Huk, A.C., and Park, I.M. (2020). Stimulus-

choice (mis)alignment in primate area MT. PLoS Comput. Biol. 16, e1007614.

Zohary, E., Shadlen, M.N., and Newsome, W.T. (1994). Correlated neuronal

discharge rate and its implications for psychophysical performance. Nature

370, 140–143.

ll
Article

Neuron 108, 1–17, November 11, 2020 17

Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021

http://refhub.elsevier.com/S0896-6273(20)30565-1/sref120
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref120
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref120
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref121
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref121
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref121
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref122
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref122
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref122
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref123
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref123
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref123
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref124
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref124
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref125
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref125
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref125
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref126
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref126
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref126
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref127
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref127
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref127
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref128
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref128
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref128
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref129
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref129
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref129
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref130
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref130
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref130
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref131
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref131
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref132
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref132
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref133
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref133
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref134
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref134
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref134
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref135
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref135
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref135
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref136
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref136
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref137
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref137
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref138
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref138
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref138
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref139
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref139
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref140
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref140
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref141
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref141
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref141
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref142
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref142
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref142
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref142
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref143
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref143
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref143
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref143
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref144
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref144
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref145
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref145
http://refhub.elsevier.com/S0896-6273(20)30565-1/sref145


STAR+METHODS

KEY RESOURCES TABLE
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Matthew

A. Smith (mattsmith@cmu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Code and data are available by request to the Lead Contact (mattsmith@cmu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental details have been described previously (Snyder et al., 2018). Three adult male animals (Macaca mulatta) were used for

this study. Experimental procedures were approved by the Institutional Animal Care and Use Committee of the University of Pitts-

burgh and were performed in accordance with the United States National Research Council’s Guide for the Care and Use of Labo-

ratory Animals.

METHOD DETAILS

Electrophysiology
We recorded extracellular activity from populations of V4 and prefrontal cortex (PFC) in two awake, head-fixed monkeys. After each

animal was trained to perform an orientation-change detection task, we chronically implanted two 96-electrode arrays (Blackrock

Microsystems; 1 mm in electrode length, 400-mm spacing in a 10310 grid). For monkey 1 (‘Pe’), we implanted in right V4 and right

PFC. For monkey 2 (‘Wa’), we implanted in left V4 and left PFC. V4 arrays were implanted on the prelunate gyrus medial to the inferior

occipital sulcus (Snyder et al., 2018), where receptive fields were approximately 7�, 5.25� eccentricity in monkeys 1, 2. PFC arrays

were implanted in area 8Ar on the prearcuate gyrus immediately anterior to the arcuate sulcus andmedial to the principal sulcus (see

Figure 1 in Khanna et al., 2019a). Electrodes of 1 mm in length would reach approximately the middle layers of V4, where the cortical

thickness is close to 2mm, and the superficial layers of PFC, where the cortical thickness is close to 3mm (Seidlitz et al., 2018). How-

ever, the precise layer of our recordings was not verified because it would have required sacrificing the animals for histology.

Voltage signals were spike sorted with semi-supervised sorting algorithms (Shoham et al., 2003) and visually inspected using

custom MATLAB software (Kelly et al., 2007), taking into account waveform shapes and inter-spike interval distributions (https://

github.com/smithlabvision/spikesort). Our data consisted of both well-isolated single units and multi-units, and we refer to each

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Macaca mulatta) 2 animals from Covance, 1 from Tulane

National Primate Research Center

N/A

Software and Algorithms

MATLAB MathWorks RRID: SCR_001622; https://www.

mathworks.com/products/matlab/

Custom spike-sorting software Kelly et al., 2007 https://github.com/smithlabvision/

spikesort

Other

96-electrode array Blackrock Microsystems https:/www./blackrockmicro.com/

neuroscience-research-products/neural-

data-acquisition-systems/

Eyelink 1000 eye tracker SR Research RRID: SCR_009602; https://www.sr-

research.com

ll
Article

e1 Neuron 108, 1–17.e1–e8, November 11, 2020

Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021

mailto:mattsmith@cmu.edu
mailto:mattsmith@cmu.edu
https://github.com/smithlabvision/spikesort
https://github.com/smithlabvision/spikesort
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/
https://github.com/smithlabvision/spikesort
https://github.com/smithlabvision/spikesort
http://https:/www./blackrockmicro.com/neuroscience-research-products/neural-data-acquisition-systems/
http://https:/www./blackrockmicro.com/neuroscience-research-products/neural-data-acquisition-systems/
http://https:/www./blackrockmicro.com/neuroscience-research-products/neural-data-acquisition-systems/
https://www.sr-research.com
https://www.sr-research.com


unit as a ‘‘neuron.’’ After applying rigorous spike waveform controls (see below), each session had 7-54 recorded V4 neurons (24-54

for monkey 1 and 7-35 for monkey 2) with a median of 32 V4 neurons (40, 20 neurons for monkeys 1, 2). For recordings in PFC (for

which the same spike waveform controls were applied), each session had 41-93 recorded PFC neurons (41-93 for monkey 1 and 41-

85 for monkey 2) with a median of 60 PFC neurons (60, 58 neurons for monkeys 1, 2).

Orientation-change detection task
We trained each animal to perform an orientation-change detection task in which each trial comprised a sequence of flashes, where

each flash had two Gabor patch stimuli (one presented in each visual hemifield). After fixating, the animal was rewarded with water or

juice for correctly detecting a change in stimulus bymaking a saccade to the changed stimulus (i.e., a ‘‘hit’’). Any incorrect decisions,

such as breaking fixation, missing a changed stimulus, or making a saccade to an unchanged stimulus, resulted in no reward and a

1 s time out before the next trial began. The display was a gamma-corrected flat-screen cathode ray tube monitor positioned 36 cm

from the animal’s eyes with a resolution of 10243768 pixels, refreshed at a frame rate of 100 Hz. The background of the display was

50% luminance (gray). The gaze of the animal was tracked using an infrared eye tracking system (EyeLink 1000; SR Research,

Ottawa, Ontario), and monitored online by experimental control software to ensure fixation within ~1� of the central fixation point

throughout each trial. Any trials in which the animal broke this fixation window without regard to the task (e.g., saccades that did

not end in one of the two stimulus locations) were removed from our analyses.

Stimulus details

Presented visual stimuli were achromatic, drifting Gabor patches scaled and positioned to roughly cover the aggregate receptive

fields (RFs) of the recorded V4 neurons. For monkey 1, Gabor stimuli had a diameter of visual angle 7.02�, and were centered

7.02� below and 7.02� to the left of fixation. For monkey 2, stimuli had a diameter of 4.70� and were centered 2.35� below and

4.70� to the right of fixation. Gabor stimuli were full-contrast with a spatial and temporal frequency that elicited robust responses

from the population overall (i.e., not optimized for any particular neuron). For monkey 1, frequencies were 0.85 cycles/� and 8 cy-

cles/s. Formonkey 2, frequencies were 0.85 cycles/� and 7 cycles/s. During the task, we presented aGabor stimulus at the estimated

RF location and simultaneously at the mirror-symmetric location in the opposite hemifield.

Trial details

The trial structure of the task was as follows. At the start of the trial, the animal fixated at a centrally-located yellow dot (0.6� in diam-

eter) on a blank, isoluminant screen. Each trial comprised a sequence of flashes, where each flash was a 400 ms presentation of two

Gabor stimuli, one in each visual hemifield, followed by a blank screen lasting for 300-500ms (uniformly distributed). For each trial, the

orientation angle of one stimulus was randomly chosen to be 45� or 135�, and the orientation of the stimulus in the opposite hemifield

was orthogonal (either 135� or 45�, respectively). Subsequent flashes in the sequence each had a fixed probability (30%, 40% for

monkeys 1, 2) of the change in orientation of one of the stimuli (i.e., the ‘‘target’’). Stimulus sequences continued until either the animal

made an eye movement (i.e., a ‘‘hit’’ or a ‘‘false alarm’’) or the animal remained fixating for 400 ms after a target appeared (i.e., a

‘‘miss’’). The average sequence length (i.e., the number of flashes per trial, determined either by when a target was presented or

when the animal made a false alarm) was 2.9, 2.7 flashes for monkeys 1, 2. The longest sequence length was 20, 14 flashes for mon-

keys 1, 2. For most of our analyses, we consider the stimulus flashes that occur after the first stimulus flash and before the final stim-

ulus flash in a trial’s sequence (i.e., sequence positions 2;.;M� 1 for a sequence with M flashes), which we designate as sample

stimuli.

Cueing blocks of trials to probe attention

To probe the effects of spatial attention, trials were blocked in an alternating fashion. Within a ‘‘cue-in’’ block, 90% of the stimulus

changes (‘‘valid’’ trials, randomly chosen) occurred for the stimulus inside the RFs of the recorded V4 neurons, while the remaining

10% of stimulus changes (‘‘invalid’’ trials) occurred in the opposite visual hemifield. For valid trials, the orientation change was

randomly chosen to be 1�, 3�, 6�, or 15� in either the clockwise or anti-clockwise direction. For invalid trials, we restricted the orien-

tation change to be only 3� randomly in either the clockwise or anti-clockwise direction. This restriction was necessary in order to

provide enough trials to reasonably estimate the animal’s rate of detecting stimulus changes for these infrequent trials. The other

type of block was ‘‘cue-out,’’ which had the same task structure and percentages as cue-in blocks except that for valid trials of

cue-out blocks, the stimulus change occurred outside the RFs of the recorded V4 neurons.

Each block lasted until the animal made 80 correct detections in that block, at which point the type of block (cue-in or cue-out)

switched. To alert the animal to the direction to attend in each block, each block began with a set of initial trials in which only the

valid stimulus was presented (with no stimulus in the opposite hemifield). These initial trials lasted until the animal correctly detected

5 orientation changes, after which pairs of stimuli were presented for the remainder of the block. These initial trials were excluded

from all analyses. Block type (left or right cue) alternated within a session, with the first block type counterbalanced across sessions.

The average number of trials within each block was 179, 224 trials for monkeys 1, 2. Monkey 1 completed 25 sessions of the exper-

iment; monkey 2 completed 24 sessions. After excluding sessions for equipment failure (for 2 sessions, the photodiode signal used to

align eye-tracking and neural data was unexpectedly lost) and sessions with 5 neurons or less (4 sessions), we analyzed 24 sessions

completed by monkey 1, and 19 sessions completed by monkey 2.

We reported how the animal’s sensitivity d0 increased for larger changes in grating orientation (Figure 1B; Figure S1). From the hit

rate and false alarm rate estimates (see below), we also computed sensitivity as d0 =fðhit rateÞ� fðfalse alarm rateÞ, where fð $Þ is
the inverse cumulative distribution function of the Gaussian distribution, following previous studies (Macmillan and Creelman, 2004;
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Luo and Maunsell, 2015). We note that our task is not a true two-alternative forced choice task, as for each stimulus flash the animal

could choose to make a saccade to one of two targets or remain fixating. However, the animal almost always made a saccade to the

cued location for false alarm or incorrect trials (greater than 99% of all false alarm and incorrect trials). Thus, we assume that the

choice of the animal followed statistics similar to those of a two-alternative forced choice task (a ‘‘go/no go’’ task in our case),

and we report sensitivity. Previous work has found that an increase in sensitivity (i.e., the animal performs better at detecting a stim-

ulus change) and also a decrease in criterion (i.e., the animal is more likely to make a saccade and thus increases its hit rate and false

alarm rate) can occur concurrently in a spatial attention task (Luo and Maunsell, 2015). The behavior in our task is consistent with the

results of this previous work: Sensitivity increased (Figure 1B, 3�) and criterion decreased (mean Dc= � 0:46;�0:64 between valid

and invalid trials for monkeys 1, 2). This suggests that in our task the spatial cue resulted in both the ability to more finely detect a

stimulus change (i.e., an increase in sensitivity) as well as a shift in bias to be more likely to choose the cued location (i.e., a decrease

in criterion).

Quantifying the slow fluctuations in behavior
We analyzed two commonmetrics of the animal’s behavior: hit rate and false alarm rate.Hit ratewas defined as the number of correct

saccades toward a target divided by the total number of times a target appeared. False alarm rate was defined as the number of

saccades toward a sample stimulus (i.e., not a target) divided by the total number of presented sample stimuli (excluding the initial

stimulus presentation, which was never a target).

The overall false alarm rates were high for our task (30.2%, 40.5% for monkeys 1, 2) relative to previous studies with similar tasks

(e.g., <10% reported in Cohen andMaunsell, 2010; Luo andMaunsell, 2015). Interestingly, our observed rates were close to the likeli-

hood of a change for each flash (30%, 40% for monkeys 1, 2). Thus, one could think of the animal’s behavior as selecting targets with

a likelihood very close to the actual change likelihood. However, it is clear the animal was not guessing as it had excellent perceptual

performance (Figure 1B). There aremultiple differences between our task and previous tasks that could explain the higher false alarm

rates for our task. For example, our task was challenging (mean 6.25� orientation changes), leaving the animal often uncertain as to

whether a stimulus change had occurred. In addition, because we did not use any catch trials, and 90% of cued trials were valid

within a block, the animal could be almost certain of the location when planning to make a saccade. For these reasons, the observed

false alarm rates for our task were higher than those reported in some previous studies that employed catch trials or a different dis-

tribution of difficulties to explicitly discourage the animal frommaking false alarms. We view the observed high false alarm rates to be

a feature of the task, allowing us to observe large changes in the false alarm rate over the course of the session.

We took running hit rate and false alarm rate estimates in 30 min windows, shifting the window in 6 min increments. The long dura-

tion of the time windows (30min) was necessary to ensure reliable estimates of rate over a relatively small number of trials (~300 trials

per 30 min; some periods had many fewer trials due to the animal briefly resting). We computed correlations between hit rate and

false alarm rate over time within a session (Figure 1D), and compared them to correlations when we shuffled rates across sessions

(within-session time points remained unshuffled). We truncated longer sessions to have the same number of time points as the

shorter sessions (discarding any time points that occur after the shorter session ended).

To assess the magnitudes of the slow fluctuations in hit rate and false alarm rate, we compared their absolute changes relative to

the shifts in hit rate and false alarm rate due to spatial attention. To measure the behavioral effect size of attention, we computed the

hit rate separately for valid and invalid trials across all blocks for each session, and took the difference between the two. To measure

the behavioral effect size of the slow fluctuations, we computed the hit rate for each block, and took the maximum difference across

all pairs of blocks for that session. We measured differences in false alarm rate in the same manner. For this comparison, we only

considered trials for which a stimulus change of ± 3� occurred or would occur if the animal had not false alarmed. This was because

invalid trials had stimuli that only changed ±3�.
Next, we assessed the timescale of these slow fluctuations in behavior. We re-estimated hit rate and false alarm rate as above

except shifting windows in 1 min increments (instead of 6 min increments) for greater time resolution. Then, we performed Gaussian

smoothing on the running estimates with standard deviations (i.e., timescales) ranging from 1 min to 60 min in 1 min increments. For

each candidate timescale, we computed a cross-validated R2 based on leaving out randomly-chosen time points for each fold (10-

folds in total) and then predicting the value of each held-out point by taking a Gaussian weighted average of its neighbors. We found

the timescale that maximizes this R2. We then increased the timescale until the R2 dropped to 75% of the peak R2. We define this as

the timescale of the slow fluctuations in behavior.We provide intuition for this approach in Figure S4.We confirmed that the estimated

timescales were similar for different durations of time windows (e.g., 20 min instead of 30 min).

Estimating slow drift in neural activity
To estimate the slow drift in V4 and PFC activity, we first computed residual spike counts by taking the spike counts of each repeat of

the same stimulus (binned in a 400 ms epoch starting 50 ms after stimulus onset) and subtracting the mean spike counts averaged

across repeats of that stimulus orientation (either 45� or 135�). We then took a running average of the residual spike counts in a 20min

timewindow, where eachwindowwas offset in time from the previouswindow by 6min.We chose a 20min timewindow (as opposed

to the 30min window chosen for the running estimates of behavioral variables) because here we could reliably estimate the slow drift

with a smaller window. Different values of the time window width and window offset yielded similar results. We applied principal

component analysis (PCA) to the running average of residual spike count vectors (20 to 40 vectors per session, where the length
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of each vector equaled the number of neurons), and defined the unit-length vector of weights (i.e., loadings) of the top principal

component (PC) as the slow drift axis. We found that on average the slow drift axis explained ~70% of the variance of the running

average of residual activity (69%, 77% for monkeys 1, 2). We then projected the residual spike counts (400 ms bins) onto this

axis. Next, we performed Gaussian smoothing (with a timescale of 9 min; different values yielded similar results), and defined the

Gaussian-smoothed projections as the slow drift. The specified time window width, window offset, and smoothing timescale

were chosen in a reasonable range and not optimized.We chose to use PCA instead of factor analysis (FA) (Yu et al., 2009;Williamson

et al., 2016), because the length of the time windows (20 min) likely averaged away most Poisson-like response variability that would

otherwise be better described by FA. Using FA instead of PCA yielded results similar to those presented here.

Aligning the V4 slow drift across sessions
The sign of the slow drift was arbitrary because PCA identifies the orientation of the slow drift axis in the population activity space up

to a 180� rotation. Thus, without an alignment procedure, the sign of the correlation between the V4 slow drift and a behavioral var-

iable was arbitrary. To combine the correlations across sessions (Figure 3B), we needed a way to align the slow drift axis that was

consistent across sessions. One possibility was to flip the sign of the slow drift such that the sum of its axis weights was positive.

However, this procedure did not account for the possibility that different sessionsmay have different proportions of recorded neurons

with positive or negative weights (and hence making this flipping procedure sensitive to which neurons happened to be recorded in

that session). Instead, we adopted a different procedure that established an absolute reference across sessions based on the sample

stimuli of the experiment (i.e., grating orientation angles of 45� or 135�). The reasoning behind this alignment procedure was that the

slow drift was likely aligned to the stimulus representation of the population of neurons, and because our arrayswere implanted in one

location and remained there, and the response properties of nearby neurons are similar and likely remain constant over time, this

alignment was similar across sessions. We aligned the orientation of the slow drift axis such that the projections of the mean spike

counts of the two sample stimuli along the slow drift axis always yielded a higher projection value for the 45� stimulus than that for the

135� stimulus. Importantly, this alignment was independent of any observed behavioral variables, and thus any correlation between

the slow drift and a behavioral variable over the session cannot be due to this alignment procedure. This alignment procedure was

used in Figure 3B and Figure S5.

There were a small number of sessions in which the population responses to the two orientation angles were not well differentiated.

In these cases, the alignment procedure did not produce a meaningful result. To identify and remove those sessions which would

have otherwise reduced our ability to observe the relationship between neural effects and behavior, we decoded the stimulus identity

(45� or 135�) from the population responses using a linear SVM in a cross-validated manner. When computing the correlations

between the slow drift and behavioral variables (Figure 3B), we included only sessions with a decoding accuracy greater

than 55% (20/24 sessions for monkey 1, 16/19 sessions for monkey 2). Note that we could have flipped the slow drift such that

the higher projection value was for the 135� stimulus instead of the 45� stimulus. This would result in a change of sign with the

samemagnitudes for all correlations (i.e., in Figure 3B, correlations for hit rate, false alarm rate, and pupil diameter would be negative,

and correlations for trial duration and reaction time would be positive).

Controlling for neural recording instabilities
The slow drift could have arisen from non-neural sources, such as neural recording instabilities. Such instabilities may cause the

spike waveforms to gradually change shape throughout a session, and thus affect our spike sorting procedure. For example, if

the spike waveform changes over time, spike sorting may be more likely to miss spikes at different times of the session, leading

to a slow drift. To ensure that the observed slow drift was not due to neural recording instabilities, we used the following two criteria

for the inclusion of a V4 or PFC neuron in our analyses.

First, we included only neurons whose spike waveformwas stable throughout the session. To do so, we divided the session into 10

non-overlapping time bins of equal size, and computed the mean spike waveform in each bin as well as the mean spike waveform

across the entire session. Then, we computed the squared norm of the difference between each bin’smeanwaveform and the overall

mean waveform. The percent waveform variance was computed as the largest squared norm across bins divided by the variance of

the overall mean waveform. Example mean spike waveforms and their corresponding percent waveform variances are shown for V4

and PFC neurons in Figure S2. We removed neurons from our analyses whose percent waveform variance was above 10%. We

confirmed that the remaining neurons with the largest percent waveform variances were not more likely to contribute to the slow drift

than other neurons (Figure S2).

Second, we excluded any neurons for which there was an abrupt change in activity during the session. For each neuron, we divided

the session into 20 non-overlapping time bins of equal size, and computed the mean spike count within each bin. If the change in

activity between any two consecutive time bins was greater than 25% of the maximum activity of that neuron (i.e., the largest of

the mean spike count values across the 20 bins), the neuron was excluded from all analyses.

Measuring behavioral variables and relating them to the slow drift
To characterize the animal’s behavior, we measured hit rate and false alarm rate (described previously), as well as the following three

quantities: 1.Pupil diameterwas themean diameter of the pupil (arbitrary units) during each stimulus flashmeasured with the EyeLink

eye-tracking software (EyeLink 1000; SR Research, Ottawa, Ontario). 2. Trial durationwas the total amount of time taken to complete
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a trial. Because the animal could choose to saccade to an unchanged stimulus flash (thus ending the trial), the animal’s false alarm

rate influenced trial duration. We computed trial duration by taking the difference between the stimulus onset of the initial flash and

saccade onset (or, when no saccade, the end time of the final flash). 3.Reaction timewas computed only for correct trials (i.e., ‘‘hits’’)

as the time between the onset of the changed stimulus in the final flash and saccade onset (the time at which the eyes left the fixation

window).

A running mean of each behavioral variable was taken (except pupil diameter, for which a running median was taken) with 30 min

overlapping windows in 6 min intervals. The long length of the time window was necessary to have reasonable estimates of hit rate

and false alarm rate. For fair comparison between behavioral variables and the slow drift, we also estimated the slow drift as a running

mean of residual spike counts along the slow drift axis with the same time window and intervals as those for the behavioral variable

estimates (i.e., Gaussian smoothing was not performed here).

We used the running estimates of the behavioral variables and slow drift for two comparisons. First, to assess whether the slow

drift and behavioral variables showed similar time courses during a session, we computed the correlation over time between the

slow drift and each behavioral variable (hit rate, false alarm rate, pupil diameter, trial duration, and reaction time). To compute the

‘‘shuffled’’ distributions of correlations between the slow drift and behavioral variables, we randomly shuffled slow drifts across

sessions and re-computed correlations (200 runs), truncating the longer time series by discarding time points after the shorter

times series finished. Second, we assessed if sessions for which the slow drift strongly varied (i.e., had a large magnitude) cor-

responded to sessions for which the behavioral variables also strongly varied. We measured the magnitude of the slow drift as its

variance over time within a session. We normalized the slow drift by the number of neurons for each session to account for dif-

ferences in the number of neurons across sessions. The variances of pupil diameter across sessions were not comparable

because the eye-tracking software output arbitrary units of pupil diameter, and those units changed somewhat from session to

session as the tracker position was adjusted. Thus, although values of pupil diameter were comparable within a session, values

of pupil diameter were not comparable across sessions. We did not include the variance of pupil diameter in our results (Figure 3C;

Figure S5).

Measuring whether neural responses vary more strongly with the slow drift versus attention
To understand how large were the neural activity changes related to the slow drift, we compared it to the size of activity changes

related to spatial attention. For spatial attention, we first defined the attention axis as the axis in population activity space that

connects the mean response on cue-in trials to that on cue-out trials (Cohen and Maunsell, 2010; Mayo et al., 2015; Snyder

et al., 2018). The mean is taken over repeats of the same sample stimulus for a given cue condition. To assess the size of atten-

tion’s effect on spike counts for a given session, we computed the mean response along the attention axis for each block of trials

(Figure 4B, orange and green lines), and took the variance across blocks (s2attn). To measure the size of the slow drift, we computed

the mean slow drift value for each block (Figure 4A, black lines), and computed the variance of these mean values across the

blocks for each session (s2slow drift). We compared the relative sizes of the slow drift and attentional effects by taking the ratio

s2slow drift=s
2
attn. A ratio greater than 1 indicates that the size of the slow drift was larger than the modulation in responses due to

attention. Ratios were computed separately for sample stimuli with 45� or 135� orientations, and results were aggregated across

orientations and sessions (Figure 4C). To control for the possibility that the attention axis was aligned to the slow drift axis (and

hence the slow drift could leak into the estimates of the attentional effect), we subtracted the estimate of the slow drift from re-

sponses before projecting them along the attentional axis. For most sessions, we found that the slow drift axis and the attention

axis were largely unaligned (i.e., this subtraction procedure often did not change the value of s2attn). Note that s2attn included the

variance between cue-in and cue-out blocks (i.e., between orange and green lines) as well as the variance within cue-in and

cue-out blocks separately (i.e., between orange lines and between green lines). This latter variance is necessary to ensure a

fair comparison with the size of the slow drift but implies that s2attn is an overestimate. Thus, the true ratios are likely to be

even larger than reported in Figure 4C.

Comparing the slow drift between brain areas V4 and PFC
To compare the correlation between the V4 slow drift and PFC slow drift over time (Figure 5B), we computed the correlation

between the slow drift identified for each brain area separately. Then, we took the absolute value of the correlation because

its sign is arbitrary. We compared the measured correlations to those computed when the PFC slow drifts were simulated

as random smooth time courses. Each random time course was drawn from a Gaussian process (GP, Williams and Rasmussen,

2006) using the squared exponential covariance function with a timescale similar to that of the slow drift (45 min, Figure S4).

Time points of the random time courses were sampled at the same sampling frequency as the slow drift (with a period of

0.6 min). Correlations between V4 slow drifts and these smooth random time courses were expected to be larger than 0 (Fig-

ure 5B, median jrj = 0:68) because we took absolute correlations. We also considered larger GP timescales and found that the

correlations of the real data (Figure 5B, median jrj = 0:96) were still significantly larger than those for simulated slow drifts with a

1 h timescale (median jrj = 0:81; p< 0:002, permutation test). We also computed the correlation between the magnitudes of V4

and PFC across sessions (Figure 5C). Magnitude was defined as the variance of the slow drift (either in V4 or PFC) within a

session. We normalized the slow drift by the number of neurons to account for differences in the number of neurons recorded

in each session.
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Models of perceptual decision-making
We propose two models of perceptual decision-making (Figure 6; Figure S6). Both models take as input the stimulus xinput˛ f0;1g
(where xinput = 0 for a sample stimulus and xinput = 1 for a changed stimulus) and feedforward perceptual noise εnoiseeNð0;s2Þ, and
output a decision variable d˛f0;1g (where d = 0 represents keeping fixation and d = 1 represents making a saccade). Similar to

the experiment, each simulated trial comprised a sequence of stimulus flashes where each flash had a 40% chance of changing

from xinput = 0 to xinput = 1. In a correct trial, the model outputs decision d = 0 when xinput = 0, and outputs d = 1 when xinput = 1.

Both models also have a slow drift variable s= ð1 =2Þsinð2pð1 =3500Þðt + 2200ÞÞ, where t = 1;.;2000 indicates the trial index. We

chose this sine function so that s slowly varies over 2,000 trials; other smooth functions are possible. We define v = xinput + εnoise + s

which represents V4 activity and provides sensory evidence to decision d. In addition to the εnoise noise, we included another source

of noise that directly influenced d, whereby, for each flash, there was a probability c that d = 1 or d = 0 (both equally likely), indepen-

dent of any other variables in the model. This output noise reflects other internal processes in the brain from which we cannot record

that may affect an animal’s decision.

Sensory bias model

For the sensory bias model (Figure 6A), the decision is based directly on v, where d = 1 if v > 0:5, else d = 0. An increase in s places v

closer to the decision threshold of 0.5, thereby increasing the chance of a false alarm. Conversely, a decrease in s places v further

from the decision threshold of 0.5, thereby requiring a higher value of εnoise to cause a false alarm.

Impulsivity model

For the impulsivity model (Figure 6G), the slow drift s directly influences decision d independent of the sensory evidence encoded in

V4 activity v. Mathematically, the slow drift determines an impulsivity signal meBernoulliðpðsÞÞ, where pðsÞ is the probability of

saccade given the slow drift s. We set pðsÞ= ð1 =2Þðs + 0:5Þ, which increases linearly as s increases. The decision is d = 1 if m=

1. The decision is also dependent on perceptual readout p= v� s, where the slow drift has been removed. Thus, d = 1 if p> 0:5

orm= 1, else d = 0. Note that the slow drift s does not bias the sensory evidence because s is removed from the V4 activity v. Instead,

the slow drift only influences the decision d by overriding the perceptual readout p via the impulsivity signal m.

Model simulations

We ran each model for 2,000 trials, and computed the hit and false alarm rates with running estimates over the 2,000 trials (500-trial

window length, where each window was offset by 50 trials). We matched the overall false alarm rate for each model (34%) to the

animals’ false alarm rates (~30%, ~40% for monkeys 1, 2) by choosing an appropriate value for the sensory noise parameter (s=

0:35) as well as for the output noise parameter (c = 70%).

Decoding V4 responses to predict the occurrence of false alarms
Because the outputs of both models were consistent with the finding that hit rate, false alarm rate, and the slow drift covary together

(Figures 6B, 6C, and 6H), we sought an analysis in which we could test a prediction that differentiated the two models. In particular,

we focused on how false alarms (i.e., d = 1 when xinput = 0) occurred for each model. Under the sensory bias model, slow drift s con-

tributes to decision d through the perceptual readout of V4 activity v. Thus, we would expect that for false alarms, d would be more

accurately predicted from v than from v � s (i.e., subtracting the slow drift contribution from v). On the other hand, for the impulsivity

model, slow drift s contributes to decision d through the impulsivity signalm but not the perceptual readout p (because p= v� s, so

the contribution of s does not reach d). The slow drift s acts as perceptual noise in V4 activity v, obscuring the true perceptual signal p

(i.e., v =p+ s, indicating v comprises the perceptual signal p and the ‘‘noisy’’ slow drift s). In this case, we would expect that for false

alarms (i.e., p> 0:5 when xinput = 0), dwould be more accurately predicted from v � s than from v, which differs from the sensory bias

model.We first performed a decoding analysis to verify that our expectations about thesemodels were correct, and then performed a

similar analysis for the real data to test which model’s predictions were most consistent with the real data.

Verifying model predictions

We performed the following decoding analysis for each model (Figures 6E and 6J). First, we decoded whether or not a false alarm

occurred from v using a threshold decoder (linear SVM). Next, we decoded from v � s instead of v. Finally, we compared the two

decoding accuracies to determine if the decoding accuracy would be higher (as predicted by the sensory bias model) or lower

(as predicted by the impulsivity model) when decoding from v than from v� s. Note that we decoded flashes that were either false

alarms (i.e., d = 1 when xinput = 0) or correctly-rejected flashes (i.e., d = 0 when xinput = 0) that directly preceded the false alarm flashes.

These correctly-rejected flashes were chosen for two reasons. First, they ensured we had an equal number of false alarm and non-

false alarm flashes. Second, they forced the decoder to only consider within-trial fluctuations (i.e., εnoise) but not across-trial fluctu-

ations (i.e., slow drift s). If we had instead considered across-trial fluctuations by including any correctly-rejected flash, we would not

be able to differentiate between the models, as decoding accuracy for both models would be higher for v than for v� s. This is

because s contains information about the overall probability of a false alarm during a session that could be used to predict the occur-

rence of a false alarm within a session (but not within a trial), and subtracting s would discard this information. We provide further

intuition about this point in Figure S6.

Decoding analysis for the real data

We performed a similar decoding analysis for the real data as we did for each model (Figure 6F). The animal’s decision was to

saccade (i.e., d = 1) or not to saccade V4 population responses projected onto the slow drift axis (i.e., v is a 1-dimensional signal,

see below). For s, we used our estimates of the slow drift of V4 activity (i.e., the population responses projected onto the slow drift
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axis and then smoothed). We then decoded v and v � s in the samemanner as described for the models, using a linear SVM decoder

with leave-one-out cross-validation.

For v, we processed V4 activity in the following way. Because decoding accuracy of neural activity predicting false alarms have

been reported to be only slightly above chance (e.g., choice probability was found to be ~54%, as reported in Nienborg and Cum-

ming, 2009) and we were considering a small time window of activity (i.e., 175 ms), we leveraged the temporal information of the V4

responses. We computed spike count vectors of the V4 activity in non-overlapping 1 ms time bins (starting at stimulus onset and

ending at 175 ms after stimulus onset), and performed Gaussian smoothing with a 10 ms standard deviation for each neuron.

Note that compared to estimating the slow drift, the smoothing here is a different order of magnitude (10 ms versus 9 min) and

has a different purpose. The reason for smoothing here is to account for small jitters of spike times between flashes that may occur

due to the 1ms bin widths. Trials for which a saccade occurred within 175ms after stimulus onset were removed (less than 15%of all

false alarm trials). The spike count vectors were then projected onto the slow drift axis. Thus, v corresponded to a 175-dimensional

vector of projected spike counts (where 175 is the number of 1 ms time bins). For the slow drift s, we used the same procedure as

described above, except that we binned activity in 175ms time bins (instead of 400 ms time bins) and included responses to the final

flashes. To obtain v� s, we formed a 175-dimensional vector where each element was the value of s.

We considered the same type of flashes (i.e., false alarms and their preceding correctly-rejected flashes) as those for the models.

False alarm trials were limited to cue-in trials only, and each trial was required to have 3 ormore stimulus flashes in total. To gainmore

statistical power, we doubled the number of data points by aggregating false alarm trials across the two orientations of stimuli (45�

and 135�) in the followingway. For stimulus flashes with a given grating orientation, we subtracted out themean spike count response

(the PSTH on amillisecond timescale) to the preceding correctly-rejected flash from the spike count responses to both the false alarm

and correctly-rejected flashes. This ensured that the overall mean response to the correctly-rejected flash was the same for both

orientations. We then analyzed all stimulus flashes together regardless of orientation.

The fact that we can weakly predict false alarms from visual cortical activity (Figure 6F, ~52%, significantly greater than the chance

level of 50%, p< 0:05 for both monkeys, one sample t test) is consistent with previous work that reported choice probabilities (~55%)

for neurons in MT, V1, V2, and V4 (Nienborg and Cumming, 2009; Cumming and Nienborg, 2016; Jasper et al., 2019). However, the

observed decoding accuracies are not directly comparable to previously-reported choice probabilities because most previous work

computes choice probabilities for a single neuron (here, we use a population of neurons), considers neural activity taken over large

time windows (e.g., 1 s compared to 175 ms used here), and uses two-alternative forced choice tasks rather than our sequential task

that required long periods of fixation. In an additional analysis, we confirmed that the resulting decoding accuracies were not a by-

product of visual response adaptation due to the fact that the final flash always followed the second-to-final flash (Figure S6).

Determining whether the slow drift has the potential to corrupt stimulus encoding
We sought to assess whether the slow drift could corrupt stimulus encoding. To do so, wemeasured to what extent the slow drift lies

within the ‘‘stimulus-encoding subspace,’’ defined as the subspace spanned by the mean responses to many natural images. The

rationale is that, if the slow drift lies within the stimulus-encoding subspace, then the corrupted neural response to an image (i.e.,

corrupted by the slow drift) could be interpreted downstream as a different image.

To identify the stimulus-encoding subspace, we presented a large collection of natural images, which were selected using an

adaptive procedure. We opted for an adaptive stimulus selection procedure because we were limited in howmany images we could

show per session (i.e., ~2,000 images), and a small set of randomly-chosen images cannot fully represent the space of all possible

natural images (Hung et al., 2012). In a set of closed-loop experiments separate from those of the orientation-change detection task,

we employed an adaptive stimulus selection algorithm, called Adept, to choose a set of 2,000 natural images (out of a candidate set

of 20,000) that elicited large and diverse responses (Cowley et al., 2017). We recorded V4 activity in an adult, male rhesus macaque

(Macaca mulatta, monkey 3, ‘Wi’) using a Utah electrode array. Surgical and electrophysiology procedures were the same as for the

other two monkeys, described above. For another monkey (monkey 1), we did not use adaptive stimulus selection but rather

randomly selected 550 images to show.

After choosing the collection of stimuli to show for one recording session, for subsequent sessions we presented the images in

random order while the animals performed an active fixation task. The description of this active fixation task is as follows. After

the animal fixated for 150 ms on a yellow dot (same display parameters as those for the orientation-change detection task) to initiate

a trial, the animal remained fixating while a stimulus clip of images was presented in the RFs of the recorded V4 neurons. After the

stimulus clip finished, the animal was required to maintain fixation for 700 ms, after which the fixation dot vanished and a target dot

appeared ~10 visual degrees from the location of the fixation dot. The animal received a water reward for correctly making a saccade

to the target dot (within a target window of visual angle 5�). For monkey 3, each stimulus clip consisted of 10 natural images randomly

selected from the 2,000 Adept-chosen natural images (no image could repeat within the same stimulus clip), and each image was

shown for 100 ms. For monkey 1, each stimulus clip comprised three images (of the 550), and each image was presented for

200 ms, interleaved with 200 ms of isoluminant blank screen.

Identifying the stimulus-encoding axes

We identified the stimulus-encoding axes using the following procedure. We computed spike counts in 100ms bins (for monkey 3) or

200 ms bins (for monkey 1), starting 50 ms after stimulus onset to account for the time it takes sensory information to reach V4. We

did not consider responses to an image that had 5 or fewer repeats. We defined the stimulus-encoding axes as the dimensions in
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population activity space in which the repeat-averaged responses have the greatest variance. We identified these axes using PCA,

taking the weight vectors of the top K principal components as the top K stimulus-encoding axes. For our work, we chose K = 12

because this number of stimulus-encoding axes captured a large fraction of stimulus response variance (i.e., variance of repeat-aver-

aged responses taken across images) for each session (62%, 60%, 59% for days 1, 2, 3 of monkey 3, and 70%, 72% for days 1, 2 of

monkey 1).

Because repeats were not necessarily equally-spaced throughout a session, we controlled for the possibility that the slow drift

‘‘leaked’’ into the estimation of the stimulus-encoding axes. To do this, we first applied PCA to the repeat-averaged responses

and considered all N PCs, where N is the number of neurons. For each PC, we subtracted any ‘‘slow drift’’ from the raw responses

along that PC (where the slow drift for each PC was estimated from projected responses using Gaussian smoothing with a 9 min

standard deviation). Finally, we re-computed the repeat-averaged responses for which the slow drift was subtracted, and re-applied

PCA to these responses. Results were almost identical when we did not perform this removal procedure, suggesting that little to no

slow drift had leaked into the repeat-averaged responses (i.e., there were enough repeats to average out the presence of the

slow drift).

Comparing the slow drift axis to the stimulus-encoding axes

Wefirst estimated the slow drift of the responses to natural images.We estimated the slow drift axis using the same procedure as that

for the orientation-change experiment. Note this slow drift was not necessarily the same as that removed from each stimulus-encod-

ing axis of the repeat-averaged responses in the previous section, as this slow drift could be along an axis orthogonal to the stimulus-

encoding axes. Finally, we measured the extent to which the slow drift axis was aligned to the stimulus-encoding axes by computing

the fraction of slow drift variance captured by each stimulus-encoding axis. The slow drift variance was the variance of the slow drift

over time within a session. A fraction close to 1 indicates that the slow drift axis largely overlaps with the stimulus-encoding axis. A

fraction close to 0 indicates that the slow drift axis was close to orthogonal to the stimulus-encoding axis. For reference, we rotated

the slow drift axis to a random orientation in population activity space (i.e., ‘‘random axis’’), and re-computed this fraction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated, all statistical hypothesis testing was conducted with permutation tests, which do not assume any para-

metric form of the underlying probability distributions of the sample. All tests were two-sided and non-paired, unless otherwise noted.

We computed p-values with 500 runs, where p< 0:002 indicates the highest significance achievable given the number of runs per-

formed. Permutation tests were performed either for differences in means or differences in medians (the latter used when outliers

existed), as noted by context in the text. All correlations were performed with Pearson’s correlation r, unless otherwise stated.

We computed the significance of ractual of the actual datawith a ‘shuffle test’ by running 500 shuffles of the samples and re-computing

r
j
shuffle for the jth shuffle. The p-valuewasmeasured as the proportion of shuffles with rjshuffle greater than or equal to ractual for all j, for a

one-sided hypothesis test. Error bars in figures represent either ± 1 SEM when estimating means or bootstrapped 90% confidence

intervals when estimating medians, as stated. Error bars are for visualization purposes only, and not used for hypothesis testing. No

statistical methodswere used to predetermine sample sizes, but our sample sizes are similar to those of previous related publications

(e.g., Cohen and Maunsell, 2009; Mitchell et al., 2009; Luo and Maunsell, 2015).

ll
Article

Neuron 108, 1–17.e1–e8, November 11, 2020 e8

Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021


	NEURON15353_proof.pdf
	Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex
	Introduction
	Results
	Slow Fluctuations in Behavioral Variables Reveal the Presence of a Shifting Internal State
	The Activity of V4 Neurons Slowly Drift Together
	The Slow Drift Covaries with Slow Fluctuations in Behavior
	The Slow Drift Is Unrelated to and Larger than the Neural Effect of Spatial Attention
	V4 and PFC Neurons Share the Same Slow Drift
	The Influence of the Slow Drift on the Decision-Making Process
	Why Is It Helpful to Remove Slow Drift from Sensory Activity?

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental Model and Subject Details
	Method Details
	Electrophysiology
	Orientation-change detection task
	Stimulus details
	Trial details
	Cueing blocks of trials to probe attention

	Quantifying the slow fluctuations in behavior
	Estimating slow drift in neural activity
	Aligning the V4 slow drift across sessions
	Controlling for neural recording instabilities
	Measuring behavioral variables and relating them to the slow drift
	Measuring whether neural responses vary more strongly with the slow drift versus attention
	Comparing the slow drift between brain areas V4 and PFC
	Models of perceptual decision-making
	Sensory bias model
	Impulsivity model
	Model simulations

	Decoding V4 responses to predict the occurrence of false alarms
	Verifying model predictions
	Decoding analysis for the real data

	Determining whether the slow drift has the potential to corrupt stimulus encoding
	Identifying the stimulus-encoding axes
	Comparing the slow drift axis to the stimulus-encoding axes


	Quantification and Statistical Analysis




